
Computation Fluid Dynamics
CFD I

Jitesh Gajjar

Maths Dept
Manchester University

Computation Fluid Dynamics – p.1/189

http://www.ma.man.ac.uk/~gajjar

Garbage In, Garbage Out
We will begin with a discussion of errors.
Useful to understand different types of errors which
can arise when doing numerical computation.
• Roundoff errors

• Errors in modelling
• Programming errors, ie bugs
• Truncation, discretization errors.

Computation Fluid Dynamics – p.2/189

Garbage In, Garbage Out
We will begin with a discussion of errors.
Useful to understand different types of errors which
can arise when doing numerical computation.
• Roundoff errors
• Errors in modelling

• Programming errors, ie bugs
• Truncation, discretization errors.

Computation Fluid Dynamics – p.2/189

Garbage In, Garbage Out
We will begin with a discussion of errors.
Useful to understand different types of errors which
can arise when doing numerical computation.
• Roundoff errors
• Errors in modelling
• Programming errors, ie bugs

• Truncation, discretization errors.

Computation Fluid Dynamics – p.2/189

Garbage In, Garbage Out
We will begin with a discussion of errors.
Useful to understand different types of errors which
can arise when doing numerical computation.
• Roundoff errors
• Errors in modelling
• Programming errors, ie bugs
• Truncation, discretization errors.

Computation Fluid Dynamics – p.2/189

Garbage In, Garbage Out
We will begin with a discussion of errors.
Useful to understand different types of errors which
can arise when doing numerical computation.
• Roundoff errors
• Errors in modelling
• Programming errors, ie bugs
• Truncation, discretization errors.

Computation Fluid Dynamics – p.2/189

Measures of error
Need some way to quantify errors. 2 useful measures.

Computation Fluid Dynamics – p.3/189

Measures of error
Need some way to quantify errors. 2 useful measures.
• Absolute error

If φ∗ is an approximation to a quantity φ then the
Absolute error is defined by

|φ− φ∗|

• Relative error
The Relative error is defined by

|φ− φ∗|
|φ| , φ 6= 0

Computation Fluid Dynamics – p.4/189

Measures of error
Need some way to quantify errors. 2 useful measures.
• Absolute error

If φ∗ is an approximation to a quantity φ then the
Absolute error is defined by

|φ− φ∗|
• Relative error

The Relative error is defined by

|φ− φ∗|
|φ| , φ 6= 0

Computation Fluid Dynamics – p.4/189

Roundoff errors
These arise when a computer is used for doing
numerical computation.

Example
Inexact representation of numbers eg, π,

√
2.

Rounding and chopping errors.
Remember the way certain quantities are computed is
under your control.

Computation Fluid Dynamics – p.5/189

Roundoff errors
These arise when a computer is used for doing
numerical computation.
Example
Inexact representation of numbers eg, π,

√
2.

Rounding and chopping errors.
Remember the way certain quantities are computed is
under your control.

Computation Fluid Dynamics – p.5/189

Roundoff errors
These arise when a computer is used for doing
numerical computation.
Example
Inexact representation of numbers eg, π,

√
2.

Rounding and chopping errors.
Remember the way certain quantities are computed is
under your control.

Computation Fluid Dynamics – p.5/189

Errors in modelling
Example:
Replacing full N-S equations with Euler equations.
Neglect of viscous terms means no matter how
accurate the numerical solution, viscous effects will
not be captured where important.

Computation Fluid Dynamics – p.6/189

Programming errors, ie bugs
• These are all too familiar!

• The computer is only doing what you ask it to do.

• Even NASA has made blunders.

Computation Fluid Dynamics – p.7/189

Programming errors, ie bugs
• These are all too familiar!
• The computer is only doing what you ask it to do.

• Even NASA has made blunders.

Computation Fluid Dynamics – p.7/189

Programming errors, ie bugs
• These are all too familiar!
• The computer is only doing what you ask it to do.
• Even NASA has made blunders.

Computation Fluid Dynamics – p.7/189

Subtle errors
Suppose

φ = O(10−8), φ∗ = O(10−8)

then something like
diff = MAX(ABS(phi-phistar))
tol= 1.e-6
IF(diff < tol) EXIT

in numerical codes will be wrong usage. The
condition is always satisfied even though relative error
is O(1).

Computation Fluid Dynamics – p.8/189

Truncation, discretization er-
rors.

A pproximate
Uxx = f(x)

by

(u(xi+1)− 2u(xi) + u(xi−1))

h2
= f(xi).

This gives rise to a truncation error ie

τ(xi) = Uxx(xi)− f(xi) = h2

12 Uxxxx(xi) + ...

Computation Fluid Dynamics – p.9/189

Truncation, discretization er-
rors.

A pproximate
Uxx = f(x)

by

(u(xi+1)− 2u(xi) + u(xi−1))

h2
= f(xi).

This gives rise to a truncation error ie

τ(xi) = Uxx(xi)− f(xi) = h2

12 Uxxxx(xi) + ...

Computation Fluid Dynamics – p.9/189

Truncation, discretization er-
rors.

A pproximate
Uxx = f(x)

by

(u(xi+1)− 2u(xi) + u(xi−1))

h2
= f(xi).

This gives rise to a truncation error ie

τ(xi) = Uxx(xi)− f(xi) = h2

12 Uxxxx(xi) + ...

Computation Fluid Dynamics – p.9/189

Initial value problems
Here we will look at the solution of ordinary
differential equations of the type, say

dy

dx
= f(x, y), a ≤ x ≤ b,

subject to an initial condition

y(a) = α

Computation Fluid Dynamics – p.10/189

Example
Solve

dy

dx
= y(1− y

4
), 0 ≤ x,

subject to an initial condition

y(0) = 1

Computation Fluid Dynamics – p.11/189

Soln of ODE’s
The methods also generalise to systems of equations
i.e.

dY

dx
= F(x,Y), a ≤ x ≤ b,

where
Y = (y1(x), y2(x), ..., yN(x))T ,

F = (f1(x,Y), f2(x,Y), ..., fN(x,Y))T ,

with initial data
Y(a) = α,

say, where α = (α1, α2, ..., αN)T .

Computation Fluid Dynamics – p.12/189

Example
Solve

y′′ − 2xyy′ + y2 = 1, y(1) = 1, y′(1) = 2.

The equivalent first order system is obtained with

(y1(x), y2(x))T = (y(x), y′(x))T ,

f1(x, y1, y2) = y2(x),

f2(x, y1, y2) = 1 + 2xy1(x)y2(x)− y2
1(x),

and initial condition

(y1(1), y2(1))T = (1, 2)T .

Computation Fluid Dynamics – p.13/189

A mathematical result.
Suppose we define D to be the domain

D = {(x, y) | a ≤ x ≤ b, −∞ < y <∞}

and f(x, y) is continuous on D. If f(x, y) satisfies a
Lipschitz condition on D then the ODE has a unique
solution for a ≤ x ≤ b.

Recall f(x, y) satisfies a
Lipschitz condition on D means that there exists a
constant L > 0 (called the Lipschitz constant) such
that

|f(x1, y1)− f(x2, y2)| ≤ L|y1 − y2|
whenever (x1, y1), (x2, y2) belong to D.

Computation Fluid Dynamics – p.14/189

A mathematical result.
Suppose we define D to be the domain

D = {(x, y) | a ≤ x ≤ b, −∞ < y <∞}

and f(x, y) is continuous on D. If f(x, y) satisfies a
Lipschitz condition on D then the ODE has a unique
solution for a ≤ x ≤ b. Recall f(x, y) satisfies a
Lipschitz condition on D means that there exists a
constant L > 0 (called the Lipschitz constant) such
that

|f(x1, y1)− f(x2, y2)| ≤ L|y1 − y2|
whenever (x1, y1), (x2, y2) belong to D.

Computation Fluid Dynamics – p.14/189

Euler’s Method
This is the simplest of techniques for the numerical
solution of ODE’s.
For simplicity define an equally spaced mesh

xj = a+ jh, j = 0, .., N

where h = (b− a)/N is called the step size.

a = x0 x1 xi+1

h

xN = bxi

We can derive Euler’s method as follows.

Computation Fluid Dynamics – p.15/189

Euler’s Method
Suppose y(x) is the unique solution to the ODE, and
twice differentiable. Then by Taylor’s theorem we
have

y(xi+1) = y(xi + h) = y(xi) + y′(xi)h+
h2

2
y′′(ξ)

where xi ≤ ξ ≤ xi+1.

Computation Fluid Dynamics – p.16/189

Euler’s Method
But from the differential equation y′(xi) = f(xi), and
yi = y(xi).
This suggests the scheme

w0 = α

wi+1 = wi + hf(xi, wi),

i = 1, 2, .., N − 1,

for calculating the wi.
This is Euler’s method

Computation Fluid Dynamics – p.17/189

Truncation error for Euler’s
method

Suppose that yi = y(xi) is the exact solution at
x = xi.
Then the truncation error is defined by

τi+1(h) =
yi+1 − (yi + hf(xi, yi))

h

=
yi+1 − yi

h
− f(xi, yi),

for i = 0, 1, ..., N − 1.

Computation Fluid Dynamics – p.18/189

Truncation error
From the above we find that

τi+1(h) = h
2 y′′(ξi)

for some ξi in (xi, xi+1). So if y′′(x) is bounded by a
constant M in (a, b) then

|τi+1(h)| ≤ h

2
M

.
Thus we see that the truncation error for Euler’s
method is O(h).

Computation Fluid Dynamics – p.19/189

In general if τi+1 = hp we say that the method is of
order hp.
In principle if h decreases, we should be able to
achieve greater accuracy, although in practice round-
off error limits the smallest size of h that we can take.

Computation Fluid Dynamics – p.20/189

Higher order methods, Modified
Euler

The modified Euler method is given by

w0 = α k1 = hf(xi, wi),

wi+1 = wi +
h

2
[f(xi, wi) + f(xi+1, wi+1)],

i = 1, 2, .., N − 1,

This has truncation errorO(h2). Sometimes this is also
called a Runge-Kutta method of order 2.

Computation Fluid Dynamics – p.21/189

Modified Euler
Notice Euler’s method is implicit

w0 = α k1 = hf(xi, wi),

wi+1 = wi +
h

2
[f(xi, wi) + f(xi+1, wi+1)],

i = 1, 2, .., N − 1,

Computation Fluid Dynamics – p.22/189

Modified Euler
Notice Euler’s method is implicit

w0 = α k1 = hf(xi, wi),

wi+1 = wi +
h

2
[f(xi, wi) + f(xi+1, wi+1)],

i = 1, 2, .., N − 1,

Thus some iteration may be necessary.

Computation Fluid Dynamics – p.22/189

Runge-Kutta method of order 4
One of the most common Runge-Kutta methods of
order 4 is given by

w0 = α,

k1 = hf(xi, wi),

k2 = hf(xi +
h

2
, wi +

1

2
k1)

k3 = hf(xi +
h

2
, wi +

1

2
k2)

k4 = hf(xi+1, wi + k3)

wi+1 = wi +
1

6
(k1 + 2k2 + 2k3 + k4),

for i = 0, 1, .., N − 1
Computation Fluid Dynamics – p.23/189

Systems of equations
All these methods generalise to a system of first order
equations.
Thus for instance the RK(4) method above becomes

Computation Fluid Dynamics – p.24/189

Runge-Kutta 4th order

w0 = α,

k1 = hf(xi,wi),

k2 = hf(xi +
h

2
,wi +

1

2
k1)

k3 = hf(xi +
h

2
,wi +

1

2
k2)

k4 = hf(xi+1,wi + k3)

wi+1 = wi +
1

6
(k1 + 2k2 + 2k3 + k4),

for i = 0, 1, .., N − 1

Computation Fluid Dynamics – p.25/189

m-step multi-step method
The methods discussed above are called one-step
methods.
Methods that use the approximate values at more than
one previous mesh point are called multi-step
methods.
There are two distinct types worth mentioning.
These are of the form

Computation Fluid Dynamics – p.26/189

Two types

wi+1 = cm−1wi + cm−2wi−1 + ...+ c0wi+1−m

+h[bmf(xi+1, wi+1) + bm−1f(xi, wi) +

...+ b0f(xi+1−m, wi+1−m)]∗
If bm = 0 so that there is no term with wi+1 on the
right hand side of (*), the method is explicit.

If bm 6= 0 we have an implicit method.

Computation Fluid Dynamics – p.27/189

Adams-Bashforth 4th order
method (explicit)

Here we have

w0 = α, w1 = α1, w2 = α2, w3 = α3,

where these values are obtained using other methods
such as RK(4) for instance. Then for
i = 3, 4, ..., N − 1 we use

wi+1 = wi +
h

24
[55f(xi, wi)

− 59f(xi−1, wi−1) + 37f(xi−2, wi−2)− 9f(xi−3, wi−3)].

Computation Fluid Dynamics – p.28/189

Boundary Value Problems -
Shooting Methods

Consider the differential equation

d2y

dx2
+ k

dy

dx
+ xy = 0, y(0) = 0, y(1) = 1.

This is an example of a boundary value problem.
Why? Conditions have to satisfied at both ends.

Computation Fluid Dynamics – p.29/189

BVP
If we write this as a system of first order equations we
have

Y1 = y,

Y2 =
dy

dx
,

dY1

dx
= Y2,

dY2

dx
= −kY2 − xY1.

The boundary conditions give

Y1(0) = 0, Y1(1) = 1.

We do not know the value of Y2(0). Computation Fluid Dynamics – p.30/189

BVP
Suppose we guess the value of Y2(0) = g, say.
Then we can integrate the system with the initial
condition

Y(0) =

(
Y1(0)

Y2(0)

)
=

(
0

g

)
,

Computation Fluid Dynamics – p.31/189

BVP
This will give us

Y(1) =


 Y1(1)

Y2(1)


 =


 β1

β2


 ,

But β1 will not necessarily satisfy the required
condition Y1(1) = 1,

So now need to iterative to try and get the correct
value of g such that the required condition at x = 1 is
satisfied.

Computation Fluid Dynamics – p.32/189

BVP
This will give us

Y(1) =


 Y1(1)

Y2(1)


 =


 β1

β2


 ,

But β1 will not necessarily satisfy the required
condition Y1(1) = 1,

So now need to iterative to try and get the correct
value of g such that the required condition at x = 1 is
satisfied.

Computation Fluid Dynamics – p.32/189

BVP, shooting
To do this define

φ(g) = Y1(1; g)− 1,

We want to find the value of g such that φ(g) = 0.

This gives rise to the idea of a shooting method.

Computation Fluid Dynamics – p.33/189

Shooting Method
Suppose that we have a guess g̃ and we seek a
correction dg such that φ(g̃ + dg) = 0.
By Taylor expansion we have

φ(g̃ + dg) = φ(g̃) +
dφ

dg
(g̃)dg +O(dg2).

This suggests that we take

dg = − φ(g̃)

φ′(g̃)
,

and hence a new value for g is g + dg.

Computation Fluid Dynamics – p.34/189

Shooting- secant method
Hence

gn+1 = gn −
φ(gn)

φ′(gn)
,

Computation Fluid Dynamics – p.35/189

Secant method
Now we are required to find φ′(gn).
How can we do this? One way is to estimate φ′(gn) by

φ′(gn) =
φ(gn)− φ(gn−1)

gn − gn−1
.

This gives

gn+1 = gn −
φ(gn)(gn − gn−1)

φ(gn)− φ(gn−1)
,

which is known as the secant method.

Computation Fluid Dynamics – p.36/189

Shooting- Newton’s method
Consider again

dY1

dx
= Y2,

dY2

dx
= −kY2 − xY1,

with Y(0) = (0, g)T .
Now

φ′(gn) =
∂Y1

∂g
(1; g),

Thus differentiate the original system of equations and
boundary conditions with respect to g.

Computation Fluid Dynamics – p.37/189

Shooting- Newton’s method

d

dx

(
∂Y

∂g

)
=




∂Y2

∂g

−k ∂Y2

∂g
− x∂Y1

∂g


 ,

d

dx

(
∂Y

∂g

)
|x=0 =


 0

1


 .

The system defines another initial value problem with
given initial conditions.

Computation Fluid Dynamics – p.38/189

Shooting- Newton’s method
Note that

φ′(g) =
∂Y1

∂g
(1; g).

From the solution of the above we can extract
∂Y1

∂g (x = 1) and hence compute dg update g.
This forms the basis of Newton’s method combined
with shooting, to solve boundary value problems.

Computation Fluid Dynamics – p.39/189

Newton- augmented system
Can also use an augmented system where we define

Y1 = y, Y2 =
dy

dx
, Y3 =

∂y

∂g
=
∂Y1

∂g
, Y4 =

∂Y2

∂g
,

and then

d

dx




Y1

Y2

Y3

Y4




=




Y2

−kY2 − xY1

Y4

−kY4 − xY3



,Y(0) =




Y1(0)

Y2(0)

Y3(0)

Y4(0)




=




0

g

0

1



.

Computation Fluid Dynamics – p.40/189

Multiple shooting
Consider

d4y

dx4
= y3 − (

dy

dx
)2,

y(0) = 1,
dy

dx
(0) = 0, y(1) = 2,

dy

dx
(1) = 1,

We need two starting values at x = 0 and then we will
have two conditions to satisfy at x = 1.

Computation Fluid Dynamics – p.41/189

Multiple shooting
Define

Y1 = y, Y2 = y′, Y3 = y′′, y4 = y′′′,

We will need to guess for Y3(0) = e, say, and Y4(0) =

g.

Computation Fluid Dynamics – p.42/189

Multiple shooting
φ1(e, g) = Y1(x = 1; e; g)− 2,

φ2(e, g) = Y2(x = 1; e; g)− 1.

We need to iterative on both c and g to ensure that the
remaining conditions are satisfied.
To find corrections, need Taylor expansion for function
of two variables.

Computation Fluid Dynamics – p.43/189

Multiple shooting
To obtain the corrections to guessed values ẽ, g̃ we
have

φ1(ẽ+ de, g̃ + dg) = 0 = φ1(ẽ, g̃) + de
∂φ1

∂e
(ẽ, g̃) + dg

∂φ1

∂g
(ẽ, g̃) +O(de2, dg2),

φ2(ẽ+ de, g̃ + dg) = 0 = φ2(ẽ, g̃) + de
∂φ2

∂e
(ẽ, g̃) + dg

∂φ2

∂g
(ẽ, g̃) +O(de2, dg2).

Computation Fluid Dynamics – p.44/189

Multiple shooting
Multidimensional case
Vector of guesses g̃.
We can find the corrections dg as

dg = −J−1(g̃)φ(g̃),

where J is the Jacobian ∂φi
∂gk

and φ is the vector of con-
ditions.

Computation Fluid Dynamics – p.45/189

Richardson Extrapolation
Suppose that we use a method with truncation error of
O(hm) to compute an approximation wi.
We can use Richardson extrapolation to get an approx-
imation with greater accuracy.

Computation Fluid Dynamics – p.46/189

Richardson extrapolation
Suppose w(1)

i is approximation with step size h
and w(2)

i with step size 2h.
Then we can write

w
(1)
i = yi + Ehm + E1h

m+1 + . . . ,

and

w
(2)
i = yi + E(2h)m + E1(2h)m+1 +

Computation Fluid Dynamics – p.47/189

Richardson extrapolation
Then we can eliminate the E term to get

2mw
(1)
i − w

(2)
i = (2m − 1)yi +O(hm+1).

Thus

w∗i =
2mw

(1)
i − w

(2)
i

2m − 1

is a more accurate approximationto the solution than
w

(1)
i or w(2)

i .

For a 4th order Runge-Kutta method
the above gives

w∗i =
16w

(1)
i − w

(2)
i

15
.

Computation Fluid Dynamics – p.48/189

Richardson extrapolation
Then we can eliminate the E term to get

2mw
(1)
i − w

(2)
i = (2m − 1)yi +O(hm+1).

Thus

w∗i =
2mw

(1)
i − w

(2)
i

2m − 1

is a more accurate approximationto the solution than
w

(1)
i or w(2)

i . For a 4th order Runge-Kutta method
the above gives

w∗i =
16w

(1)
i − w

(2)
i

15
.

Computation Fluid Dynamics – p.48/189

Solution of BVP using finite-
differences

Boundary value problems can also be tackled directly
using finite-differences or some other technique such
as spectral approximation.
We will look at one specific example with
finite-differences.
Consider

d2y

dx2
=

1

8
(32 + 2x3 − ydy

dx
), 1 ≤ x ≤ 3,

y(1) = 17, y(3) =
43

3
.

The exact solution is y(x) = x2 + (16/x).

Computation Fluid Dynamics – p.49/189

Solution of BVP using finite-
differences

Define a uniform grid (x0, x1, ..., xN) with N + 1
points.
Grid spacing h = (xN − x0)/N,

xj = x0 + jh, for (j = 0, 1, .., N).

Computation Fluid Dynamics – p.50/189

Solution of BVP using finite-
differences

Approximate y at each of the nodes x = xi by wi
The derivatives of y in the ode are approximated in
finite-difference form as

(
dy

dx

)

x=xi

=
wi+1 − wi−1

2h
+O(h2),

(
d2y

dx2

)

x=xi

=
wi+1 − 2wi + wi−1

h2
+O(h2).

Computation Fluid Dynamics – p.51/189

Solution of BVP using finite-
differences

These can be derived by making use of a Taylor
expansion about the point x = xi. Thus for example

y(xi+1) = y(xi) + h
dy

dx
(xi) +

h2

2

d2y

dx2
(xi) +

h3

6

d3y

dx3
(xi) +

h4

24

d4y

dx4
(xi) +O(h5),

y(xi−1) = y(xi)− h
dy

dx
(xi) +

h2

2

d2y

dx2
(xi)−

h3

6

d3y

dx3
(xi) +

h4

24

d4y

dx4
(xi) +O(h5).

By adding and subtracting and replacing y(xi) by wi
we obtain previous approximation.

Computation Fluid Dynamics – p.52/189

Solution of BVP using finite-
differences

Next replace y and its derivatives in ode by the above
approximations to get

wi+1 − 2wi + wi−1

h2
= 4 +

x3
i

4
− wi

(
wi+1 − wi−1

16h

)
,

for (i = 1, 2, ...N − 1)

and

w0 = 17, wN =
43

3
.

The above equations are a set of nonlinear difference
equations. We have N + 1 equations for N + 1 un-
knowns w0, ..., wN .

Computation Fluid Dynamics – p.53/189

Solution of BVP using finite-
differences

The nonlinear term above can now be tackled in many
different ways. Thus for example we can replace it by

w
(k−1)
i

(
w

(k)
i+1 − w

(k)
i−1

16h

)
,

or

w
(k)
i

(
w

(k−1)
i+1 − w(k−1)

i−1

16h

)
,

Computation Fluid Dynamics – p.54/189

Newton linearization
Suppose that we have a guess for the solutions
wi = Wi.
We seek corrections δwi such that the wi = Wi + δwi
satisfies the system.
Substituting wi = Wi + δwi into equations and lin-
earizing gives

Computation Fluid Dynamics – p.55/189

BVP FD methods
δwi+1 − 2δwi + δwi−1

h2
= Fi −

δwi

(
Wi+1 −Wi−1

16h

)
−Wi

(
δwi+1 − δwi−1

16h

)
,

for (i = 1, 2, ...N − 1)

and
δw0 = F0, δwN = FN .

Computation Fluid Dynamics – p.56/189

BVP, FD methods
The techniques described above lead to the solution of
a tridiagonal systems of linear equations of the form

αiwi−1 + βiwi + γiwi+1 = δi, i = 0, 1, .., N,

where the αi, βi, γi are coefficients obtainable from the
difference equation.

Computation Fluid Dynamics – p.57/189

BVP, FD methods
For example, we have

αi =
1

h2
− Wi

16h
, βi = − 2

h2
+
Wi+1 −Wi−1

16h
,

γi =
1

h2
+
Wi

16h
, δi = Fi, i = 1, 2, .., N − 1,

and
β0 = 1, γ0 = 0, δ0 = F0,

αN = 0, βN = 1, δN = FN .

Computation Fluid Dynamics – p.58/189

Thomas’s tridiagonal algorithm
This version of a tridiagonal solver is based on
Gaussian elimination.
First we create zeros below the diagonal and then
once we have a triangular matrix, we solve for the wi
using back substitution.
Thus the algorithm takes the form

Computation Fluid Dynamics – p.59/189

Thomas’s tridiagonal algorithm

βj = βj −
γj−1αj
βj−1

j = 1, 2, 3, ..., N,

δj = δj −
δj−1αj
βj−1

, j = 1, 2, 3, ..., N,

wN =
δN
βN

, wj =
(δj − γjwj+1)

βj
,

j = N − 1, ..., 1, 0.

Computation Fluid Dynamics – p.60/189

Stability
In practice most initial value integrators should work
reasonably well on standard problems. However cer-
tain types of problems (stiff problems) can cause dif-
ficulty and care needs to be exercised in the choice of
the method.

Computation Fluid Dynamics – p.61/189

Stability -Consistency
A method is said to be consistent if the local
truncation error tends to zero as the step size→ 0, i.e

lim
h→0

max
i
|τi(h)| = 0.

Computation Fluid Dynamics – p.62/189

Stability -Convergence
A method is said to be convergent with respect to the
equation it approximates if

lim
h→0

max
i
|wi − y(xi)| = 0,

where y(x) is the exact solution and wi an approxima-
tion produced by the method.

Computation Fluid Dynamics – p.63/189

Stability, Theorem
It can be proven that if the difference method is
consistent with the differential equation, then the
method is stable if and only if the method is
convergent.

Computation Fluid Dynamics – p.64/189

Stability of m-step methods
If we consider an m-step method

w0 = α0, w1 = α1, . . . , wm−1 = αm−1,

wi+1 = am−1wi + am−2wi−1 + ...+ a0wi+1−m
+h[F (xi, wi+1, wi, ..., wi+1−m)]

Computation Fluid Dynamics – p.65/189

Stability of m-step methods
If we consider an m-step method

w0 = α0, w1 = α1, . . . , wm−1 = αm−1,

wi+1 = am−1wi + am−2wi−1 + ...+ a0wi+1−m

+h[F (xi, wi+1, wi, ..., wi+1−m)]

Then ignoring the F term the homogenous part is just
a difference equation.

Computation Fluid Dynamics – p.65/189

Stability of m-step method
The stability is thus connected with the the roots of
the characteristic polynomial

λm − am−1λ
m−1 − ...− a1λ− a0 = 0.

Why?

Computation Fluid Dynamics – p.66/189

Stability of m-step method
Consider the ODE with f(x, y) = 0.

dy

dx
= f(x, y), a ≤ x ≤ b, y(a) = α

This has the solution y(x) = α.
The difference equation has to produce the same solu-
tion, ie wn = α.

Computation Fluid Dynamics – p.67/189

Stability of m-step method
Next consider

wi+1 = am−1wi + am−2wi−1 + ...+ a0wi+1−m.

If we look for solutions of the form wn = λn then
this gives the characteristic polynomial equation

λm − am−1λ
m−1 − ...− a1λ− a0 = 0.

Computation Fluid Dynamics – p.68/189

Stability of m-step method
Next consider

wi+1 = am−1wi + am−2wi−1 + ...+ a0wi+1−m.

If we look for solutions of the form wn = λn then
this gives the characteristic polynomial equation

λm − am−1λ
m−1 − ...− a1λ− a0 = 0.

Computation Fluid Dynamics – p.68/189

Stability of m-step method
Next consider

wi+1 = am−1wi + am−2wi−1 + ...+ a0wi+1−m.

If we look for solutions of the form wn = λn then
this gives the characteristic polynomial equation

λm − am−1λ
m−1 − ...− a1λ− a0 = 0.

Computation Fluid Dynamics – p.68/189

Stability of m-step method
Suppose λ1, ...λm are distinct roots of characteristic
polynomial.
Then we can write

wn =
m∑

i=1

ciλ
m
i .

Since wn = α is a solution, the difference equation
gives

α− am−1α− ...− a0α = 0,

or
α(1− am−1 − ...− a0) = 0.

Computation Fluid Dynamics – p.69/189

Stability of m-step method
Suppose λ1, ...λm are distinct roots of characteristic
polynomial.
Then we can write

wn =
m∑

i=1

ciλ
m
i .

Since wn = α is a solution, the difference equation
gives

α− am−1α− ...− a0α = 0,

or
α(1− am−1 − ...− a0) = 0.

Computation Fluid Dynamics – p.69/189

Stability of m-step method
Suppose λ1, ...λm are distinct roots of characteristic
polynomial.
Then we can write

wn =
m∑

i=1

ciλ
m
i .

Since wn = α is a solution, the difference equation
gives

α− am−1α− ...− a0α = 0,

or
α(1− am−1 − ...− a0) = 0.

Computation Fluid Dynamics – p.69/189

Stability of m-step method
Thus

wn = α +
m∑

i=2

ciλ
n
i .

In the absence of round-off error all the ci would be
zero.
If |λi| ≤ 1 then the error due to roundoff will not grow.
Hence the method is stable if |λi| ≤ 1.

Computation Fluid Dynamics – p.70/189

Stability of m-step method
Thus

wn = α +
m∑

i=2

ciλ
n
i .

In the absence of round-off error all the ci would be
zero.

If |λi| ≤ 1 then the error due to roundoff will not grow.
Hence the method is stable if |λi| ≤ 1.

Computation Fluid Dynamics – p.70/189

Stability of m-step method
Thus

wn = α +
m∑

i=2

ciλ
n
i .

In the absence of round-off error all the ci would be
zero.
If |λi| ≤ 1 then the error due to roundoff will not grow.
Hence the method is stable if |λi| ≤ 1.

Computation Fluid Dynamics – p.70/189

Stability of m-step method
Is it enough just to have stability as defined above?

Consider the solution of

dy

dx
= −30y, y(0) = 1/3.

Computation Fluid Dynamics – p.71/189

Stability of m-step method
Is it enough just to have stability as defined above?
Consider the solution of

dy

dx
= −30y, y(0) = 1/3.

Computation Fluid Dynamics – p.71/189

Satbility of m-step method
The RK(4) method, although stable, has difficulty in
computing the accurate solution of this problem.
This means that we need something more than just the
idea of stability defined above.

Computation Fluid Dynamics – p.72/189

Absolute stability
Consider

dy

dx
= ky, y(0) = α, k < 0.

The exact solution of this is y(x) = αekx.

If we take
our one-step method and apply it to this equation we
obtain

wi+1 = Q(hk)wi.

Computation Fluid Dynamics – p.73/189

Absolute stability
Consider

dy

dx
= ky, y(0) = α, k < 0.

The exact solution of this is y(x) = αekx. If we take
our one-step method and apply it to this equation we
obtain

wi+1 = Q(hk)wi.

Computation Fluid Dynamics – p.73/189

Absolute Stability
Similarly a multi-step of the type used earlier, when
applied to the test equation gives

wi+1 = am−1wi + am−2wi−1 + ...+ a0wi+1−m
+h[bmkwi+1 + bm−1kwi + ...+ b0kwi+1−m].

Computation Fluid Dynamics – p.74/189

Absolute Stability
Thus if we seek solutions of the form wi = zi this will
give rise to the characteristic polynomial equation

Q(z, hk) = 0,

where

Q(z, hk) = (1− hkbm)zm − (am−1 + hkbm−1)z
m−1

−...− (a0 + hkb0).

Computation Fluid Dynamics – p.75/189

Absolute Stability
Thus if we seek solutions of the form wi = zi this will
give rise to the characteristic polynomial equation

Q(z, hk) = 0,

where

Q(z, hk) = (1− hkbm)zm − (am−1 + hkbm−1)z
m−1

−...− (a0 + hkb0).

Computation Fluid Dynamics – p.75/189

Absolute Stability
The region R of absolute stability for a one-step
method is defined as the region in the complex plane
R= {hk ∈ C, |Q(hk)| < 1}.

For a multi-step method R = {hk ∈ C, |βj| < 1},
where βj is a root of Q(z, hk) = 0.

Computation Fluid Dynamics – p.76/189

Absolute Stability
The region R of absolute stability for a one-step
method is defined as the region in the complex plane
R= {hk ∈ C, |Q(hk)| < 1}.
For a multi-step method R = {hk ∈ C, |βj| < 1},
where βj is a root of Q(z, hk) = 0.

Computation Fluid Dynamics – p.76/189

Absolute Stability
A numerical method is A-stable if R contains the en-
tire left half plane.

Computation Fluid Dynamics – p.77/189

Consider the modified Euler method

w0 = α k1 = hf(xi, wi),

wi+1 = wi +
h

2
[f(xi, wi) + f(xi+1, wi+1)], i = 1, 2, .., N − 1.

This is an A-stable method.

Computation Fluid Dynamics – p.78/189

Numerical Solution of PDes

Computation Fluid Dynamics – p.79/189

Classification of PDE’s
Partial differential equations can be classified as being
of type elliptic, parabolic or hyperbolic. In some cases
equations can be of mixed type.
Consider

A
∂2φ

∂x2
+B

∂2φ

∂x∂y
+ C

∂2φ

∂y2
+D

∂φ

∂x
+ E

∂φ

∂y
+ Fφ+G = 0,

where, in general, A,B,C,D,E, F, and G are func-
tions of the independent variables x and y and of the
dependent variables φ.

Computation Fluid Dynamics – p.80/189

PDE’s Classification
The equation is said to be
• elliptic if B2 − 4AC < 0,

• parabolic if B2 − 4AC = 0, or
• hyperbolic if B2 − 4AC > 0.

Computation Fluid Dynamics – p.81/189

PDE’s Classification
The equation is said to be
• elliptic if B2 − 4AC < 0,
• parabolic if B2 − 4AC = 0, or

• hyperbolic if B2 − 4AC > 0.

Computation Fluid Dynamics – p.81/189

PDE’s Classification
The equation is said to be
• elliptic if B2 − 4AC < 0,
• parabolic if B2 − 4AC = 0, or
• hyperbolic if B2 − 4AC > 0.

Computation Fluid Dynamics – p.81/189

PDE’s Classification
The equation is said to be
• elliptic if B2 − 4AC < 0,
• parabolic if B2 − 4AC = 0, or
• hyperbolic if B2 − 4AC > 0.

Computation Fluid Dynamics – p.81/189

Classification
An example of an elliptic equation is Poisson’s
equation

∂2φ

∂x2
+
∂2φ

∂y2
= f(x, y).

Computation Fluid Dynamics – p.82/189

Classification
The heat equation

∂φ

∂t
= k

∂2φ

∂x2

is of parabolic type, and the wave equation

∂2φ

∂x2
− ∂2φ

∂y2
= 0

is a hyperbolic pde.

Computation Fluid Dynamics – p.83/189

Classification
An example of a mixed type equation is the transonic
small disturbance equation given by

(K − ∂φ

∂x
)
∂2φ

∂x2
+
∂2φ

∂y2
= 0.

Computation Fluid Dynamics – p.84/189

Classification 2
Consider a system of first order partial differential
equations.
Unknowns U = (u1, u2, ..., un)T

Independent variables x = (x1, x2, ..., xm)T .

Computation Fluid Dynamics – p.85/189

Classification 2
Suppose that the equations can be written in
quasi-linear form

m∑

k=1

Ak
∂U

∂xk
= Q

where the Ak are (n×n) matrices and Q is an (n×1)

column vector, and both can depend on xk and U but
not on the derivatives of U.

Computation Fluid Dynamics – p.86/189

Classification 2
If we seek plane wave solutions of the homogeneous
part of the above pde in the form

U = Uoe
ix.s,

where s = (s1, s2, .., sm)T , then

i

[
m∑

k=1

Aksk

]
U = 0.

Computation Fluid Dynamics – p.87/189

Classification 2
This will have a non-trivial solution only if the
characteristic equation

det |
m∑

k=1

Aksk| = 0,

Computation Fluid Dynamics – p.88/189

Classification 2
• The system is hyperbolic if n real characteristics

exist.

• If all the characteristics are complex, the system
is elliptic.

• If some are real and some complex, the system is
of mixed type.

• If the system is of rank less than n, then we have
a parabolic system.

Computation Fluid Dynamics – p.89/189

Classification 2
• The system is hyperbolic if n real characteristics

exist.
• If all the characteristics are complex, the system

is elliptic.

• If some are real and some complex, the system is
of mixed type.

• If the system is of rank less than n, then we have
a parabolic system.

Computation Fluid Dynamics – p.89/189

Classification 2
• The system is hyperbolic if n real characteristics

exist.
• If all the characteristics are complex, the system

is elliptic.
• If some are real and some complex, the system is

of mixed type.

• If the system is of rank less than n, then we have
a parabolic system.

Computation Fluid Dynamics – p.89/189

Classification 2
• The system is hyperbolic if n real characteristics

exist.
• If all the characteristics are complex, the system

is elliptic.
• If some are real and some complex, the system is

of mixed type.
• If the system is of rank less than n, then we have

a parabolic system.

Computation Fluid Dynamics – p.89/189

Classification 2
• The system is hyperbolic if n real characteristics

exist.
• If all the characteristics are complex, the system

is elliptic.
• If some are real and some complex, the system is

of mixed type.
• If the system is of rank less than n, then we have

a parabolic system.

Computation Fluid Dynamics – p.89/189

Consistency, convergence and
Lax equivalence theorem

Consistent
A discrete approximation to a partial differential equa-
tion is said to be consistent if in the limit of the step-
size(s) going to zero, the original pde system is recov-
ered, ie the truncation error approaches zero.

Computation Fluid Dynamics – p.90/189

Consistency, convergence and
Lax equivalence theorem

Stability
If we define the error to be the difference between the
computed solutions and the exact solution of the dis-
crete approximation, then the scheme is stable if the
error remains uniformly bounded for successive itera-
tions.

Computation Fluid Dynamics – p.91/189

Consistency, convergence and
Lax equivalence theorem

Convergence
A scheme is stable if the solution of the discrete
equations approaches the solution of the pde in the
limit that the step-sizes approach zero.
Lax’s Equivalence Theorem
For a well posed initial-value problem and a consistent
discretization, stability is the necessary and sufficient
condition for convergence.

Computation Fluid Dynamics – p.92/189

Difference formulae
Suppose that we have a grid of points with equal mesh
spacing ∆x in the x− direction and equal spacing ∆y

in the y− direction.
Thus we can define points xi, yj by

xi = x0 + i∆x, yj = y0 + j∆y.

Computation Fluid Dynamics – p.93/189

Difference formulae
Suppose that we are trying to approximate a derivative
of a function φ(x, y) at the points xi, yj .
Denote the approximate value of φ(x, y) at the point
xi, yj by wi,j say.

Computation Fluid Dynamics – p.94/189

Central Differences
The first and second derivatives in x or y may be
approximated as before by
(
∂2φ

∂x2

)

ij

=
wi+1,j − 2wi,j + wi−1,j

(∆x)2
+O((∆x)

2),

(
∂2φ

∂y2

)

ij

=
wi,j+1 − 2wi,j + wi,j−1

(∆y)2
+O((∆y)

2),

(
∂φ

∂x

)

ij

=
wi+1,j − wi−1,j

2∆x
+O((∆x)

2),

(
∂φ

∂y

)

ij

=
wi,j+1 − wi,j−1

2∆y
+O((∆y)

2).

Computation Fluid Dynamics – p.95/189

Central Differences
The approximations listed above are centered at the
points (xi, yj), and are called central-difference
approximations.

•
i− 1, j

×
i, j

•
i+ 1, j

Computation Fluid Dynamics – p.96/189

One-sided approximations
We can also construct one-sided approximations to
derivatives. Thus for example a second-order forward
approximation to ∂φ

∂x at the point (xi, yj) is given by
(
∂φ

∂x

)

ij

=
−3wi,j + 4wi+1,j − wi+2,j

2∆x
.

Computation Fluid Dynamics – p.97/189

Weights for central differences
Node Points

Order of i− 2 i− 1 i i+ 1 i+ 2

Accuracy

1st derivative

(∆x)2 − 1
2

0 1
2

(∆x)4 1
12

− 2
3

0 2
3

− 1
12

2nd derivative

(∆x)2 1 -2 1

(∆x)4 − 1
12

4
3

− 5
2

4
3

− 1
12

Computation Fluid Dynamics – p.98/189

Weights for one-sided differ-
ences

Node Points

Order of i i+ 1 i+ 2 i+ 3 i+ 4

Accuracy

1st derivative

(∆x) -1 1

(∆x)2 − 3
2

2 − 1
2

(∆x)3 − 11
6

3 − 3
2

1
3

(∆x)4 − 25
12

4 -3 4
3

− 1
4

2nd derivative

(∆x) 1 -2 1

(∆x)2 2 -5 4 -1

(∆x)3 35
12

− 26
3

19
2

− 14
3

11
12

Computation Fluid Dynamics – p.99/189

Mixed derivatives
For finding suitable discrete approximations for mixed
derivatives use a multidimensional Taylor expansion.
Thus for example second order approximations to
∂2φ/∂x∂y at the point i, j are given

∂2φ

∂x∂y
=
wi+1,j+1 − wi−1,j+1 + wi−1,j−1 − wi+1,j−1

4∆x∆y

+O((∆x)
2, (∆y)

2),

In stencil form we can express this as

1

4∆x∆y



−1 0 1

0 0 0

1 0 −1


 .

Computation Fluid Dynamics – p.100/189

Mixed derivatives
Alternatively,

∂2φ

∂x∂y
=

wi+1,j+1 − wi+1,j − wi,j+1 + wi−1,j−1 − wi−1,j − wi,j−1 + 2wi,j
2∆x∆y

+O((∆x)
2, (∆y)

2).

or

1

2∆x∆y




0 −1 1

−1 2 −1

1 −1 0


 .

Computation Fluid Dynamics – p.101/189

Central, one-sided differences
Consider the approximation

(
∂φ

∂x

)

ij

=
wi+1,j − wi,j

∆x
.

By Taylor expansion we see that this gives rise to a
truncation error of O(∆x). In addition this
approximation is centered at the point xi+ 1

2 ,j
.

•
i, j

× •
i+ 1, j

Computation Fluid Dynamics – p.102/189

Solution of elliptic pde’s
A prototype elliptic pde is Poisson’s equation given by

∂2φ

∂x2
+
∂2φ

∂y2
= f(x, y),

where f(x, y) is a known/given function. The equa-
tion has to be solved in a domain D

Computation Fluid Dynamics – p.103/189

Boundary Conditions
Boundary conditions are given on the boundary δD of
D.

Computation Fluid Dynamics – p.104/189

Boundary Conditions
These can be of three types:
• Dirichlet φ = g(x, y) on δD.

• Neumann
∂φ

∂n
= g(x, y) on δD.

• Robin/Mixed B(φ,
∂φ

∂n
) = 0 on δD.

Robin boundary conditions involve a linear
combination of φ and its normal derivative on the
boundary.
Mixed boundary conditions involve different
conditions for one part of the boundary, and
another type for other parts of the boundary.

Computation Fluid Dynamics – p.105/189

Boundary Conditions
These can be of three types:
• Dirichlet φ = g(x, y) on δD.

• Neumann
∂φ

∂n
= g(x, y) on δD.

• Robin/Mixed B(φ,
∂φ

∂n
) = 0 on δD.

Robin boundary conditions involve a linear
combination of φ and its normal derivative on the
boundary.
Mixed boundary conditions involve different
conditions for one part of the boundary, and
another type for other parts of the boundary.

Computation Fluid Dynamics – p.105/189

Boundary Conditions
These can be of three types:
• Dirichlet φ = g(x, y) on δD.

• Neumann
∂φ

∂n
= g(x, y) on δD.

• Robin/Mixed B(φ,
∂φ

∂n
) = 0 on δD.

Robin boundary conditions involve a linear
combination of φ and its normal derivative on the
boundary.
Mixed boundary conditions involve different
conditions for one part of the boundary, and
another type for other parts of the boundary.

Computation Fluid Dynamics – p.105/189

Solution of model problem
Let us consider a model problem with

∂2φ

∂x2
+
∂2φ

∂y2
= f(x, y), 0 < x, y < 1

φ = 0 on δD.
Here the domain D is the square region 0 < x < 1

and 0 < y < 1.

Computation Fluid Dynamics – p.106/189

Solution of model problem
Construct a finite difference mesh with points (xi, yj),
say where

xi = i∆x, i = 0, 1, ..., N, yj = j∆y, j = 0, 1, ...,M,

where ∆x = 1/N, and ∆y = 1/M are the step sizes
in the x and y directions.

Computation Fluid Dynamics – p.107/189

Solution of model problem
Next replace the derivatives in Poisson equation by
the discrete approximations to get

wi+1,j − 2wi,j + wi−1,j

(∆x)2
+
wi,j+1 − 2wi,j + wi,j−1

(∆y)2
= fi,j,

1 ≤ i ≤ N − 1, 1 ≤ j ≤M − 1

and

wi,j = 0, if i = 1, N, 1 ≤ j ≤M,

wi,j = 0, if j = 1,M, 1 ≤ i ≤ N.

Computation Fluid Dynamics – p.108/189

Solution of model problem
Thus we have (N − 1) × (M − 1) unknown values
wi,j to find at the interior points of the domain.

Computation Fluid Dynamics – p.109/189

If we write

wi = (wi,1, wi,2, ..., wi,M−1)
T

and
fi = (fi,1, fi,2, ..., fi,M−1)

T

we can write the above system of equations in matrix
form as

Computation Fluid Dynamics – p.110/189

Solution of model problem



B I

I B I

I B I

I B







w1

w2

w3

wN−1




= (∆x)
2




f1

f2

f3

fN−1



.

Computation Fluid Dynamics – p.111/189

Solution of model problem
In the above I is the (M − 1)× (M − 1) identity
matrix and

B =

2
66666666666664

b c

c b c

0 c b c

.

.

.

c b

3
77777777777775

,

with

b = −2(
1

(∆x)2
+

1

+(∆y)2
), c = 1.

Computation Fluid Dynamics – p.112/189

Solution of model problem
Let us write the linear system as

Aw = f

What we observe is that the matrix A is very sparse.
The matrix A is very large.
For instance with N = M = 101 the linear system is
of size 104 × 104 and we have 104 unknowns to find.

Computation Fluid Dynamics – p.113/189

Solution of linear system
The linear system can be solved using
• Direct Methods These are not efficient if A is

large. Also very expensive, and require large
storage.

• Iterative Methods The method of choice for most
applications.

Computation Fluid Dynamics – p.114/189

Solution of linear system
The linear system can be solved using
• Direct Methods These are not efficient if A is

large. Also very expensive, and require large
storage.

• Iterative Methods The method of choice for most
applications.

Computation Fluid Dynamics – p.114/189

Iterative methods
• Point relaxation. Jacobi, Gauss-Seidel, SOR

• Line Relaxation
• Conjugate gradient and PCG methods
• Minimal residual methods
• Multigrid
• Fast Direct Methods (FFT)

Computation Fluid Dynamics – p.115/189

Iterative methods
• Point relaxation. Jacobi, Gauss-Seidel, SOR
• Line Relaxation

• Conjugate gradient and PCG methods
• Minimal residual methods
• Multigrid
• Fast Direct Methods (FFT)

Computation Fluid Dynamics – p.115/189

Iterative methods
• Point relaxation. Jacobi, Gauss-Seidel, SOR
• Line Relaxation
• Conjugate gradient and PCG methods

• Minimal residual methods
• Multigrid
• Fast Direct Methods (FFT)

Computation Fluid Dynamics – p.115/189

Iterative methods
• Point relaxation. Jacobi, Gauss-Seidel, SOR
• Line Relaxation
• Conjugate gradient and PCG methods
• Minimal residual methods

• Multigrid
• Fast Direct Methods (FFT)

Computation Fluid Dynamics – p.115/189

Iterative methods
• Point relaxation. Jacobi, Gauss-Seidel, SOR
• Line Relaxation
• Conjugate gradient and PCG methods
• Minimal residual methods
• Multigrid

• Fast Direct Methods (FFT)

Computation Fluid Dynamics – p.115/189

Iterative methods
• Point relaxation. Jacobi, Gauss-Seidel, SOR
• Line Relaxation
• Conjugate gradient and PCG methods
• Minimal residual methods
• Multigrid
• Fast Direct Methods (FFT)

Computation Fluid Dynamics – p.115/189

Iterative methods- Jacobi
method

Rewrite the discrete equations

wi+1,j − 2wi,j + wi−1,j

(∆x)2
+
wi,j+1 − 2wi,j + wi,j−1

(∆y)2
= fi,j,

1 ≤ i ≤ N − 1, 1 ≤ j ≤M − 1

as

wi,j =
1

2(1 + β2)

(
wi+1,j + wi−1,j + β2(wi,j+1 + wi,j−1)− (∆x)

2fi,j
)
,

with β = ∆x/∆y.

Computation Fluid Dynamics – p.116/189

Iterative methods- Jacobi
method

Rewrite the discrete equations

wi+1,j − 2wi,j + wi−1,j

(∆x)2
+
wi,j+1 − 2wi,j + wi,j−1

(∆y)2
= fi,j,

1 ≤ i ≤ N − 1, 1 ≤ j ≤M − 1

as

wi,j =
1

2(1 + β2)

(
wi+1,j + wi−1,j + β2(wi,j+1 + wi,j−1)− (∆x)

2fi,j
)
,

with β = ∆x/∆y.

Computation Fluid Dynamics – p.116/189

Iterative methods- Jacobi
method

This suggests the iterative scheme

wnew
i,j =

1

2(1 + β2)

(
wold
i+1,j + wold

i−1,j + β2(wold
i,j+1 + wold

i,j−1

)
−(∆x)

2fi,j).

Computation Fluid Dynamics – p.117/189

Iterative methods- Jacobi
method

What are suitable convergence criteria?

Suppose we
write the linear system as

Av = f

where v is the exact solution of the linear system. ’
If w is an approximate solution, the error e is defined
by

e = v −w.

Thus
Ae = A(v −w) = f −Aw.

Computation Fluid Dynamics – p.118/189

Iterative methods- Jacobi
method

What are suitable convergence criteria? Suppose we
write the linear system as

Av = f

where v is the exact solution of the linear system. ’
If w is an approximate solution, the error e is defined
by

e = v −w.

Thus
Ae = A(v −w) = f −Aw.

Computation Fluid Dynamics – p.118/189

Iterative methods- Jacobi
method

Continue iterating until residual is small enough.
The residual is defined by

r = f −Aw

which can be computed.

For the Jacobi scheme the
residual is given by

ri,j = (∆x)
2fi,j+2(1+β2)wi,j−(wi+1,j+wi−1,j+β

2(wi,j+1+wi,j−1)).

Computation Fluid Dynamics – p.119/189

Iterative methods- Jacobi
method

Continue iterating until residual is small enough.
The residual is defined by

r = f −Aw

which can be computed. For the Jacobi scheme the
residual is given by

ri,j = (∆x)
2fi,j+2(1+β2)wi,j−(wi+1,j+wi−1,j+β

2(wi,j+1+wi,j−1)).

Computation Fluid Dynamics – p.119/189

Iterative methods- Jacobi
method

Therefore a suitable stopping condition might be

max
i,j
|ri,j| < ε1, or

√∑

i,j

r2
i,j < ε2.

Computation Fluid Dynamics – p.120/189

Gauss-Siedel iteration
This is given by

wnew
i,j =

1

2(1 + β2)

(
wold
i+1,j + wnew

i−1,j + β2(wold
i,j+1 + wnew

i,j−1

)
−(∆x)

2fi,j)

where the new values overwrite existing values.

Computation Fluid Dynamics – p.121/189

Relaxation and the SOR method
Instead of updating the new values as indicated above,
it is better to use relaxation. Here we compute

wi,j = (1− ω)wold
i,j + ωw∗i,j,

where ω is called the relaxation factor, and w∗i,j
denotes the value as computed by the Jacobi, or
Gauss-Seidel scheme. ω = 1 reduces to the Jacobi or
Gauss-Seidel scheme.
The Gauss-Seidel scheme with ω 6= 1 is called the
method of successive overrelaxation or SOR scheme.

Computation Fluid Dynamics – p.122/189

Line relaxation
The Jacobi, Gauss-Seidel and SOR schemes are called
point relaxation methods.
On the other hand we may compute a whole line of new
values at a time, leading to the line-relaxation methods.

Computation Fluid Dynamics – p.123/189

Line Relaxation
For instance suppose we write the equations as

wnew
i+1,j−2(1+β2)wnew

i,j +wnew
i−1,j = −β2(wi,j+1+wold

i,j−1))+(∆x)
2fi,j,

then starting from j = 1 we may compute the values
wi,j , for i = 1, ..., N − 1 in one go.
To solve for a line we need a tridiagonal solver.

Computation Fluid Dynamics – p.124/189

Convergence properties of basic
iteration schemes

Consider the linear system

Ax = b (-32)

where A = (ai,j) is an n×n matrix, and x,b are n×1

column vectors.

Computation Fluid Dynamics – p.125/189

Convergence properties
Suppose we write the matrix A in the form
A = D− L−U where D,L,U are the diagonal
matrix, lower and upper triangular parts of A, ie

D =

2
66666666666664

a1,1 0

0 a2,2 0

0 0 a3,3 0

.

.

.

0 an,n

3
77777777777775

,

Computation Fluid Dynamics – p.126/189

Convergence properties

−L =

2
66666666666664

0 0

a2,1 0 0

a3,1 a3,2 0 0

.

.

.

an,1 an,2 an,n−1 0

3
77777777777775

,

−U =

2
66666666666664

0 a1,2 a1,3 . . . a1,n

0 0 a2,3 . . . a2,n

0 0 0 a3,4 . . a3,n

.

.

0 an−1,n

0 0 0

3
77777777777775

.

Computation Fluid Dynamics – p.127/189

Convergence properties
Then

Ax = b

can be written as

Dx = (L + U)x + b.

Computation Fluid Dynamics – p.128/189

Convergence properties
The Jacobi iteration is then defined as

x(k+1) = D−1(L + U)x(k) + D−1b.

The Gauss-Seidel iteration is defined by

(D− L)x(k+1) = Ux(k) + b,

or

x(k+1) = (D− L)−1Ux(k) + (D− L)−1b.

Computation Fluid Dynamics – p.129/189

Convergence properties
The Jacobi iteration is then defined as

x(k+1) = D−1(L + U)x(k) + D−1b.

The Gauss-Seidel iteration is defined by

(D− L)x(k+1) = Ux(k) + b,

or

x(k+1) = (D− L)−1Ux(k) + (D− L)−1b.

Computation Fluid Dynamics – p.129/189

Convergence properties
In general an iteration scheme may be written as

x(k+1) = Px(k) + Pb

where P is called the iteration matrix.

For the Jacobi scheme scheme we have

P = PJ = D−1(L + U)

For the Gauss-Seidel scheme

P = PG = (D− L)−1U.

Computation Fluid Dynamics – p.130/189

Convergence properties
In general an iteration scheme may be written as

x(k+1) = Px(k) + Pb

where P is called the iteration matrix.
For the Jacobi scheme scheme we have

P = PJ = D−1(L + U)

For the Gauss-Seidel scheme

P = PG = (D− L)−1U.

Computation Fluid Dynamics – p.130/189

Convergence properties
In general an iteration scheme may be written as

x(k+1) = Px(k) + Pb

where P is called the iteration matrix.
For the Jacobi scheme scheme we have

P = PJ = D−1(L + U)

For the Gauss-Seidel scheme

P = PG = (D− L)−1U.

Computation Fluid Dynamics – p.130/189

Convergence properties
The exact solution to the linear system satisfies

x = Px + Pb.

Define the error at the kth iteration by

e(k) = x− x(k)

then the error satisfies the equation

e(k+1) = Pe(k) = P2e(k−1) = Pk+1e(0).

Computation Fluid Dynamics – p.131/189

Convergence properties
The exact solution to the linear system satisfies

x = Px + Pb.

Define the error at the kth iteration by

e(k) = x− x(k)

then the error satisfies the equation

e(k+1) = Pe(k) = P2e(k−1) = Pk+1e(0).

Computation Fluid Dynamics – p.131/189

Convergence properties
The exact solution to the linear system satisfies

x = Px + Pb.

Define the error at the kth iteration by

e(k) = x− x(k)

then the error satisfies the equation

e(k+1) = Pe(k) = P2e(k−1) = Pk+1e(0).

Computation Fluid Dynamics – p.131/189

Convergence properties
In order that the error diminishes as k →∞ we must
have

||Pk|| → 0 as k →∞,

Since
||Pk|| = ||P||k

we see that we require

||P|| < 1.

Computation Fluid Dynamics – p.132/189

Convergence properties
In order that the error diminishes as k →∞ we must
have

||Pk|| → 0 as k →∞,

Since
||Pk|| = ||P||k

we see that we require

||P|| < 1.

Computation Fluid Dynamics – p.132/189

Convergence properties
From linear algebra

||P|| < 1

is equivalent to the requirement that

ρ(P) = max
i
|λi| < 1

where λi are the eigenvalues of the matrix P.
ρ(P) is called the spectral radius of P.

Computation Fluid Dynamics – p.133/189

Convergence properties
Note also that for large k

||e(k+1)|| = ρ||e(k)||.

How many iterations does it takes to reduce the initial
error by a factor ε?
We need q iterations where q is the smallest value for
which

ρq < ε

giving

q ≥ qd =
ln ε

ln ρ
.

Computation Fluid Dynamics – p.134/189

Convergence properties
Note also that for large k

||e(k+1)|| = ρ||e(k)||.

How many iterations does it takes to reduce the initial
error by a factor ε?

We need q iterations where q is the smallest value for
which

ρq < ε

giving

q ≥ qd =
ln ε

ln ρ
.

Computation Fluid Dynamics – p.134/189

Convergence properties
Note also that for large k

||e(k+1)|| = ρ||e(k)||.

How many iterations does it takes to reduce the initial
error by a factor ε?
We need q iterations where q is the smallest value for
which

ρq < ε

giving

q ≥ qd =
ln ε

ln ρ
.

Computation Fluid Dynamics – p.134/189

Convergence properties
Thus iteration matrices where the spectral radius is
close to 1 will converge slowly.
For the model problem it can be shown that for Jacobi
iteration

ρ = ρ(PJ) =
1

2

(
cos

π

N
+ cos

π

M

)
,

and for Gauss-Seidel

ρ = ρ(PG) = [ρ(PJ)]2.

Computation Fluid Dynamics – p.135/189

Convergence properties
If we take N = M and N >> 1 then for Jacobi
iteration we have

qd =
ln ε

ln(1− π2

2N2)
= −2N 2

π2
ln ε.

Gauss-Seidel converges twice as fast as Jacobi.

Computation Fluid Dynamics – p.136/189

Convergence properties
If we take N = M and N >> 1 then for Jacobi
iteration we have

qd =
ln ε

ln(1− π2

2N2)
= −2N 2

π2
ln ε.

Gauss-Seidel converges twice as fast as Jacobi.

Computation Fluid Dynamics – p.136/189

Convergence properties
For point SOR the spectral radius depends on the
relaxation factor ω, but for the model problem with
optimum values and N = M it can be shown that

ρ =
1− sin π

N

1 + sin π
N

giving

qd = −N
2π

ln ε.

Computation Fluid Dynamics – p.137/189

Convergence properties
For line SOR, and it can be shown that using optimum
values

ρ =

(
1− sin π

2N

1 + sin π
2N

)2

, qd = − N

2
√

2π
ln ε.

Computation Fluid Dynamics – p.138/189

Parabolic Equations
In this section we will look at the solution of parabolic
partial differential equations. The techniques intro-
duced earlier apply equally to parabolic pdes.

Computation Fluid Dynamics – p.139/189

Parabolic Equations
One of the simplest parabolic pde is the diffusion
equation which in one space dimensions is

∂u

∂t
= κ

∂2u

∂x2
.

For two or more space dimensions we have

∂u

∂t
= κ∇2u.

In the above κ is some given constant.

Computation Fluid Dynamics – p.140/189

Parabolic Equations
One of the simplest parabolic pde is the diffusion
equation which in one space dimensions is

∂u

∂t
= κ

∂2u

∂x2
.

For two or more space dimensions we have

∂u

∂t
= κ∇2u.

In the above κ is some given constant.

Computation Fluid Dynamics – p.140/189

Parabolic Equations
Another familiar set of parabolic pdes is the boundary
layer equations

ux + vy = 0,

ut + uux + vuy = −px + uyy,

0 = −py.

Computation Fluid Dynamics – p.141/189

Parabolic Equations
With a parabolic pde we expect, in addition to
boundary conditions, an initial condition at say, t = 0.

Computation Fluid Dynamics – p.142/189

Parabolic Equations
Let us consider

∂u

∂t
= κ

∂2u

∂x2
.

in the region a ≤ x ≤ b.

Take a uniform mesh in x
with

xj = a+ j∆x, j = 0, 1, .., N

and
∆x = (b− a)/N

.
For the differencing in time we assume a constant step
size ∆t so that

t = tk = k∆t

Computation Fluid Dynamics – p.143/189

Parabolic Equations
Let us consider

∂u

∂t
= κ

∂2u

∂x2
.

in the region a ≤ x ≤ b. Take a uniform mesh in x
with

xj = a+ j∆x, j = 0, 1, .., N

and
∆x = (b− a)/N

.

For the differencing in time we assume a constant step
size ∆t so that

t = tk = k∆t

Computation Fluid Dynamics – p.143/189

Parabolic Equations
Let us consider

∂u

∂t
= κ

∂2u

∂x2
.

in the region a ≤ x ≤ b. Take a uniform mesh in x
with

xj = a+ j∆x, j = 0, 1, .., N

and
∆x = (b− a)/N

.
For the differencing in time we assume a constant step
size ∆t so that

t = tk = k∆t

Computation Fluid Dynamics – p.143/189

1st order central difference ap-
proximation

We may approximate our equation by

wk+1
j − wk

j

∆t
= κ

[
wk
j+1 − 2wk

j + wk
j−1

∆2
x

]
.

Here wk
j denotes an approximation to the exact

solution u(x, t) of the pde at x = xj, t = tk.
The above scheme is first order in time O(∆t) and
second order in space O(∆x)

2. The scheme is
explicit because the unknowns at level k + 1 can be
computed directly.

Computation Fluid Dynamics – p.144/189

1st order central difference ap-
proximation

We may approximate our equation by

wk+1
j − wk

j

∆t
= κ

[
wk
j+1 − 2wk

j + wk
j−1

∆2
x

]
.

Here wk
j denotes an approximation to the exact

solution u(x, t) of the pde at x = xj, t = tk.

The above scheme is first order in time O(∆t) and
second order in space O(∆x)

2. The scheme is
explicit because the unknowns at level k + 1 can be
computed directly.

Computation Fluid Dynamics – p.144/189

1st order central difference ap-
proximation

We may approximate our equation by

wk+1
j − wk

j

∆t
= κ

[
wk
j+1 − 2wk

j + wk
j−1

∆2
x

]
.

Here wk
j denotes an approximation to the exact

solution u(x, t) of the pde at x = xj, t = tk.
The above scheme is first order in time O(∆t) and
second order in space O(∆x)

2.

The scheme is
explicit because the unknowns at level k + 1 can be
computed directly.

Computation Fluid Dynamics – p.144/189

1st order central difference ap-
proximation

We may approximate our equation by

wk+1
j − wk

j

∆t
= κ

[
wk
j+1 − 2wk

j + wk
j−1

∆2
x

]
.

Here wk
j denotes an approximation to the exact

solution u(x, t) of the pde at x = xj, t = tk.
The above scheme is first order in time O(∆t) and
second order in space O(∆x)

2. The scheme is
explicit because the unknowns at level k + 1 can be
computed directly.

Computation Fluid Dynamics – p.144/189

Parabolic pde
Let us assume that we are given a suitable initial
condition, and boundary conditions of the form

u(a, t) = f(t), u(b, t) = g(t).

Notice that there is a time lag before the effect of the
boundary data is felt on the solution.

Computation Fluid Dynamics – p.145/189

Parabolic pde
As we will see later this scheme is conditionally
stable for

β ≤ 1/2

where

β =
κ∆t

∆2
x

.

Note that β is sometimes called the Peclet or diffusion
number.

Computation Fluid Dynamics – p.146/189

Fully implicit, first order
A better approximation is one which makes use of an
implicit scheme. Then we have

w

k + 1

j − wk
j

∆t
= κ




w

k + 1

j+1 − 2wk+1
j + w

k + 1

j−1

∆2
x



.

The unknowns at level k + 1 are coupled together

and we have a set of implicit equations to solve.

Computation Fluid Dynamics – p.147/189

Fully implicit, first order
A better approximation is one which makes use of an
implicit scheme. Then we have

wk+1
j − wk

j

∆t
= κ

[
wk+1
j+1 − 2wk+1

j + wk+1
j−1

∆2
x

]
.

w

k + 1

j − wk
j

∆t
= κ




w

k + 1

j+1 − 2wk+1
j + w

k + 1

j−1

∆2
x



.

The unknowns at level k + 1 are coupled together

and we have a set of implicit equations to solve.

Computation Fluid Dynamics – p.147/189

Fully implicit, first order
A better approximation is one which makes use of an
implicit scheme. Then we have

w

k + 1

j − wk
j

∆t
= κ




w

k + 1

j+1 − 2wk+1
j + w

k + 1

j−1

∆2
x



.

The unknowns at level k + 1 are coupled together

and we have a set of implicit equations to solve.
Computation Fluid Dynamics – p.147/189

Fully implicit, first order
Rearrange to get

βwk+1
j−1−(1+2β)wk+1

j +βwk+1
j−1 = −wk

j , 1 ≤ j ≤ N−1,

Approximation of the boundary conditions gives

wk+1
0 = f(tk+1), wk+1

N = g(tk+1).

Computation Fluid Dynamics – p.148/189

Fully implicit, first order
The discrete equations are of tridiagonal form and
thus easily solved.

The scheme is unconditionally stable .
The accuracy of the above fully implicit scheme is only
first order in time. We can try and improve on this with
a second order scheme.

Computation Fluid Dynamics – p.149/189

Fully implicit, first order
The discrete equations are of tridiagonal form and
thus easily solved.
The scheme is unconditionally stable .

The accuracy of the above fully implicit scheme is only
first order in time. We can try and improve on this with
a second order scheme.

Computation Fluid Dynamics – p.149/189

Fully implicit, first order
The discrete equations are of tridiagonal form and
thus easily solved.
The scheme is unconditionally stable .
The accuracy of the above fully implicit scheme is only
first order in time. We can try and improve on this with
a second order scheme.

Computation Fluid Dynamics – p.149/189

Richardson method
Consider

wk+1
j − wk−1

j

2∆t
= κ

[
wk
j+1 − 2wk

j + wk
j−1

∆2
x

]
.

This uses three time levels and has accuracy
O(∆2

t ,∆
2
x).

The scheme was devised by a meteorologist and is un-
conditionally unstable!

Computation Fluid Dynamics – p.150/189

Richardson method
Consider

wk+1
j − wk−1

j

2∆t
= κ

[
wk
j+1 − 2wk

j + wk
j−1

∆2
x

]
.

This uses three time levels and has accuracy
O(∆2

t ,∆
2
x).

The scheme was devised by a meteorologist and is un-
conditionally unstable!

Computation Fluid Dynamics – p.150/189

Richardson method
Consider

wk+1
j − wk−1

j

2∆t
= κ

[
wk
j+1 − 2wk

j + wk
j−1

∆2
x

]
.

This uses three time levels and has accuracy
O(∆2

t ,∆
2
x).

The scheme was devised by a meteorologist and is un-
conditionally unstable!

Computation Fluid Dynamics – p.150/189

Du-Fort Frankel
This uses the approximation

wk+1
j − wk−1

j

2∆t
= κ

[
wk
j+1 − wk+1

j − wk−1
j + wk

j−1

∆2
x

]
.

This has truncation error O(∆2
t ,∆

2
x, (

∆4
t

∆2
x

)), and is an

explicit scheme.
The scheme is unconditionally stable, but is inconsis-
tent if ∆t → 0,∆x → 0 but with ∆t/∆x remaining
fixed.

Computation Fluid Dynamics – p.151/189

Du-Fort Frankel
This uses the approximation

wk+1
j − wk−1

j

2∆t
= κ

[
wk
j+1 − wk+1

j − wk−1
j + wk

j−1

∆2
x

]
.

This has truncation error O(∆2
t ,∆

2
x, (

∆4
t

∆2
x

)), and is an

explicit scheme.

The scheme is unconditionally stable, but is inconsis-
tent if ∆t → 0,∆x → 0 but with ∆t/∆x remaining
fixed.

Computation Fluid Dynamics – p.151/189

Du-Fort Frankel
This uses the approximation

wk+1
j − wk−1

j

2∆t
= κ

[
wk
j+1 − wk+1

j − wk−1
j + wk

j−1

∆2
x

]
.

This has truncation error O(∆2
t ,∆

2
x, (

∆4
t

∆2
x

)), and is an

explicit scheme.
The scheme is unconditionally stable, but is inconsis-
tent if ∆t → 0,∆x → 0 but with ∆t/∆x remaining
fixed.

Computation Fluid Dynamics – p.151/189

Crank-Nicolson
A popular scheme is the Crank-Nicolson scheme
given by

wk+1
j − wkj

∆t
=
κ

2

"
wk+1
j+1 − 2wk+1

j + wk+1
j−1

∆2
x

+
wkj+1 − 2wkj + wkj−1

∆2
x

#
.

This is second order accurate O(∆2
t ,∆

2
x) and is un-

conditionally stable. (Taking very large time steps can
however cause problems). As can be seen it is also an
implicit scheme.

Computation Fluid Dynamics – p.152/189

Crank-Nicolson
A popular scheme is the Crank-Nicolson scheme
given by

wk+1
j − wkj

∆t
=
κ

2

"
wk+1
j+1 − 2wk+1

j + wk+1
j−1

∆2
x

+
wkj+1 − 2wkj + wkj−1

∆2
x

#
.

This is second order accurate O(∆2
t ,∆

2
x) and is un-

conditionally stable. (Taking very large time steps can
however cause problems). As can be seen it is also an
implicit scheme.

Computation Fluid Dynamics – p.152/189

Multi-space dimensions
The schemes outlined above are easily extended to
multi-dimensions. Thus in two space dimensions a
first order explict approximation to

∂u

∂t
= κ∇2u,

is

wk+1
i,j − wki,j

∆t
= κ

"
wki+1,j − 2wki,j + wki−1,j

∆2
x

+
wki,j+1 − 2wki,j + wki,j−1

∆2
y

#
.

This is first order in ∆t and second order in space. It
is conditionally stable for

κ∆t

(∆x)2
+

κ∆t

(∆y)2
≤ 1

2
.

Computation Fluid Dynamics – p.153/189

Multi-space dimensions
The schemes outlined above are easily extended to
multi-dimensions. Thus in two space dimensions a
first order explict approximation to

∂u

∂t
= κ∇2u,

is
wk+1
i,j − wki,j

∆t
= κ

"
wki+1,j − 2wki,j + wki−1,j

∆2
x

+
wki,j+1 − 2wki,j + wki,j−1

∆2
y

#
.

This is first order in ∆t and second order in space. It
is conditionally stable for

κ∆t

(∆x)2
+

κ∆t

(∆y)2
≤ 1

2
.

Computation Fluid Dynamics – p.153/189

Multi-space dimensions
The schemes outlined above are easily extended to
multi-dimensions. Thus in two space dimensions a
first order explict approximation to

∂u

∂t
= κ∇2u,

is
wk+1
i,j − wki,j

∆t
= κ

"
wki+1,j − 2wki,j + wki−1,j

∆2
x

+
wki,j+1 − 2wki,j + wki,j−1

∆2
y

#
.

This is first order in ∆t and second order in space.
It is conditionally stable for

κ∆t

(∆x)2
+

κ∆t

(∆y)2
≤ 1

2
.

Computation Fluid Dynamics – p.153/189

Multi-dimensional schemes
If we use a fully implicit scheme we would obtain

wk+1
i,j − wki,j

∆t
= κ

"
wk+1
i+1,j − 2wk+1

i,j + wk+1
i−1,j

∆2
x

+
wk+1
i,j+1 − 2wk+1

i,j + wk+1
i,j−1

∆2
y

#
.

Computation Fluid Dynamics – p.154/189

Multi-dimensional schemes
This leads to an implicit system of equations of the
form

αwk+1
i+1,j + αwk+1

i−1,j − (2α+ 2β + 1)wk+1
i,j + βwk+1

i,j−1 + βwk+1
i,j+1 = −wki,j ,

where
α = κ∆t/∆

2
x

β = κ∆t/∆
2
y

The form of the discrete equations is very much like
the system of equations arising in elliptic pdes.

Computation Fluid Dynamics – p.155/189

Multi-dimensional schemes
From the computational point of view a better scheme
is

w
k+ 1

2
i,j − wki,j

∆t/2
= κ

2
64
w
k+ 1

2
i+1,j − 2w

k+ 1
2

i,j + w
k+ 1

2
i−1,j

∆2
x

+
wki,j+1 − 2wki,j + wki,j−1

∆2
y

3
75 ,

wk+1
i,j − w

k+ 1
2

i,j

∆t/2
= κ

2
64
w
k+ 1

2
i+1,j − 2w

k+ 1
2

i,j + w
k+ 1

2
i−1,j

∆2
x

+
wk+1
i,j+1 − 2wk+1

i,j + wk+1
i,j−1

∆2
y

3
75 ,(-34)

which leads to a tridiagonal system of equations sim-
ilar to the ADI scheme. The above scheme is second
order in time and space and also unconditionally sta-
ble.

Computation Fluid Dynamics – p.156/189

Consistency revisited
Let us consider the truncation error for the first order
central (explicit) scheme, and also the Du-Fort
Frankel scheme.
If u(x, t) is the exact solution then we may write ukj =

u(xj, tk) and thus from a Taylor series expansion

Computation Fluid Dynamics – p.157/189

Consistency revisited

uk+1
j = u(xj , tk + ∆t) =

ukj +∆t

„
∂u

∂t

«

j,k

+
∆2
t

2

„
∂2u

∂t2

«

j,k

+O(∆t)
3, (-35)

and

ukj+1 = u(xj + ∆x, tk) =

ukj + ∆x

„
∂u

∂x

«

j,k

+
∆2
x

2

„
∂2u

∂x2

«

j,k

+
∆3
x

6

„
∂3u

∂x3

«

j,k

+
∆4
x

24

„
∂4u

∂x4

«

j,k

+O(∆x)5,

(-36)

and

ukj−1 = u(xj −∆x, tk) =

ukj − ∆x

„
∂u

∂x

«

j,k

+
∆2
x

2

„
∂2u

∂x2

«

j,k

− ∆3
x

6

„
∂3u

∂x3

«

j,k

+
∆4
x

24

„
∂4u

∂x4

«

j,k

+O(∆x)5.

Computation Fluid Dynamics – p.158/189

Consistency revisited
Substituting into the pde gives

1

∆t

"
ukj + ∆t

„
∂u

∂t

«

j,k

+
∆2
t

2

„
∂2u

∂t2

«

j,k

− ukj +O(∆t)
3

#
=

κ

∆2
x

"
ukj + ∆x

„
∂u

∂x

«

j,k

+
∆2
x

2

„
∂2u

∂x2

«

j,k

+
∆3
x

6

„
∂3u

∂x3

«

j,k

+
∆4
x

24

„
∂4u

∂x4

«

j,k

− 2ukj

+ ukj −∆x

„
∂u

∂x

«

j,k

+
∆2
x

2

„
∂2u

∂x2

«

j,k

− ∆3
x

6

„
∂3u

∂x3

«

j,k

+
∆4
x

24

„
∂4u

∂x4

«

j,k

+O(∆x)5

#

Computation Fluid Dynamics – p.159/189

Consistency revisited
from which we obtain

»
∂u

∂t
− κ∂

2u

∂x2

–

j,k

= −∆t

2
(
∂2u

∂t2
)j,k +

κ∆2
x

12
(
∂4u

∂x4
)j,k.

This shows that as ∆t → 0 and ∆x → 0 the origi-
nal pde is satisfied, and the right hand side implies a
truncation error O(∆t,∆

2
x).

Computation Fluid Dynamics – p.160/189

Consistency revisited
If we do the same for the Du-Fort Frankel scheme we
find that

uk+1
j − uk−1

j

2∆t
− κ

"
ukj+1 − uk+1

j − uk−1
j + ukj−1

∆2
x

#

=

»
∂u

∂t
− κ∂

2u

∂x2
+ κ

∆2
t

∆2
x

∂2u

∂t2

–

j,k

+O(∆2
t ,∆

2
x,

∆4
t

∆2
x

).

Computation Fluid Dynamics – p.161/189

Consistency revisited
This shows that the Du-Fort scheme is only consistent
if the step sizes approach zero and also ∆t

∆x
→ 0 simul-

taneously. Otherwise if we take step sizes such that
∆t

∆x
remains constant as both step sizes approach zero,

then the above shows that we are solving the wrong
equation.

Computation Fluid Dynamics – p.162/189

Stability
Consider the first order explicit scheme which can be
written as

wk+1
j = βwk

j−1+(1−2β)wk
j+βw

k
j+1, 1 ≤ j ≤ N−1,

with wk
0 , w

k
N given. We can write the above in matrix

form as

Computation Fluid Dynamics – p.163/189

Stability

wk+1 =

2
66666666666664

(1− 2β) β

β (1− 2β) β

0 β (1− 2β) β

.

.

β (1− 2β)

3
77777777777775

wk,

where wk = (wk
1 , w

k
2 , ..., w

k
N−1)

T .

Computation Fluid Dynamics – p.164/189

Stability
Thus we have

wk+1 = Awk.

Recall convergence of iterative methods.
The above scheme is stable if and only if ||A|| ≤ 1.

Computation Fluid Dynamics – p.165/189

Stability
Thus we have

wk+1 = Awk.

Recall convergence of iterative methods.

The above scheme is stable if and only if ||A|| ≤ 1.

Computation Fluid Dynamics – p.165/189

Stability
Thus we have

wk+1 = Awk.

Recall convergence of iterative methods.
The above scheme is stable if and only if ||A|| ≤ 1.

Computation Fluid Dynamics – p.165/189

Stability
Now the infinity norm ||A||∞ is defined by

||A||∞ = max
j

N∑

i

|ai,j|

for an N ×N matrix A.

Computation Fluid Dynamics – p.166/189

Stability
For the above matrix we we have

||A||∞ = β + |1− 2β|+ β = 2β + |1− 2β|.

So if (1− 2β) ≥ 0 ie β ≤ 1/2 then

||A||∞ = 2β + 1− 2β = 1.

If (1− 2β) < 0 then

||A||∞ = 2β + 2β − 1 = 4β − 1 > 1.

Thus we have proved that the explicit scheme is unsta-
ble if β > 1/2.

Computation Fluid Dynamics – p.167/189

Stability
For the above matrix we we have

||A||∞ = β + |1− 2β|+ β = 2β + |1− 2β|.

So if (1− 2β) ≥ 0 ie β ≤ 1/2 then

||A||∞ = 2β + 1− 2β = 1.

If (1− 2β) < 0 then

||A||∞ = 2β + 2β − 1 = 4β − 1 > 1.

Thus we have proved that the explicit scheme is unsta-
ble if β > 1/2.

Computation Fluid Dynamics – p.167/189

Stability
For the above matrix we we have

||A||∞ = β + |1− 2β|+ β = 2β + |1− 2β|.

So if (1− 2β) ≥ 0 ie β ≤ 1/2 then

||A||∞ = 2β + 1− 2β = 1.

If (1− 2β) < 0 then

||A||∞ = 2β + 2β − 1 = 4β − 1 > 1.

Thus we have proved that the explicit scheme is unsta-
ble if β > 1/2.

Computation Fluid Dynamics – p.167/189

Stability
For the above matrix we we have

||A||∞ = β + |1− 2β|+ β = 2β + |1− 2β|.

So if (1− 2β) ≥ 0 ie β ≤ 1/2 then

||A||∞ = 2β + 1− 2β = 1.

If (1− 2β) < 0 then

||A||∞ = 2β + 2β − 1 = 4β − 1 > 1.

Thus we have proved that the explicit scheme is unsta-
ble if β > 1/2.

Computation Fluid Dynamics – p.167/189

Stability
For the above matrix we we have

||A||∞ = β + |1− 2β|+ β = 2β + |1− 2β|.

So if (1− 2β) ≥ 0 ie β ≤ 1/2 then

||A||∞ = 2β + 1− 2β = 1.

If (1− 2β) < 0 then

||A||∞ = 2β + 2β − 1 = 4β − 1 > 1.

Thus we have proved that the explicit scheme is unsta-
ble if β > 1/2.

Computation Fluid Dynamics – p.167/189

Stability of Crank-Nicolson
scheme

The Crank-Nicolson scheme may be written as

− βwj−1,k+1 + (2 + 2β)wj,k+1 − βwj+1,k+1 =

βwj−1,k + (2− 2β)wj,k + βwj+1,k,

j = 1, 2, ..., N − 1

where β = ∆tκ
(∆x)2 .

Computation Fluid Dynamics – p.168/189

In matrix form with wk = (wk
1 , w

k
2 , ..., w

k
N−1)

T .

2
66666666666664

(2 + 2β) −β
−β (2 + 2β) −β
0 −β (2 + 2β) −β

.

.

−β (2 + 2β)

3
77777777777775

wk+1 =

2
66666666666664

(2− 2β) β

β (2− 2β) β

0 β (2− 2β) β

.

.

β (2− 2β)

3
77777777777775

wk,

Computation Fluid Dynamics – p.169/189

Stability
This is of the form

Bwk+1 = Awk,

where
B = 2IN−1 − βSN−1,

and
A = 2IN−1 + βSN−1

and IN is the N ×N identity matrix.

Computation Fluid Dynamics – p.170/189

Stability
Also SN−1 is the (N − 1)× (N − 1) matrix

SN−1 =




−2 1

1 −2 1

0 1 −2 1

.

.

1 −2




.

Computation Fluid Dynamics – p.171/189

Stability
Hence

wk+1 = B−1Awk.

Thus the Crank-Nicolson scheme will be stable if the
spectral radius of the matrix B−1A is less than unity,
ie

ρ(B−1A) < 1.

We therefore need the eigenvalues of the matrix

B−1A.

Computation Fluid Dynamics – p.172/189

Stability
Hence

wk+1 = B−1Awk.

Thus the Crank-Nicolson scheme will be stable if the
spectral radius of the matrix B−1A is less than unity,
ie

ρ(B−1A) < 1.

We therefore need the eigenvalues of the matrix

B−1A.

Computation Fluid Dynamics – p.172/189

Stability
Hence

wk+1 = B−1Awk.

Thus the Crank-Nicolson scheme will be stable if the
spectral radius of the matrix B−1A is less than unity,
ie

ρ(B−1A) < 1.

We therefore need the eigenvalues of the matrix

B−1A.

Computation Fluid Dynamics – p.172/189

Stability
Hence

wk+1 = B−1Awk.

Thus the Crank-Nicolson scheme will be stable if the
spectral radius of the matrix B−1A is less than unity,
ie

ρ(B−1A) < 1.

We therefore need the eigenvalues of the matrix

B−1A.

Computation Fluid Dynamics – p.172/189

Stability
Recall that λ is an eigenvalue of the matrix S, and x a
corresponding eigenvector if

Sx = λx.

Thus for any integer p

Spx = Sp−1Sx = Sp−1λx = ... = λpx.

Hence the eigenvalues of Sp are λp with eigenvector x.

Computation Fluid Dynamics – p.173/189

Stability
Recall that λ is an eigenvalue of the matrix S, and x a
corresponding eigenvector if

Sx = λx.

Thus for any integer p

Spx = Sp−1Sx = Sp−1λx = ... = λpx.

Hence the eigenvalues of Sp are λp with eigenvector x.

Computation Fluid Dynamics – p.173/189

Stability
Recall that λ is an eigenvalue of the matrix S, and x a
corresponding eigenvector if

Sx = λx.

Thus for any integer p

Spx = Sp−1Sx = Sp−1λx = ... = λpx.

Hence the eigenvalues of Sp are λp with eigenvector x.

Computation Fluid Dynamics – p.173/189

Stability
Extending this result, if P (S) is the matrix polynomial

P (S) = a0S
n + a1S

n−1 + ...+ anI

then

P (S)x = P (λ)x, and P−1(S)x =
1

P (λ)
x.

Finally if Q(S) is any other polynomial in S then we
see that

P−1(S)Q(S)x =
Q(λ)

P (λ)
x.

Computation Fluid Dynamics – p.174/189

Stability
Extending this result, if P (S) is the matrix polynomial

P (S) = a0S
n + a1S

n−1 + ...+ anI

then

P (S)x = P (λ)x, and P−1(S)x =
1

P (λ)
x.

Finally if Q(S) is any other polynomial in S then we
see that

P−1(S)Q(S)x =
Q(λ)

P (λ)
x.

Computation Fluid Dynamics – p.174/189

Stability
Extending this result, if P (S) is the matrix polynomial

P (S) = a0S
n + a1S

n−1 + ...+ anI

then

P (S)x = P (λ)x, and P−1(S)x =
1

P (λ)
x.

Finally if Q(S) is any other polynomial in S then we
see that

P−1(S)Q(S)x =
Q(λ)

P (λ)
x.

Computation Fluid Dynamics – p.174/189

Stability
Extending this result, if P (S) is the matrix polynomial

P (S) = a0S
n + a1S

n−1 + ...+ anI

then

P (S)x = P (λ)x, and P−1(S)x =
1

P (λ)
x.

Finally if Q(S) is any other polynomial in S then we
see that

P−1(S)Q(S)x =
Q(λ)

P (λ)
x.

Computation Fluid Dynamics – p.174/189

Stability
If we let

P = B(SN−1) = 2IN−1 − βSN−1,

and
Q = A(SN−1) = 2IN−1 + βSN−1

then the eigenvalues of the matrix B−1A are given
by

µ =
2 + βλ

2− λβ
where λ is an eigenvalue of the matrix SN−1.

Computation Fluid Dynamics – p.175/189

Stability
If we let

P = B(SN−1) = 2IN−1 − βSN−1,

and
Q = A(SN−1) = 2IN−1 + βSN−1

then the eigenvalues of the matrix B−1A are given by

µ =
2 + βλ

2− λβ
where λ is an eigenvalue of the matrix SN−1.

Computation Fluid Dynamics – p.175/189

Stability
Now the eigenvalues of the N ×N matrix

T =




a b

c a b

0 c a b

. . .

. . .

c a




can be shown to be given by

λ = λn = a+ 2
√
bc cos

nπ

N + 1
, n = 1, 2, .., N.

Computation Fluid Dynamics – p.176/189

Stability
Hence the eigenvalues of SN−1 are

λn = −4 sin2 nπ

2N
, n = 1, 2, ..., N − 1

and so the eigenvalues of B−1A are

µn =
2− 4β sin2 nπ

N

2 + 4β sin2 nπ
N

n = 1, 2, .., N − 1.

Computation Fluid Dynamics – p.177/189

Stability
Clearly

ρ(B−1A) = max
n
|µn| < 1 ∀β > 0.

This proves that the Crank-Nicolson scheme is uncon-
ditionally stable.

Computation Fluid Dynamics – p.178/189

Stability condition allowing ex-
ponential growth

In the above discussion of stability we have said that
the solution of

wk+1 = Awk

is stable if ||A|| ≤ 1.

This condition does not make allowance for solutions
of the pde which may be growing exponentially in
time.
A necessary and sufficient condition for stability
when the solution of the pde is increasing
exponentially in time is that

||A|| ≤ 1 +M∆t = 1 +O(∆t)

where M is a constant independent of ∆x and ∆t.

Computation Fluid Dynamics – p.179/189

Stability condition allowing ex-
ponential growth

In the above discussion of stability we have said that
the solution of

wk+1 = Awk

is stable if ||A|| ≤ 1.
This condition does not make allowance for solutions
of the pde which may be growing exponentially in
time.

A necessary and sufficient condition for stability
when the solution of the pde is increasing
exponentially in time is that

||A|| ≤ 1 +M∆t = 1 +O(∆t)

where M is a constant independent of ∆x and ∆t.

Computation Fluid Dynamics – p.179/189

Stability condition allowing ex-
ponential growth

In the above discussion of stability we have said that
the solution of

wk+1 = Awk

is stable if ||A|| ≤ 1.
This condition does not make allowance for solutions
of the pde which may be growing exponentially in
time.
A necessary and sufficient condition for stability
when the solution of the pde is increasing
exponentially in time is that

||A|| ≤ 1 +M∆t = 1 +O(∆t)

where M is a constant independent of ∆x and ∆t.
Computation Fluid Dynamics – p.179/189

Von-Neumann stability analysis
A very versatile tool for analysing stability is the
Fourier method developed by von Neumann.
Here initial values at mesh points are expressed in
terms of a finite Fourier series, and we consider the
growth of individual Fourier components.

Computation Fluid Dynamics – p.180/189

Von-Neumann stability analysis
A finite sine or cosine series expansion in the interval
a ≤ x ≤ b takes the form

∑

n

an sin(
nπx

L
), or

∑

n

bn cos(
nπx

L
),

where L = b− a.

Now consider an individual
component written in complex exponential form at a
mesh point x = xj = a+ j∆x

Ane
inxπ
L = Ane

inaπ
L e

injπ∆x
L = Ãne

iαnj∆x

where αn = nπ/L.

Computation Fluid Dynamics – p.181/189

Von-Neumann stability analysis
A finite sine or cosine series expansion in the interval
a ≤ x ≤ b takes the form

∑

n

an sin(
nπx

L
), or

∑

n

bn cos(
nπx

L
),

where L = b− a. Now consider an individual
component written in complex exponential form at a
mesh point x = xj = a+ j∆x

Ane
inxπ
L = Ane

inaπ
L e

injπ∆x
L = Ãne

iαnj∆x

where αn = nπ/L.

Computation Fluid Dynamics – p.181/189

Von-Neumann stability analysis
Given initial data we can express the initial values as

w0
p =

N∑

n=0

Ãne
iαnp∆x p = 0, 1, ..., N,

and we have N + 1 equations to determine the N + 1

unknowns Ã.

Computation Fluid Dynamics – p.182/189

Von-Neumann stability
To find how each Fourier mode develops in time,
assume a simple separable solution of the form

wk
p = eiαnp∆xeΩtk = eiαnp∆xeΩk∆t = eiαnp∆xξk,

where ξ = eΩ∆t.
Here ξ is called the amplification factor.
For stability we thus require |ξ| ≤ 1. If the exact
solution of the pde grows exponentially, then the
difference scheme will allow such solutions if

|ξ| ≤ 1 +M∆t

where M does not depend on ∆x or ∆t.

Computation Fluid Dynamics – p.183/189

Von-Neumann stability
To find how each Fourier mode develops in time,
assume a simple separable solution of the form

wk
p = eiαnp∆xeΩtk = eiαnp∆xeΩk∆t = eiαnp∆xξk,

where ξ = eΩ∆t.

Here ξ is called the amplification factor.
For stability we thus require |ξ| ≤ 1. If the exact
solution of the pde grows exponentially, then the
difference scheme will allow such solutions if

|ξ| ≤ 1 +M∆t

where M does not depend on ∆x or ∆t.

Computation Fluid Dynamics – p.183/189

Von-Neumann stability
To find how each Fourier mode develops in time,
assume a simple separable solution of the form

wk
p = eiαnp∆xeΩtk = eiαnp∆xeΩk∆t = eiαnp∆xξk,

where ξ = eΩ∆t.
Here ξ is called the amplification factor.

For stability we thus require |ξ| ≤ 1. If the exact
solution of the pde grows exponentially, then the
difference scheme will allow such solutions if

|ξ| ≤ 1 +M∆t

where M does not depend on ∆x or ∆t.

Computation Fluid Dynamics – p.183/189

Von-Neumann stability
To find how each Fourier mode develops in time,
assume a simple separable solution of the form

wk
p = eiαnp∆xeΩtk = eiαnp∆xeΩk∆t = eiαnp∆xξk,

where ξ = eΩ∆t.
Here ξ is called the amplification factor.
For stability we thus require |ξ| ≤ 1. If the exact
solution of the pde grows exponentially, then the
difference scheme will allow such solutions if

|ξ| ≤ 1 +M∆t

where M does not depend on ∆x or ∆t.
Computation Fluid Dynamics – p.183/189

Von-Neumann stability analysis
Consider the fully implicit scheme

wk+1
j − wk

j

∆t
= κ

[
wk+1
j+1 − 2wk+1

j + wk+1
j−1

∆2
x

]
.

Let
wk
j = ξkeiαnj∆x.

Then substituting into the above gives

1

∆t

ξk(ξ − 1)eiαnj∆x =
κξk+1

∆2
x

(e−iαn∆x − 2 + eiαn∆x)eiαnj∆x .

Computation Fluid Dynamics – p.184/189

Von-Neumann stability analysis
Consider the fully implicit scheme

wk+1
j − wk

j

∆t
= κ

[
wk+1
j+1 − 2wk+1

j + wk+1
j−1

∆2
x

]
.

Let
wk
j = ξkeiαnj∆x.

Then substituting into the above gives

1

∆t

ξk(ξ − 1)eiαnj∆x =
κξk+1

∆2
x

(e−iαn∆x − 2 + eiαn∆x)eiαnj∆x .

Computation Fluid Dynamics – p.184/189

Von-Neumann stability analysis
Consider the fully implicit scheme

wk+1
j − wk

j

∆t
= κ

[
wk+1
j+1 − 2wk+1

j + wk+1
j−1

∆2
x

]
.

Let
wk
j = ξkeiαnj∆x.

Then substituting into the above gives

1

∆t

ξk(ξ − 1)eiαnj∆x =
κξk+1

∆2
x

(e−iαn∆x − 2 + eiαn∆x)eiαnj∆x .

Computation Fluid Dynamics – p.184/189

Stability - fully implicit scheme
Thus with β = ∆tκ/∆

2
x

ξ − 1 = βξ(2 cos(αn∆x)− 2) = −4βξ sin2(
αn∆x

2
).

This gives

ξ =
1

1 + 4β sin2(αn∆x

2)
,

and clearly 0 < ξ ≤ 1 for all β > 0 and for all αn.
Thus the fully implicit scheme is unconditionally sta-
ble.

Computation Fluid Dynamics – p.185/189

Stability - fully implicit scheme
Thus with β = ∆tκ/∆

2
x

ξ − 1 = βξ(2 cos(αn∆x)− 2) = −4βξ sin2(
αn∆x

2
).

This gives

ξ =
1

1 + 4β sin2(αn∆x

2)
,

and clearly 0 < ξ ≤ 1 for all β > 0 and for all αn.

Thus the fully implicit scheme is unconditionally sta-
ble.

Computation Fluid Dynamics – p.185/189

Stability - fully implicit scheme
Thus with β = ∆tκ/∆

2
x

ξ − 1 = βξ(2 cos(αn∆x)− 2) = −4βξ sin2(
αn∆x

2
).

This gives

ξ =
1

1 + 4β sin2(αn∆x

2)
,

and clearly 0 < ξ ≤ 1 for all β > 0 and for all αn.
Thus the fully implicit scheme is unconditionally sta-
ble.

Computation Fluid Dynamics – p.185/189

Stability - Richardson’s scheme
The Richardson scheme is given by

wk+1
j − wk−1

j

2∆t
= κ

[
wk
j+1 − 2wk

j + wk
j−1

∆2
x

]
.

Using a von-Neumann analysis and writing

wk
p = ξkeiαnp∆x,

gives after substitution

Computation Fluid Dynamics – p.186/189

Stability - Richardson’s scheme
The Richardson scheme is given by

wk+1
j − wk−1

j

2∆t
= κ

[
wk
j+1 − 2wk

j + wk
j−1

∆2
x

]
.

Using a von-Neumann analysis and writing

wk
p = ξkeiαnp∆x,

gives after substitution

Computation Fluid Dynamics – p.186/189

Stability - Richardson’s scheme

eiαnp∆xξk−1(ξ2−1) = βξk(e−iαn∆x−2+eiαn∆x)eiαnp∆x.

This gives

ξ2 − 1 = −4ξβ sin2(
αn∆x

2
),

where β = 2∆tκ/∆
2
x.

Computation Fluid Dynamics – p.187/189

Stability - Richardson’s scheme

eiαnp∆xξk−1(ξ2−1) = βξk(e−iαn∆x−2+eiαn∆x)eiαnp∆x.

This gives

ξ2 − 1 = −4ξβ sin2(
αn∆x

2
),

where β = 2∆tκ/∆
2
x.

Computation Fluid Dynamics – p.187/189

Stability analysis, Richardson
Thus

ξ2 + 4ξβ sin2(
αn∆x

2
)− 1 = 0.

This quadratic has two roots ξ1, ξ2. The sum and
product of the roots is given by

ξ1 + ξ2 = −4ξβ sin2(
αn∆x

2
), ξ1ξ2 = −1.

Computation Fluid Dynamics – p.188/189

Stability analysis, Richardson
For stability we require |ξ1| ≤ 1 and |ξ2| ≤ 1 and the
above shows that if |ξ1| < 1 then |ξ2| > 1, and
vice-versa. Also if ξ1 = 1 and ξ2 = −1 then again we
must have β = 0.
Thus the Richardson scheme is unconditionally unsta-
ble.

Computation Fluid Dynamics – p.189/189

	Garbage In, Garbage Out
	Measures of error
	Measures of error
	Roundoff errors
	{Errors in modelling}
	 Programming errors, ie bugs
	Subtle errors
	{Truncation, discretization errors.}
	 Initial value problems
	Example
	Soln of ODE's
	Example
	 A mathematical result.
	 Euler's Method
	Euler's Method
	Euler's Method
	 Truncation error for Euler's method
	Truncation error
	
	 Higher order methods, Modified Euler
	Modified Euler
	Runge-Kutta method of order 4
	 Systems of equations
	Runge-Kutta 4th order
	m-step multi-step method
	Two types
	 Adams-Bashforth 4th order method (explicit)
	 Boundary Value Problems - Shooting Methods
	BVP
	BVP
	BVP
	BVP, shooting
	 Shooting Method
	Shooting- secant method
	Secant method
	Shooting- Newton's method
	Shooting- Newton's method
	Shooting- Newton's method
	Newton- augmented system
	Multiple shooting
	Multiple shooting
	Multiple shooting
	Multiple shooting
	Multiple shooting
	Richardson Extrapolation
	Richardson extrapolation
	Richardson extrapolation
	Solution of BVP using finite-differences
	Solution of BVP using finite-differences
	Solution of BVP using finite-differences
	Solution of BVP using finite-differences
	Solution of BVP using finite-differences
	Solution of BVP using finite-differences
	 Newton linearization
	BVP FD methods
	BVP, FD methods
	BVP, FD methods
	Thomas's tridiagonal algorithm
	Thomas's tridiagonal algorithm
	Stability
	Stability -Consistency
	Stability -Convergence
	Stability, Theorem
	Stability of m-step methods
	Stability of m-step method
	Stability of m-step method
	Stability of m-step method
	Stability of m-step method
	Stability of m-step method
	Stability of m-step method
	Satbility of m-step method
	 Absolute stability
	Absolute Stability
	Absolute Stability
	Absolute Stability
	Absolute Stability
	
	Numerical Solution of PDes
	Classification of PDE's
	PDE's Classification
	Classification
	Classification
	Classification
	Classification 2
	Classification 2
	Classification 2
	Classification 2
	Classification 2
	Consistency, convergence and Lax equivalence theorem
	Consistency, convergence and Lax equivalence theorem
	Consistency, convergence and Lax equivalence theorem
	Difference formulae
	Difference formulae
	Central Differences
	Central Differences
	One-sided approximations
	Weights for central differences
	Weights for one-sided differences
	Mixed derivatives
	Mixed derivatives
	Central, one-sided differences
	Solution of elliptic pde's
	Boundary Conditions
	Boundary Conditions
	Solution of model problem
	Solution of model problem
	Solution of model problem
	Solution of model problem
	
	Solution of model problem
	Solution of model problem
	Solution of model problem
	Solution of linear system
	Iterative methods
	Iterative methods- Jacobi method
	Iterative methods- Jacobi method
	Iterative methods- Jacobi method
	Iterative methods- Jacobi method
	Iterative methods- Jacobi method
	Gauss-Siedel iteration
	Relaxation and the SOR method
	Line relaxation
	Line Relaxation
	Convergence properties of basic iteration schemes
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Parabolic Equations
	Parabolic Equations
	Parabolic Equations
	Parabolic Equations
	Parabolic Equations
	1st order central difference approximation
	Parabolic pde
	Parabolic pde
	Fully implicit, first order
	Fully implicit, first order
	Fully implicit, first order
	Richardson method
	Du-Fort Frankel
	Crank-Nicolson
	Multi-space dimensions
	Multi-dimensional schemes
	Multi-dimensional schemes
	Multi-dimensional schemes
	Consistency revisited
	Consistency revisited
	Consistency revisited
	Consistency revisited
	Consistency revisited
	Consistency revisited
	Stability
	Stability
	Stability
	Stability
	Stability
	Stability of Crank-Nicolson scheme
	
	Stability
	Stability
	Stability
	Stability
	Stability
	Stability
	Stability
	Stability
	Stability
	Stability condition allowing exponential growth
	Von-Neumann stability analysis
	Von-Neumann stability analysis
	Von-Neumann stability analysis
	Von-Neumann stability
	Von-Neumann stability analysis
	Stability - fully implicit scheme
	Stability - Richardson's scheme
	Stability - Richardson's scheme
	Stability analysis, Richardson
	Stability analysis, Richardson

