Computation Fluid Dynamics
CFDI

Jitesh Gajjar]

Maths Dept
Manchester University

Computation Fluid Dynamics — p.1/18

http://www.ma.man.ac.uk/~gajjar

Garbage In, Garbage Out

We will begin with a discussion of errors.
Usetul to understand different types of errors which
can arise when doing numerical computation.

 Roundoff errors

Computation Fluid Dynamics — p.2/18!

Garbage In, Garbage Out

We will begin with a discussion of errors.
Usetul to understand different types of errors which
can arise when doing numerical computation.

 Roundoff errors

* Errors in modelling

Computation Fluid Dynamics — p.2/18!

Garbage In, Garbage Out

We will begin with a discussion of errors.
Usetul to understand different types of errors which
can arise when doing numerical computation.

* Roundoft errors
* Errors in modelling

* Programming errors, 1€ bugs

Computation Fluid Dynamics — p.2/18!

Garbage In, Garbage Out

We will begin with a discussion of errors.
Usetul to understand different types of errors which
can arise when doing numerical computation.

* Roundoft errors
* Errors in modelling
* Programming errors, 1€ bugs

e Truncation, discretization errors.

Computation Fluid Dynamics — p.2/18!

Garbage In, Garbage Out

We will begin with a discussion of errors.
Usetul to understand different types of errors which
can arise when doing numerical computation.

* Roundoft errors
* Errors in modelling
* Programming errors, 1€ bugs

e Truncation, discretization errors.

Computation Fluid Dynamics — p.2/18!

Measures of error

Need some way to quantify errors. 2 useful measures.

Computation Fluid Dynamics — p.3/18!

Measures of error

Need some way to quantify errors. 2 useful measures.

e Absolute error
If ¢* 1s an approximation to a quantity ¢ then the
Absolute error 1s defined by

¢ — ¢

Computation Fluid Dynamics — p.4/18!

Measures of error

Need some way to quantify errors. 2 useful measures.

e Absolute error
If ¢* 1s an approximation to a quantity ¢ then the
Absolute error 1s defined by

¢ — ¢

» Relative error
The Relative error 1s defined by

¢ — ¢
o

6 #0

Computation Fluid Dynamics — p.4/18!

Roundoff errors

These arise when a computer 1s used for doing
numerical computation.

Computation Fluid Dynamics — p.5/18!

Roundoff errors

These arise when a computer 1s used for doing
numerical computation.
Example

Inexact representation of numbers eg, 7, v/2.

Computation Fluid Dynamics — p.5/18!

Roundoff errors

These arise when a computer 1s used for doing
numerical computation.
Example

Inexact representation of numbers eg, 7, v/2.
Rounding and chopping errors.

Remember the way certain quantities are computed 1s

under your control.

Computation Fluid Dynamics — p.5/18!

Errors in modelling

Example:

Replacing full N-S equations with Euler equations.
Neglect of viscous terms means no matter how
accurate the numerical solution, viscous effects will
not be captured where important.

Computation Fluid Dynamics — p.6/18!

Programming errors, ie bugs

 These are all too familiar!

Computation Fluid Dynamics — p.7/18

Programming errors, ie bugs

e These are all too familiar!

* The computer 1s only doing what you ask it to do.

Computation Fluid Dynamics — p.7/18

Programming errors, ie bugs

e These are all too familiar!

* The computer 1s only doing what you ask it to do.
 Even NASA has made blunders.

Computation Fluid Dynamics — p.7/18!

Subtle errors
Suppose

6=0(10"), ¢"=0(10")

then something like
diff = MAX(ABS (phi-phistar))
tol= 1l.e-6
IF (diff < tol) EXIT

in numerical codes will be wrong usage. The
condition 1s always satisfied even though relative error

is O(1).

Computation Fluid Dynamics — p.8/18!

1runcation, discretization er-
rors.
A pproximate
U = f(2)
by

(w(miy1) — 2u(z;) + u(wi1))
hZ

— f(ﬂ?z)

Computation Fluid Dynamics — p.9/18

1runcation, discretization er-
rors.

A pproximate
U = f(2)
by
(w(Tiv1) = 2u(z;) + u(zi-1))
h2

This gives rise to a truncation error e

= f(®i).

Computation Fluid Dynamics — p.9/18!

1runcation, discretization er-
rors.

A pproximate
U = f(2)
by
(w(Tiv1) = 2u(z;) + u(zi-1))
h2

This gives rise to a truncation error e

= f(®i).

Computation Fluid Dynamics — p.9/18!

Initial value problems

Here we will look at the solution of ordinary
differential equations of the type, say

_:f(xay)a a<z<b

— —)

subject to an 1nitial condition

y(a) =

Computation Fluid Dynamics — p.10/18

Example

Solve

dy Y
Yl

subject to an 1nitial condition

y(0) =1

0 <uz,

Computation Fluid Dynamics — p.11/18

Soln of ODE’s

The methods also generalise to systems of equations
1.e.
Y

%—F(ZC,Y), a<x<b,

where
Y = (y1(2), y2(x), ..., yn(2))",

F = (fl(an)a f2(x7Y)7 e fN(xvY))Tv

with 1nitial data
Y (a) = a,

say, where o = (o, o, ..., an) L.

Computation Fluid Dynamics — p.12/18

Example

Solve

v —2ayy +yP =1, y(1)=1, y'(1)=2.

The equivalent first order system 1s obtained with

(yl(x)vyZ(x))T (y();:U())

filx, y1,y2) = yao(x),

fo(@, y1,y2) = 14 2zy1 (2)ya(2) — y5 (2),
and 1nitial condition

(yl(l)vy2(1)>T = (1, Q)T-

Computation Fluid Dynamics — p.13/18

A mathematical result.

Suppose we define D to be the domain
D={(x,y) | a<zx<b —oc0o<y<oo}

and f(z,y) is continuous on D. If f(x,y) satisfies a
Lipschitz condition on D then the ODE has a unique
solution for a < x < b.

Computation Fluid Dynamics — p.14/18

A mathematical result.

Suppose we define D to be the domain
D={(x,y) | a<zx<b —oc0o<y<oo}

and f(z,y) is continuous on D. If f(x,y) satisfies a
Lipschitz condition on D then the ODE has a unique
solution for a < x < b. Recall f(z,y) satisfies a
Lipschitz condition on D means that there exists a
constant L. > 0 (called the Lipschitz constant) such
that

‘f(xlvyl) — f(gj?ay?)‘ < L‘yl — yQ‘
whenever (21, 1), (x2,y2) belong to D.

Computation Fluid Dynamics — p.14/18

Euler’s Method

This 1s the simplest of techniques for the numerical
solution of ODE’s.
For simplicity define an equally spaced mesh

r;=a-+3h, 7=0,.,N

where h = (b — a)/N is called the step size.

We can derive Euler’s method as follows.

Computation Fluid Dynamics — p.15/18

Euler’s Method

Suppose y(x) is the unique solution to the ODE, and
twice differentiable. Then by Taylor’s theorem we
have

Y(ainr) = o+ h) = () + 1/ (w0h + ()

where r; < & < z;.1.

Computation Fluid Dynamics — p.16/18

Euler’s Method

But from the differential equation y'(x;) = f(z;), and
yi = y(;).
This suggests the scheme
Wy — «
Wit1 w; + hf(zi,w;),
r = 1,2,..,N —1,

for calculating the w;.
This 1s Euler’s method

Computation Fluid Dynamics — p.17/18

1Truncation error Ifor Luler’s
method

Suppose that y; = y(x;) is the exact solution at
r = Xj.
Then the truncation error 1s defined by

Tr,;_|_1(h) _ Yir1 — (yl th(il?z, yZ))

Yi+1 — Yi
— i h f(xuyz))

fore =0,1,.... N — 1.

Computation Fluid Dynamics — p.18/18!

Truncation error

From the above we find that
Tir1(h) =(& W'(&)

for some &; in (x;, x;11). So if y”(z) is bounded by a
constant M in (a, b) then

M

)
ria(h)] < 5

Thus we see that the truncation error for Euler’s
method is O(h).

Computation Fluid Dynamics — p.19/18

In general if 7,1 = [A) we say that the method 1s of
order hP.

In principle if A decreases, we should be able to
achieve greater accuracy, although in practice round-

off error limits the smallest size of i that we can take.

Computation Fluid Dynamics — p.20/18

Higher order methods, VModified
Euler
The modified Euler method 1s given by

Wy = « ki = hf(xz;,w),

h

w; + §[f(iliz, w;) + f(Tit1, wit1)],

i = 1,2... N —1,

Wi+1

This has truncation error O(h?). Sometimes this is also

called a Runge-Kutta method of order 2.

Computation Fluid Dynamics — p.21/18

Modified Euler

Notice Euler’s method 1s implicit

Wy — «]{1 — hf(il?z,w@),

h
(e §[f($27 w;) + f(Zit1, Wit1)],

i = 1,2 N—1

Wi+41

Computation Fluid Dynamics — p.22/18!

Modified Euler

Notice Euler’s method 1s implicit

Wy — «]{1 — hf(:cz,wz),
h

(e §[f($27 w;) + f(@it1, (Wit1)],

i = 1,2 N—1

Wi+4+1

Thus some iteration may be necessary.

Computation Fluid Dynamics — p.22/18!

Runge-Kutta method of order 4

One of the most common Runge-Kutta methods of
order 4 1s given by

wy — o,

ki = hf(x,w),

by = hf(zs+ 2owi 4 —hy)

2 =) Q,fwz 5 1
h 1

]{4 — hf(iL’Z'Jrl, W; + kg)

1
Wi+l = wi+6(k1+2k2+2k3+k4),
for i = 0,1,..N—1

Computation Fluid Dynamics — p.23/18!

Systems of equations

All these methods generalise to a system of first order
equations.

Thus for instance the RK(4) method above becomes

Computation Fluid Dynamics — p.24/18

Runge-Kutta 4th order

Wy — &,

k1 — hf(l’z, WZ'),
h 1

kQ — hf(.flfz + =, W; + —kl)
2 2
h 1

k4 — hf(QZH_l, W, + kg)

1
Wiyl = Wi+6(k1+2k2‘|‘2k3‘|‘k4)7
for i = 0,1,...N—1

Computation Fluid Dynamics — p.25/18!

m-step multi-step method

The methods discussed above are called one-step
methods.

Methods that use the approximate values at more than
one previous mesh point are called multi-step
methods.

There are two distinct types worth mentioning.

These are of the form

Computation Fluid Dynamics — p.26/18!

Two types

Wir1 = Cp—1W; T Cp—2Wi—1 T ... T CQWit1—m

R f(Zit1, (Wit) + b1 f (2, wi) +

o F 0o f(Zit1—m, Wit1-m)]*
If b,,, = 0 so that there is no term with w;,; on the

right hand side of (*), the method is explicit.

If b,, #* 0 we have an implicit 'method.

Computation Fluid Dynamics — p.27/18!

AUdaAIS-DaAsSNIorul 4l
method (explicit)

Here we have
Wy = &, W1 = &1, W2 = &z, W3 = Q3,

where these values are obtained using other methods
such as RK(4) for instance. Then for
1 =3,4,....N — 1 we use

h

— B9f(wi—1,wi—1) + 37 f (2, wia) — 9f (i3, wi—3)].

Computation Fluid Dynamics — p.28/18!

poulldary vaiuc rrooicis -
Shooting Methods

Consider the differential equation

dx?
This 1s an example of a boundary value problem.
Why? Conditions have to satisfied at both ends.

Computation Fluid Dynamics — p.29/18!

BVP

If we write this as a system of first order equations we
have

Yi = vy,
dy
Yo = £
° dx’
dY;
B ¥
dI’ 2
dY-
R A
dx

The boundary conditions give

Y,(0) =0, Yi(1) = 1.

We do not know the value of Y5(0).

Computation Fluid Dynamics — p.30/18!

BVP

Suppose we guess the value of Y5(0) = g, say.
Then we can integrate the system with the 1nitial

condition
Yo -5 = (5)

Computation Fluid Dynamics — p.31/18

BVP

This will give us

Computation Fluid Dynamics — p.32/18!

BVP

This will give us

1
vy [FO Y ()
Ya(1) B
But (3; will not necessarily satisfy the required
condition Y3 (1) = 1,
So now need to 1iterative to try and get the correct

value of g such that the required condition at x = 1 1s
satisfied.

Computation Fluid Dynamics — p.32/18!

BVP, shooting
To do this define

¢(g) = Yi(l;9) — 1,
We want to find the value of ¢ such that ¢(g) = 0.

This gives rise to the 1dea of a shooting method.

Computation Fluid Dynamics — p.33/18!

Shooting Method

Suppose that we have a guess g and we seek a
correction dg such that ¢(g + dg) = 0.
By Taylor expansion we have

6(5 + dg) = &) + %@)dg £ O(dg?).

This suggests that we take

¢(9)
¢'(9)

and hence a new value for g 1s g + dg.

dg =

Computation Fluid Dynamics — p.34/18

Shooting- secant method

Hence

Computation Fluid Dynamics — p.35/18¢

Secant method

Now we are required to find ¢(g,).
How can we do this? One way is to estimate ¢'(g,,) by

qb'(gn) _ gb(gn) : qb(gn—l).
dn gn—1

This gives

- ¢(gn)(gn — gn—l)
I I () — Bga1)

which 1s known as the secant method.

Computation Fluid Dynamics — p.36/18!

Shooting- Newton’s method

Consider again

dYi
il I Ve
dx 2
dY-
halnk —kYs — 2V,
dx
with Y(0) = (0, g)7.
Now
Y]
/
n) — & 17 9
¢ (gn) ag()

Thus differentiate the original system of equations and

boundary conditions with respect to g.

Computation Fluid Dynamics — p.37/18!

Shooting- Newton’s method

d (0Y\ o
dv \ 99)] | _pove_ o |’
dg

dg

The system defines another initial value problem with

given 1nitial conditions.

Computation Fluid Dynamics — p.38/18!

Shooting- Newton’s method

Note that
Y]
/
1:
¢'(g) = 99 —(1; 9).
;Yrom the solution of the above we can extract
vrll

P (x = 1) and hence compute dg update g.
This forms the basis of Newton’s method combined

with shooting, to solve boundary value problems.

Computation Fluid Dynamics — p.39/18!

Newton- augmented system

Can also use an augmented system where we define

iy Y= %zg—z:%—?, Y, — %f
and then
(v [v) (vi0)) [0
\ %)\ -Ki-aY;) \ %0) \1

Computation Fluid Dynamics — p.40/18

Multiple shooting

Consider
d4y 3 dy 9
e (daj) ’
dy dy
0) =1 —(0) =0 1) =2 — (1) =1
y()) dx() Y y()) dﬂj() 9

We need two starting values at z = 0 and then we will

have two conditions to satisty at z = 1.

Computation Fluid Dynamics — p.41/18

Multiple shooting
Define

Yi=yYo=y,Ys=9" ys=19y"

We will need to guess for Y3(0) = e, say, and Y,(0) =
g.

Computation Fluid Dynamics — p.42/18

Multiple shooting

o1(e,9) = Yi(r = 1;e;9) — 2,

pa2(e,g) = Ya(z = 1;6;9) — L.

We need to iterative on both ¢ and g to ensure that the
remaining conditions are satisfied.

To find corrections, need Taylor expansion for function

of two variables.

Computation Fluid Dynamics — p.43/18!

Multiple shooting

To obtain the corrections to guessed values e, g we
have

. . o 0D . 0dy
P1(E+de,g+dg) = 0=¢1(e,g)+d6£(e,g)+dgﬂ(e,

s 0Py . . 5
0= 62(,9) + de 22(2,5) + dg 22

¢o(€ + de, g + dg) 9

Computation Fluid Dynamics — p.44/18

Multiple shooting

Multidimensional case
Vector of guesses g.
We can find the corrections dg as

dg = -3 (&)0(8),

where J 1s the Jacobian % and ¢ 1s the vector of con-

ditions.

Computation Fluid Dynamics — p.45/18!

Richardson Extrapolation

Suppose that we use a method with truncation error of
O(h™) to compute an approximation w;.

We can use Richardson extrapolation to get an approx-

imation with greater accuracy.

Computation Fluid Dynamics — p.46/18!

Richardson extrapolation
(1)

Suppose w, ’ is approximation with step size h

and wz@ with step size 2h.

Then we can write
w) =y + BN + ByR" T
and

w? =y + EQ2h)™ + Ey(2h)™ T +

i —

Computation Fluid Dynamics — p.47/18!

Richardson extrapolation

Then we can eliminate the £ term to get

oM\) = (2™ — 1)y; + O(R™).

i om —]
1S a more accurate approximationto the solution than
(1) (2)

w,; ’ or w; .

Computation Fluid Dynamics — p.48/18!

Richardson extrapolation

Then we can eliminate the £ term to get

oM\) = (2™ — 1)y; + O(R™).

i om — 1
1S a more accurate approximationto the solution than

w§1> or w§2>. For a 4th order Runge-Kutta method
the above gives

wr

’ 15

B 16w§1) — wz@

Computation Fluid Dynamics — p.48/18!

dolution of BVF using finite-
differences

Boundary value problems can also be tackled directly
using finite-differences or some other technique such
as spectral approximation.

We will look at one specific example with
finite-differences.

Consider
d*y 1 dy
— = = (32 4+ 2° 1<z<3
dz? 8(e ydm)’ ==
43

The exact solution is y(z) = x* + (16/x).

Computation Fluid Dynamics — p.49/18!

dolution of BVF using finite-
differences

Define a uniform grid (zg, x1, ..., xx) with N + 1
points.
Grid spacing h = (zy — x¢) /N,

r; =x9+ jh,for (j =0,1,..,N).

Computation Fluid Dynamics — p.50/18!

dolution of BVF using finite-
differences

Approximate y at each of the nodes z = x; by w;
The derivatives of ¢ 1n the ode are approximated in
finite-difference form as

dy Wi+1 — Wi-1 9
_< — | h :

<d2y> _ Wit1 — 2W; + Wi—1 Wolt}

h2

Computation Fluid Dynamics — p.51/18

dolution of BVF using finite-
differences

These can be derived by making use of a Taylor
expansion about the point z = x;. Thus for example

dy h? d%y h? d3y h? ¢
i = i) th=—(z;) + -5 @) + ——= (@) + -

h? d*y h? d3y ht

y(zic1) = ylag) — h@(xi) + 7@(%) = F@(xi) + o0

dx

By adding and subtracting and replacing y(x;) by w;

we obtain previous approximation.

Computation Fluid Dynamics — p.52/18!

dolution of BVF using finite-
differences

Next replace y and its derivatives 1in ode by the above
approximations to get

Wiyl — 2W; + wi—1 e Wiyl — Wi—1
= | Wy 9
h? 4 16h
for (i=1,2,..N —1)
and
- 43
=<
The above equations are a set of nonlinear difference

wy = 17, W N

equations. We have NV + 1 equations for N + 1 un-

knowns wy, ..., Wy

Computation Fluid Dynamics — p.53/18!

dolution of BVF using finite-
differences

The nonlinear term above can now be tackled 1n many
different ways. Thus for example we can replace it by

k k
(k—1) w§+)1 — wg—)l
W, ,
! 16hA

or

Computation Fluid Dynamics — p.54/18!

Newton linearization

Suppose that we have a guess for the solutions
We seek corrections ow; such that the w; = W, + ow;
satisfies the system.

Substituting w; = W, + ow; into equations and lin-

earizing gives

Computation Fluid Dynamics — p.55/18!

BVP FD methods

5w7;+1 — 25?1]@ + 5w7;_1
h?

Wip1i — Wiy OWit1 — OW;—1
5“’1(16h >_WZ< 16h)

for (:=1,2,...N —1)

— F —

and
5w0 FQ, (5?1]]\[— FN.

Computation Fluid Dynamics — p.56/18!

BVP, FD methods

The techniques described above lead to the solution of
a tridiagonal systems of linear equations of the form

a;wi—1 + Biw; + yiwipr =05, t=0,1,.., N,

where the «;, 3;, y; are coefficients obtainable from the

difference equation.

Computation Fluid Dynamics — p.57/18!

BVP, FD methods

For example, we have

o 1 W 5, — 2 Win—Wi,
" h2 16n h2 16h
1 W
7 — | Z) 522}727 ':1727"7N_17
72 16k ‘
and
Bo=1,7 = 0,00 = Fp,

OéN:O,ﬂN: 175N:FN

Computa

tion Fluid Dynamics — p.58/18!

Thomas’s tridiagonal algorithm

This version of a tridiagonal solver 1s based on
Gaussian elimination.

First we create zeros below the diagonal and then
once we have a triangular matrix, we solve for the w;
using back substitution.

Thus the algorithm takes the form

Computation Fluid Dynamics — p.59/18!

Thomas’s tridiagonal algorithm

Vi—10; .
6] — 6] : / 92172737“°7N7

B
5._ .
5 = 6 — 2 j=1,2,3,.N.
B
5 ————
Wy = _N7 w; = (9, /YJw]—I—l))
BN B;

7=N-—-1,....1,0.

Computation Fluid Dynamics — p.60/18

Stability

In practice most 1nitial value integrators should work
reasonably well on standard problems. However cer-
tain types of problems (stiff problems) can cause dif-
ficulty and care needs to be exercised in the choice of
the method.

Computation Fluid Dynamics — p.61/18

Stability -Consistency

A method 1s said to be consistent if the local
truncation error tends to zero as the step size — 0, 1.e

lim max |7;(h)| = 0.
h—0 1

Computation Fluid Dynamics — p.62/18!

Stability -Convergence

A method 1s said to be convergent with respect to the
equation 1t approximates if

}llii]% max lw; — y(z;)| =0,

where y(x) is the exact solution and w; an approxima-

tion produced by the method.

Computation Fluid Dynamics — p.63/18!

Stability, Theorem

It can be proven that if the difference method is
consistent with the differential equation, then the
method is stable if and only if the method is
convergent.

Computation Fluid Dynamics — p.64/18

Stability of m-step methods

If we consider an m-step method

Wy = Gp, W1 =01, ...,Wnp-1= Cn—1,
Wit] = Ap—1W; T Ap—2Wij—1 T ... T AQW;it1—m
+h[F($z’, Wi+1, Wiy .-, wz‘+1—m)]

Computation Fluid Dynamics — p.65/18!

Stability of m-step methods

If we consider an m-step method

Wy = &, W1 = a1, ...,Wnp-1= Qm-1,
Wit] = Ap—1W; T Ap—2Wij—1 T ... T AQW;it1—m

—I—h[F («CUz'; Wi41, Wiy -, wi—l—l—m)]

Then 1gnoring the /' term the homogenous part is just

a difference equation.

Computation Fluid Dynamics — p.65/18!

Stability of m-step method

The stability is thus connected with the the roots of
the characteristic polynomial

AT — am_l)\m_l — .. T al)\ — ag — 0.

Why?

Computation Fluid Dynamics — p.66/18!

Stability of m-step method
Consider the ODE with f(z,y) = 0.

d
ézf(x,y), a<z<b yla)=a

This has the solution y(x) = a.

The difference equation has to produce the same solu-

tion, 1€ w,, = .

Computation Fluid Dynamics — p.67/18

Stability of m-step method

Next consider

Wit] = Ap—1W; T Ap—2Wi—1 T ... T AQWit1—m-

Computation Fluid Dynamics — p.68/18¢

Stability of m-step method

Next consider
Wit] = Ap—1W; T Ap—2Wi—1 T ... T AQWit1—m-

If we look for solutions of the form w, = A" then
this gives the characteristic polynomial equation

Computation Fluid Dynamics — p.68/18!

Stability of m-step method

Next consider
Wit] = Ap—1W; T Ap—2Wi—1 T ... T AQWit1—m-

If we look for solutions of the form w, = A" then
this gives the characteristic polynomial equation

AT — am_1>\m_1 — .. T &1)\ — ag — 0.

Computation Fluid Dynamics — p.68/18!

Stability of m-step method

Suppose A1, ...\, are distinct roots of characteristic
polynomial.
Then we can write

Computation Fluid Dynamics — p.69/18!

Stability of m-step method

Suppose A1, ...\, are distinct roots of characteristic
polynomial.
Then we can write

m

w,, = E CiN;.

1=1

Computation Fluid Dynamics — p.69/18!

Stability of m-step method

Suppose A1, ...\, are distinct roots of characteristic
polynomial.
Then we can write

m

w,, = E CiN;.

1=1

Since w,, = « 1s a solution, the difference equation
gives
O — Q10 — ... — agox = 0,
or
a(l —ap 1 — ... —ag) =0.

Computation Fluid Dynamics — p.69/18!

Stability of m-step method
Thus

m
Wy, = o + g CiA, .
i=2

Computation Fluid Dynamics — p.70/18¢

Stability of m-step method
Thus

m
w, = o+ E CiA, .
j=2

In the absence of round-off error all the ¢; would be
Zero.

Computation Fluid Dynamics — p.70/18

Stability of m-step method
Thus

m
w, = o+ g Ci, .
j=2

In the absence of round-off error all the ¢; would be
Zero.

If |\;| < 1 then the error due to roundoff will not grow.
Hence the method is stable if |\;| < 1.

Computation Fluid Dynamics — p.70/18

Stability of m-step method

Is 1t enough just to have stability as defined above?

Computation Fluid Dynamics — p.71/18

Stability of m-step method

Is 1t enough just to have stability as defined above?
Consider the solution of

dy
— = —30 0)=1/3.

Computation Fluid Dynamics — p.71/18

Satbility of m-step method

The RK(4) method, although stable, has difficulty in
computing the accurate solution of this problem.

This means that we need something more than just the

1dea of stability defined above.

Computation Fluid Dynamics — p.72/18!

Absolute stability

Consider

d
ézky, y(0) =a, k<O.

The exact solution of this is y(z) = ae™.

Computation Fluid Dynamics — p.73/18!

Absolute stability

Consider

d
—y:ky, y(0) =a, k<O.
dx

The exact solution of this is y(z) = ae™. If we take
our one-step method and apply it to this equation we
obtain

Computation Fluid Dynamics — p.73/18!

Absolute Stability

Similarly a multi-step of the type used earlier, when
applied to the test equation gives

Wit1 = Ap—1W; T Ap—2Wi—1 T ... T AWitr1—m
+h[bmkwi+1 + bm_lk”w@' + ... + bokwi+1_m].

Computation Fluid Dynamics — p.74/18

Absolute Stability

Thus if we seek solutions of the form w; = 2* this will
give rise to the characteristic polynomial equation

Q(Zr hk) = 0,

where

Computation Fluid Dynamics — p.75/18!

Absolute Stability

Thus if we seek solutions of the form w; = 2* this will
give rise to the characteristic polynomial equation

Q(z, hk) =0,
where
Q(z, hk) = (1 — hkb,)2™ — (am_1 + hkbp_1)2™ "
—... — (ap + hkby).

Computation Fluid Dynamics — p.75/18!

Absolute Stability

The region R of absolute stability for a one-step
method 1s defined as the region in the complex plane

R= {hk € C,|Q(hk)| < 1}.

Computation Fluid Dynamics — p.76/18!

Absolute Stability

The region R of absolute stability for a one-step
method 1s defined as the region in the complex plane

R={hk € C,|Q(hk)| < 1}.
For a multi-step method R = {hk € C,|3;| < 1},
where [3; is a root of ()(z, hk) = 0.

Computation Fluid Dynamics — p.76/18!

Absolute Stability

A numerical method 1s A-stable if R contains the en-

tire left half plane.

Computation Fluid Dynamics — p.77/18!

Consider the modified Euler method

Wy = « ki = hf(x;,w;),
h

w; + §[f(517z'7 w;) + f(Tit1, Wit1)]

This 1s an A-stable method.

Wi41

Computation Fluid Dynamics — p.78/18!

Numerical Solution of PDes

Computation Fluid Dynamics — p.79/18¢

Classification of PDE’s

Partial differential equations can be classified as being
of type elliptic, parabolic or hyperbolic. In some cases
equations can be of mixed type.

Consider

02¢ 02 0 ¢ 00 oo
A—" 4+ B - L D4 B4 F —
52+ 8xay+()8y2+ 5.+ 8y+ ¢+ G=0,

where, in general, A, B,C, D, E, F, and G are func-

tions of the independent variables x and y and of the

dependent variables ¢.

Computation Fluid Dynamics — p.80/18!

PDE’s Classification

The equation 1s said to be
e elliptic if B* — 4AC < 0,

Computation Fluid Dynamics — p.81/18!

PDE’s Classification

The equation 1s said to be
e elliptic if B* — 4AC < 0,
o parabolic if B?> — 4AC = 0, or

Computation Fluid Dynamics — p.81/18!

PDE’s Classification

The equation 1s said to be
. elliptic if B — 4AC < 0,
o parabolic if B?> — 4AC = 0, or
» hyperbolic if B* — 4AC > 0.

Computation Fluid Dynamics — p.81/18!

PDE’s Classification

The equation 1s said to be
. elliptic if B — 4AC < 0,
o parabolic if B?> — 4AC = 0, or
» hyperbolic if B* — 4AC > 0.

Computation Fluid Dynamics — p.81/18!

Classification

An example of an elliptic equation 1s Poisson’s
equation
0% o

8332 ! ayQ T f(x7y)

Computation Fluid Dynamics — p.82/18!

Classification

The heat equation
06 _ 0°¢
ot ox?
1s of parabolic type, and the wave equation
0’9 ¢

ozr? Oy? =0

1s a hyperbolic pde.

Computation Fluid Dynamics — p.83/18!

Classification

An example of a mixed type equation 1s the transonic
small disturbance equation given by

09 0% ¢

8x)8x2 - Oy? =0

(K

Computation Fluid Dynamics — p.84/18!

Classification 2

Consider a system of first order partial differential
equations.

Unknowns U = (uq, us, ..., un)T

Independent variables x = (x1, T2, ..., T’ .

Computation Fluid Dynamics — p.85/18!

Classification 2

Suppose that the equations can be written 1n
quasi-linear form

where the A, are (n x n) matrices and Q is an (n X 1)
column vector, and both can depend on x; and U but

not on the derivatives of U.

Computation Fluid Dynamics — p.86/18!

Classification 2

It we seek plane wave solutions of the homogeneous
part of the above pde in the form

U — '[J'Oe?,X.S7

where s = (1, S2, .., 5,)7, then

l ZAkSk U =0.
| k=1 R

Computation Fluid Dynamics — p.87/18!

Classification 2

This will have a non-trivial solution only if the
characteristic equation

det |y Agsp| =0,
k=1

Computation Fluid Dynamics — p.88/18!

Classification 2

* The system 1s hyperbolic if n real characteristics
exist.

Computation Fluid Dynamics — p.89/18!

Classification 2

* The system 1s hyperbolic if n real characteristics
exist.

 If all the characteristics are complex, the system
1s elliptic.

Computation Fluid Dynamics — p.89/18!

Classification 2

* The system 1s hyperbolic if n real characteristics
exist.

 If all the characteristics are complex, the system
1s elliptic.

 If some are real and some complex, the system 1s
of mixed type.

Computation Fluid Dynamics — p.89/18!

Classification 2

The system 1s hyperbolic if n real characteristics
exist.

It all the characteristics are complex, the system
1s elliptic.

If some are real and some complex, the system 1s
of mixed type.

If the system 1s of rank less than n, then we have
a parabolic system.

Computation Fluid Dynamics — p.89/18!

Classification 2

The system 1s hyperbolic if n real characteristics
exist.

It all the characteristics are complex, the system
1s elliptic.

If some are real and some complex, the system 1s
of mixed type.

If the system 1s of rank less than n, then we have
a parabolic system.

Computation Fluid Dynamics — p.89/18!

COISISIENCY, Convergence and
Lax equivalence theorem

Consistent

A discrete approximation to a partial differential equa-
tion 1s said to be consistent if in the limit of the step-
size(s) going to zero, the original pde system 1s recov-

ered, 1e the truncation error approaches zero.

Computation Fluid Dynamics — p.90/18

COISISIENCY, Convergence and
Lax equivalence theorem

Stability

If we define the error to be the difference between the
computed solutions and the exact solution of the dis-
crete approximation, then the scheme 1s stable if the
error remains uniformly bounded for successive itera-

tions.

Computation Fluid Dynamics — p.91/18!

COISISIENCY, Convergence and
Lax equivalence theorem

Convergence

A scheme 1s stable 1f the solution of the discrete
equations approaches the solution of the pde in the
limit that the step-sizes approach zero.

Lax’s Equivalence Theorem

For a well posed 1nitial-value problem and a consistent
discretization, stability is the necessary and sufficient

condition for convergence.

Computation Fluid Dynamics — p.92/18!

Difference formulae

Suppose that we have a grid of points with equal mesh
spacing A, in the x— direction and equal spacing A,
in the y— direction.

Thus we can define points x;, y; by

X :xO‘i_iAxa Y; :y0_|_jAy-

Computation Fluid Dynamics — p.93/18!

Difference formulae

Suppose that we are trying to approximate a derivative
of a function ¢(z, y) at the points x;, y;.

Denote the approximate value of ¢(x,y) at the point

T, Yj DY w; ; say.

Computation Fluid Dynamics — p.94/18!

Central Differences

The first and second derivatives in x or y may be
approximated as before by

0%¢ Wit1,j — 2W; 5 + Wi—1)
D) =t T 1 0((A)?),
(52). Bt e o)
82¢) Wi j+1 — Qwij T Wi j—1 2
— | = — ’ ’ FO((A,)7),
(ayz ij VAME ()

0o Wit1,; — Wi—1,5 2
a — : : | Am)
(ax)ij U o))

0P Wi j4+1 — Wi j—1 9
—] == T 1 0((Ay)?).
<8y)ij 24, ou y))

Computation Fluid Dynamics — p.95/18!

Central Differences

The approximations listed above are centered at the
points (x;,%;), and are called central-difference
approximations.

® X ®

Computation Fluid Dynamics — p.96/18!

One-sided approximations

We can also construct one-sided approximations to
derivatives. Thus for example a second-order forward

approximation to % at the point (z;, y,) is given by

d¢ _ —3w; j + 4W;r15 — Wit
oz) ;; 2., '

Computation Fluid Dynamics — p.97/18!

Weights for central differences

Node Points

Order of 1 —2 1—1 7 1+1 14+ 2
Accuracy
1st derivative

4 1 2 2 1
(Az) » —35 O 3 13
2nd derivative
(AL)? 1 2 1

4 1 4 5 4 1
(Az) “13 3 "3 3 12

Computation Fluid Dynamics — p.98/18¢

Weights for one-sided differ-
ences

Node Points

Order of) 1+1 14+2 14+3 144
Accuracy
1st derivative
(Az) -1 1
(8a)? -4 2 =
o T

4 25 4 1
2nd derivative
VA 1) |
(Az)? 2 -5 4 -1

Computation Fluid Dynamics — p.99/18¢
A A\ 35 26 190 14 11

Mixed derivatives

For finding suitable discrete approximations for mixed
derivatives use a multidimensional Taylor expansion.

Thus for example second order approximations to
0°¢/Dx 0y at the point 7, 7 are given

2
0“0 Wig1j+1 — Wim1j41 T Wim1j—1 — Wit1j—1

+O0((A)%, (.
In stencil form we can express this as

-1 0 1
0 0 O
I 0 —1

1
1NN,

Computation Fluid Dynamics — p.100/18!

Mixed derivatives

Alternatively,
0’¢
0xdy
Wit1,j41 — Witl,j — Wil + Wim1j—1 — Wi—1j — Wij—1 + qu;,j%
WALA,
or
0 —1 1
! 1 2 1
20 A, | Ny
Y I —1 0

Computation Fluid Dynamics — p.101/18!

Central, one-sided differences

Consider the approximation

% - Wiy, — Wiy
0z AV '

L]

By Taylor expansion we see that this gives rise to a
truncation error of O(A,). In addition this

approximation 1s centered at the point x, 11

° % °

1,] 1+ 1,7

Computation Fluid Dynamics — p.102/18!

Solution of elliptic pde’s

A prototype elliptic pde 1s Poisson’s equation given by

26
02 T o = f(z,y),

where f(z,y) is a known/given function. The equa-

tion has to be solved in a domain D

Computation Fluid Dynamics — p.103/18!

Boundary Conditions

Boundary conditions are given on the boundary 0D of
D.

Computation Fluid Dynamics — p.104/18!

Boundary Conditions

These can be of three types:
e Dirichlet ¢ = g(x,y) on dD.

Computation Fluid Dynamics — p.105/18"

Boundary Conditions

These can be of three types:
e Dirichlet ¢ = g(x,y) on dD.
0o

* Neumann 5 = g(zx,y) on dD.

Computation Fluid Dynamics — p.105/18"

Boundary Conditions

These can be of three types:
e Dirichlet ¢ = g(x,y) on dD.
0o

« Neumann 5 = g(x,y) on dD.
. 0
* Robin/Mixed B(’8_) = 0 on 0D.
n

Robin boundary conditions involve a linear
combination of ¢ and its normal derivative on the
boundary.

Mixed boundary conditions involve different
conditions for one part of the boundary, and
another type for other parts of the boundary.

Computation Fluid Dynamics — p.105/18"

Solution of model problem

Let us consider a model problem with

o4 o4
»=0 on 0oD.

Here the domain D 1s the square region 0 < xz < 1
and 0 < y < 1.

Computation Fluid Dynamics — p.106/18!

Solution of model problem

Construct a finite difference mesh with points (z;, y;),
say where

v =il,, i=0,1,..,.N, y;=jA, j=01,..

where A, = 1/N, and A, = 1/M are the step sizes

in the x and y directions.

Computation Fluid Dynamics — p.107/18!

Solution of model problem

Next replace the derivatives in Poisson equation by
the discrete approximations to get

Wit1,j — 2Wij + Wim1j | Wijp1 — 2Wij + Wij1 £
(ACE)2 (Ay)2 ?
1<i<N—-1, 1<j<M-—1

and

w&-,j:O, if iZl,N, 1<j<M,

wi,j:O, if jZl,M, 1 <1< N.

Computation Fluid Dynamics — p.108/18!

Solution of model problem
Thus we have (N — 1) x (M — 1) unknown values

w; ; to find at the interior points of the domain.

Computation Fluid Dynamics — p.109/18!

If we write
T
W, = (wi,la Wi 2y .-, wi,M—l)

and

fi — (f’i,lv fi,27 boog fi,M—l)T

we can write the above system of equations 1n matrix

form as

Computation Fluid Dynamics — p.110/18!

Solution of model problem

B
I

|
B
|

|
B 1

|

Computation Fluid Dynamics — p.111/18!

Solution of model problem

In the above I is the (M — 1) x (M — 1) identity
matrix and

1
S 0O S
o S O

St O
o

with

Computation Fluid Dynamics — p.112/18!

Solution of model problem

Let us write the linear system as

Aw =f

What we observe is that the matrix A is very sparse.
The matrix A 1s very large.

For instance with N = M = 101 the linear system 1is

of size 10* x 10* and we have 10* unknowns to find.

Computation Fluid Dynamics — p.113/18!

Solution of linear system

The linear system can be solved using

* Direct Methods These are not efficient if A is
large. Also very expensive, and require large
storage.

Computation Fluid Dynamics — p.114/18!

Solution of linear system

The linear system can be solved using

* Direct Methods These are not efficient if A is
large. Also very expensive, and require large
storage.

» [terative Methods The method of choice for most
applications.

Computation Fluid Dynamics — p.114/18!

Iterative methods

* Point relaxation. Jacobi, Gauss-Seidel, SOR

Computation Fluid Dynamics — p.115/18!

Iterative methods

* Point relaxation. Jacobi, Gauss-Seidel, SOR
* Line Relaxation

Computation Fluid Dynamics — p.115/18!

Iterative methods

* Point relaxation. Jacobi, Gauss-Seidel, SOR
* Line Relaxation

e Conjugate gradient and PCG methods

Computation Fluid Dynamics — p.115/18!

Iterative methods
* Point relaxation. Jacobi, Gauss-Seidel, SOR
e Line Relaxation
e Conjugate gradient and PCG methods
e Minimal residual methods

Computation Fluid Dynamics — p.115/18!

Iterative methods

* Point relaxation. Jacobi, Gauss-Seidel, SOR
e Line Relaxation

e Conjugate gradient and PCG methods

e Minimal residual methods

e Multignid

Computation Fluid Dynamics — p.115/18!

Iterative methods

* Point relaxation. Jacobi, Gauss-Seidel, SOR
e Line Relaxation

e Conjugate gradient and PCG methods

e Minimal residual methods

e Multignid

e Fast Direct Methods (FFT)

Computation Fluid Dynamics — p.115/18!

Iterative methods- Jacobi
method

Rewrite the discrete equations
Wit1,j — 2W; 5 + Wi—1j Wij41 — 2W; 5 + W; 51 _ 1
VAVSE VAL e
1<i<N-1 1<j<M-1

as

Computation Fluid Dynamics — p.116/18!

Iterative methods- Jacobi
method

Rewrite the discrete equations
Wit1,j — 2W; 5 + Wi—1j Wij41 — 2W; 5 + W; 51 _ 1
VAVSE VAL e
1<i<N-1 1<j<M-1

1 2 2
Wi,j = 21 +) (wit1,y + wic1,; + B w41 + wijo1) — (Ag)

with 3 = A, /A,

Computation Fluid Dynamics — p.116/18!

Iterative methods- Jacobi
method

This suggests the iterative scheme

1
new old old 2 old old y
W; ;- = Wiyy; T W;—q 5+ b (wi,j—|—1 + wi,j—1>_(A$)

DS TTEOR

Computation Fluid Dynamics — p.117/18!

Iterative methods- Jacobi
method

What are suitable convergence criteria?

Computation Fluid Dynamics — p.118/18

Iterative methods- Jacobi
method

What are suitable convergence criteria? Suppose we
write the linear system as

Av =1

where v 1s the exact solution of the linear system. ’
If w 1s an approximate solution, the error e 1s defined

by

Thus

Computation Fluid Dynamics — p.118/18!

Iterative methods- Jacobi
method

Continue iterating until residual 1s small enough.
The residual 1s defined by

r=f — Aw

which can be computed.

Computation Fluid Dynamics — p.119/18!

Iterative methods- Jacobi
method

Continue iterating until residual 1s small enough.
The residual 1s defined by

r=f — Aw

which can be computed. For the Jacobi scheme the
residual 1s given by

rij = (8g) fijF2(14+8)w; j— (Wig1 j+wio1 ;+6° (w; j 14w ;-

Computation Fluid Dynamics — p.119/18!

Iterative methods- Jacobi
method

Therefore a suitable stopping condition might be

max |r; ;| < €1, or E ri; < €.
1, Y ’

Computation Fluid Dynamics — p.120/18!

Gauss-Siedel iteration

This 1s given by
new 1 old new 2 old new y
W; ;- = 21 + 52 (wi—|—1,j T Wy T 5 (wi,j—|—1 + wi,j—l)_(Aw)

where the new values overwrite existing values.

Computation Fluid Dynamics — p.121/18!

Relaxation and the SOR method

Instead of updating the new values as indicated above,
1t 1s better to use relaxation. Here we compute

wza] (1 I w)wOId T ww 1,77

where w 1s called the relaxation factor, and w; 5

denotes the value as computed by the Jacobi, or
Gauss-Seidel scheme. w = 1 reduces to the Jacobi or
Gauss-Seidel scheme.

The Gauss-Seidel scheme with w # 1 is called the

method of successive overrelaxation or SOR scheme.

Computation Fluid Dynamics — p.122/18!

Line relaxation

The Jacobi, Gauss-Seidel and SOR schemes are called
point relaxation methods.

On the other hand we may compute a whole line of new

values at a time, leading to the line-relaxation methods.

Computation Fluid Dynamics — p.123/18!

Line Relaxation

For instance suppose we write the equations as

wisY ;= 21487 wig +wisy; = =B (wi i +wii) +(A:)’ fis

then starting from 7 = 1 we may compute the values
wi j, torv=1,..., N — 1 1n one go.

To solve for a line we need a tridiagonal solver.

Computation Fluid Dynamics — p.124/18!

Convergence properties of basic
iteration schemes

Consider the linear system

Ax=Db (-32)

where A = (a; ;) is an n X n matrix, and x, b are n x 1

column vectors.

Computation Fluid Dynamics — p.125/18"

Convergence properties

Suppose we write the matrix A in the form
A =D — L — U where D, L, U are the diagonal
matrix, lower and upper triangular parts of A, ie

[ai,l
0
0

0

a2
0

0

az3 0

0 ann |

Computation Fluid Dynamics — p.126/18!

Convergence properties

0 0
as 1 0 0
azg,1 az2 0 O
L = :
| an,1 an,2 an,n—1 0 1

0 ai2 a13 . . al,n

0] 0] a2.3 . . a2 n

0 0 0 as4 . - as,n

U=

0 an—1,n

Computation Fluid Dynamics — p.127/18!

Convergence properties

Then
Ax=Db

can be written as

Dx = (L + U)x + b.

Computation Fluid Dynamics — p.128/18!

Convergence properties

The Jacobi iteration 1s then defined as

x5 = DYL + U)x® + D™ 'b.

Computation Fluid Dynamics — p.129/18!

Convergence properties

The Jacobi iteration 1s then defined as
x5 = DL + U)x™ + D™ 'b.
The Gauss-Seidel iteration i1s defined by
(D — L)x* 1) = Ux® + b,
or

x*) = (D - L)'Ux®™ + (D - L) 'b.

Computation Fluid Dynamics — p.129/18!

Convergence properties

In general an iteration scheme may be written as

x kD) — px(k) + Pb

where P i1s called the iteration matrix.

Computation Fluid Dynamics — p.130/18!

Convergence properties
In general an iteration scheme may be written as
x* D — Px*) + Pb

where P i1s called the iteration matrix.
For the Jacobi scheme scheme we have

P=P; =D 'L+ U)

Computation Fluid Dynamics — p.130/18!

Convergence properties
In general an iteration scheme may be written as
x* D — Px*) + Pb

where P i1s called the iteration matrix.
For the Jacobi scheme scheme we have

P=P; =D 'L+ U)
For the Gauss-Seidel scheme

P-P;=(D-L)'U.

Computation Fluid Dynamics — p.130/18!

Convergence properties

The exact solution to the linear system satisfies

x = Px + Pb.

Computation Fluid Dynamics — p.131/18!

Convergence properties

The exact solution to the linear system satisfies

x = Px + Pb.

Define the error at the kth iteration by

k) k)

e = x — x!

then the error satisfies the equation

Computation Fluid Dynamics — p.131/18!

Convergence properties

The exact solution to the linear system satisfies

x = Px + Pb.

Define the error at the kth iteration by

k) k)

e = x — x!

then the error satisfies the equation

e(k—|—1) _ Pe(k) _ PQe(k—l) _ Pk—l—le(O).

Computation Fluid Dynamics — p.131/18!

Convergence properties

In order that the error diminishes as £k — oo we must
have

IP*|| = 0 as k — oo,

Computation Fluid Dynamics — p.132/18!

Convergence properties

In order that the error diminishes as £k — oo we must
have

IP*|| = 0 as k — oo,

Since
|1P*|| = ||P||*

we see that we require

1P| < 1.

Computation Fluid Dynamics — p.132/18!

Convergence properties

From linear algebra
1P|l <1
1s equivalent to the requirement that

p(P) = max|\| <1

where \; are the eigenvalues of the matrix P.

p(P) is called the spectral radius of P.

Computation Fluid Dynamics — p.133/18!

Convergence properties
Note also that for large £

e V]| = plle™]]:

Computation Fluid Dynamics — p.134/18!

Convergence properties

Note also that for large £

e V]| = plle™]]:

How many iterations does it takes to reduce the initial
error by a factor €?

Computation Fluid Dynamics — p.134/18!

Convergence properties

Note also that for large £

e V]| = plle™]]:

How many iterations does it takes to reduce the initial
error by a factor €?

We need q 1terations where q 1s the smallest value for
which

giving

Computation Fluid Dynamics — p.134/18!

Convergence properties

Thus iteration matrices where the spectral radius 1s
close to 1 will converge slowly.

For the model problem it can be shown that for Jacobi
iteration

i i

|
p:p(PJ):§(COSN—|—COSM>,

and for Gauss-Seidel

p=p(Pc) = [p(P,)]"

Computation Fluid Dynamics — p.135/18"

Convergence properties

If we take N = M and N >> 1 then for Jacobi
iteration we have

Ine 2N?
qq = = ;- Ine.

In(1 — %) r

Computation Fluid Dynamics — p.136/18!

Convergence properties

If we take N = M and N >> 1 then for Jacobi
iteration we have

Ine 2N?
qq = = ;- Ine.

In(1 — %) r

Gauss-Seidel converges twice as fast as Jacobi.

Computation Fluid Dynamics — p.136/18!

Convergence properties

For point SOR the spectral radius depends on the
relaxation factor w, but for the model problem with
optimum values and N = M 1t can be shown that

o 1+ 22 -
N
giving
qq = —E Ine.
2T

Computation Fluid Dynamics — p.137/18!

Convergence properties

For line SOR, and it can be shown that using optimum
values

1 — sin =\ ° N
IN
— - - — ln &
g (1 + sin —27}\]) d 2V/ 2

Computation Fluid Dynamics — p.138/18!

Parabolic Equations

In this section we will look at the solution of parabolic
partial differential equations. The techniques intro-

duced earlier apply equally to parabolic pdes.

Computation Fluid Dynamics — p.139/18!

Parabolic Equations

One of the simplest parabolic pde 1s the diffusion
equation which in one space dimensions is

ou 0°u
) o p—

ot ox?

Computation Fluid Dynamics — p.140/18!

Parabolic Equations

One of the simplest parabolic pde 1s the diffusion
equation which in one space dimensions is

ou 0*u
— = k.
ot ox?
For two or more space dimensions we have
ou 5
— = KkV u.
ot

In the above k 1s some given constant.

Computation Fluid Dynamics — p.140/18!

Parabolic Equations

Another familiar set of parabolic pdes 1s the boundary
layer equations

Uy +v, = 0,
Ut T Uy +— VUy = —Pg 1 Uyy,
0 = —p,.

Computation Fluid Dynamics — p.141/18!

Parabolic Equations

With a parabolic pde we expect, in addition to
boundary conditions, an initial condition at say, { = 0.

Computation Fluid Dynamics — p.142/18!

Parabolic Equations

I et us consider

ou 0°u
= Kk——.

Ot Ox?

in the region a < x < b.

Computation Fluid Dynamics — p.143/18!

Parabolic Equations

I et us consider

ou 0°u
— =

ot Ox?

in the region a < x < b. Take a uniform mesh in x
with
ri=a+ 754, j=0,1.,N
and
A, =(0b—a)/N

Computation Fluid Dynamics — p.143/18!

Parabolic Equations

I et us consider

ou 0°u
— =

ot Ox?

in the region a < x < b. Take a uniform mesh in x
with
ri=a+ 754, j=0,1.,N

and
A, =(0b—a)/N

For the differencing in time we assume a constant step
size /\; so that

t:tk:kAt

Computation Fluid Dynamics — p.143/18!

15U Oracr Cairal aurerence ap-

proximation

We may approximate our equation by

k+1 .k
W i

Ay

k
Wi q

Ok k
207 +wi_4

A

Computation Fluid Dynamics — p.144/18"

151 Oracr ccuiiral aulierence 4ap-
proximation

We may approximate our equation by

k1 .k ko ok k
Wy W Wiy — 2wi +wi

N A2

Here w;? denotes an approximation to the exact
solution u(x,t) of the pde at x = z,t = 1.

Computation Fluid Dynamics — p.144/18"

151 Oracr ccuiiral aulierence 4ap-
proximation

We may approximate our equation by

k1 .k ko ok k
Wy W Wiy — 2wi +wi

A A2

Here w;? denotes an approximation to the exact
solution u(x,t) of the pde at x = z,t = 1.

The above scheme is first order in time O(A;) and
second order in space O(A,).

Computation Fluid Dynamics — p.144/18"

151 Oracr ccuiiral aulierence 4ap-
proximation

We may approximate our equation by

k1 .k ko ok k
W; W Wiy — 2wi +wi

A A2

Here wf denotes an approximation to the exact
solution u(x,t) of the pde at x = z,t = 1.
The above scheme is first order in time O(A;) and

second order in space O(A,)?. The scheme is
explicit because the unknowns at level £ + 1 can be
computed directly.

Computation Fluid Dynamics — p.144/18"

Parabolic pde

Let us assume that we are given a suitable initial
condition, and boundary conditions of the form

u(a> t) — f(t)a u(b7 t) — g(t)'

Notice that there 1s a time lag before the effect of the

boundary data 1s felt on the solution.

Computation Fluid Dynamics — p.145/18"

Parabolic pde

As we will see later this scheme 1s conditionally
stable for
6<1/2

where
ﬁ _ /iAt |

Note that 3 is sometimes called the Peclet or diffusion

number.

Computation Fluid Dynamics — p.146/18!

Fully implicit, first order

A better approximation i1s one which makes use of an
implicit scheme. Then we have

Computation Fluid Dynamics — p.147/18"

Fully implicit, first order

A better approximation i1s one which makes use of an

implicit scheme. Then we have

k+1

/f—|—1_2

k+1 k+1
W, —+ Wiy

AZ

X

Computation Fluid Dynamics — p.147/18"

Fully implicit, first order

A better approximation i1s one which makes use of an
implicit scheme. Then we have

k+1 k+ 1 k41
k k41
w; Y — K Wi+ _ 2’LU]-+ T i1
A, A2

The unknowns at level k + 1 are coupled together

and we have a set of implicit equations to solve.

Computation Fluid Dynamics — p.147/18"

Fully implicit, first order

Rearrange to get

Bwity —(1+28)wi " +pwj™y = —wj, 1<j < N-

Approximation of the boundary conditions gives

we™ = ften), wy = gth):

Computation Fluid Dynamics — p.148/18!

Fully implicit, first order

The discrete equations are of tridiagonal form and
thus easily solved.

Computation Fluid Dynamics — p.149/18!

Fully implicit, first order

The discrete equations are of tridiagonal form and
thus easily solved.
The scheme 1s unconditionally stable .

Computation Fluid Dynamics — p.149/18!

Fully implicit, first order

The discrete equations are of tridiagonal form and
thus easily solved.
The scheme 1s unconditionally stable .

The accuracy of the above tully implicit scheme 1s only
first order in time. We can try and improve on this with

a second order scheme.

Computation Fluid Dynamics — p.149/18!

Richardson method

Consider
k+1 . k-1 ok ook ko]
w; wi) Wi — 2W; + w;_
LAY A2

Computation Fluid Dynamics — p.150/18"

Richardson method

Consider
k+1 k-1 ok ok ko
w; w; . Wit ij + Wiy
2
20\, Az _

This uses three time levels and has accuracy

O(Af, A7)

Computation Fluid Dynamics — p.150/18"

Richardson method

Consider
k+1 k-1 ok ok ko
w; w; . Wit ij + Wiy
2
20\, Az _

This uses three time levels and has accuracy

O(A7, A3).
The scheme was devised by a meteorologist and 1s un-

conditionally unstable!

Computation Fluid Dynamics — p.150/18"

Du-Fort Frankel

This uses the approximation

k+1 . k—1
Wi W

20

— K

k

Wit1 —

Computation Fluid Dynamics — p.151/18!

Du-Fort Frankel

This uses the approximation

k1 k-1 R N S | k
w; Wi | T w; W5
I 2

oA, A2
A4

This has truncation error O(A?, A2, (—=)), and is an

AQ)))
explicit scheme.

Computation Fluid Dynamics — p.151/18!

Du-Fort Frankel

This uses the approximation

k1 k-1 R N S | k
w; Wi | T w; W5
I 2

oA, A2
A4

This has truncation error O(A?, A2, (=%)), and is an

A2
explicit scheme.

The scheme 1s unconditionally stable, but 1s 1nconsis-
tent if A; — 0,A, — 0 but with A;/A, remaining

fixed.

Computation Fluid Dynamics — p.151/18!

Crank-Nicolson

A popular scheme 1s the Crank-Nicolson scheme
given by

E+1 K k+1 S | k+1 k . k k
Wil W5 k[T Ry Wi AW W
A 2 AZ A2

Computation Fluid Dynamics — p.152/18"

Crank-Nicolson

A popular scheme 1s the Crank-Nicolson scheme
given by

E+1 K k+1 S | k+1 k . k k
w; w; K [wj+1 ij —I—wj_l N Wi g 2wj —I—wj1]
N 2
AZ

Ay 2 A2

X

This is second order accurate O(A%, A%) and is un-
conditionally stable. (Taking very large time steps can
however cause problems). As can be seen it 1s also an

implicit scheme.

Computation Fluid Dynamics — p.152/18"

Multi-space dimensions

The schemes outlined above are easily extended to
multi-dimensions. Thus in two space dimensions a
first order explict approximation to

@ = kV?u,

ot

1S

Computation Fluid Dynamics — p.153/18!

Multi-space dimensions

The schemes outlined above are easily extended to
multi-dimensions. Thus in two space dimensions a
first order explict approximation to

ou ;
E — liv u,
1S
k+1 k k k k k k k
Wiy —%ij _ Yty — 2wi; + Wity 4 D4l T 2wij + Wi
Ay A2 A2

Computation Fluid Dynamics — p.153/18!

Multi-space dimensions

The schemes outlined above are easily extended to
multi-dimensions. Thus in two space dimensions a
first order explict approximation to

ou

2
E — liv u,
1S
k+1 k k k k k k k
Wiy —%ij _ Yty — 2wi; + Wity 4 D4l T 2wij + Wi
Ay A2 A2

This is first order in A; and second order in space.
It 1s conditionally stable for

IQALL | /ﬁ)At <
(A2 (A2~

2 Computation Fluid Dynamics — p.153/18!

Multi-dimensional schemes

If we use a fully implicit scheme we would obtain

k+1 k k+1 k+1 k+1 k+1 k+1 k+1
Wi ~Wij _ | Wit1s 2w ;T Hwi g L Wigh ~ 2w ;T w0y
o 2 2
A, A2 A2

Computation Fluid Dynamics — p.154/18"

Multi-dimensional schemes

This leads to an implicit system of equations of the
form

owi) +owil) ;= 20+ 28+ Dwi T + fu i1 + fug Ty = —wgy,
where
o = kA /A2
B Y
6 — K}At/Ay

The form of the discrete equations 1s very much like

the system of equations arising in elliptic pdes.

Computation Fluid Dynamics — p.155/18"

Multi-dimensional schemes

From the computational point of view a better scheme

1S
k+3 k k+3 k+3 k+3 k k k
Wig —Wig | Wit T i Wiy Wigel = AW Wi
-)
At /2 A2 A2
1 1 1 1
k+1 . ktg k+5 5 kt3 k+35 k+1 o k41 k41
Wig " Wi | ity T2y - FWicty | Wigh T2y T Wigo1)
At/2 A2 A2

which leads to a tridiagonal system of equations sim-
1lar to the ADI scheme. The above scheme 1s second

order in time and space and also unconditionally sta-
ble.

Computation Fluid Dynamics — p.156/18!

Consistency revisited

Let us consider the truncation error for the first order
central (explicit) scheme, and also the Du-Fort
Frankel scheme.

If u(z, t) is the exact solution then we may write u/ =

u(x;,t;) and thus from a Taylor series expansion

Computation Fluid Dynamics — p.157/18"

Consistency revisited

u"j“ = u(zj,tp +A¢) =
ou A2 /9%y
k JAN D ¢ O(A 37 -35
ui + t(@t)j,k—i_ 5 (at2>j,k+ (A¢) (-35)
and
ub = w4 A ty) =
ou A2 /0%y A3 /93w AY /0%
k x x x
: JANSN st O(A
(-
and
k _ . _
ui 3 = u(z; —Ag,tx) =
0 A2 [92 A3 /93 AL /9%
§ - (@) T 6), T G, wm (G, e

Computation Fluid Dynamics — p.158/18!

Consistency revisited

Substituting into the pde gives

1 3 ou AY: (82u)
kA = t —uf oA =
A [u3+ t(at>j’k—|‘ >\), uj + O(At)

K N (8u) o A2 (82u> o
AR P, . [=
A% J 833 j,k 2 8%2 j,k
3] A2 /92 A3
(), (),
T/ kK 2 ox A §)

)t (),
4.k 24 8164 4.k

A4 4
- (a “) + O/
24 8334 j,k?

Computation Fluid Dynamics — p.159/18!

Consistency revisited

from which we obtain

ou A2 A; O%u /{A?E O*u
= o | =S+ S o)k
ot 0=] ; 2 Ot 12 Oz

This shows that as A; — 0 and A, — 0 the origi-
nal pde 1s satisfied, and the right hand side implies a

truncation error O (A, A?).

Computation Fluid Dynamics — p.160/18!

Consistency revisited

If we do the same for the Du-Fort Frankel scheme we
find that

Computation Fluid Dynamics — p.161/18!

Consistency revisited

This shows that the Du-Fort scheme is only consistent
if the step sizes approach zero and also % — 0 stmul-

taneously. Otherwise 1if we take step sizes such that

Ay
Ay

then the above shows that we are solving the wrong

remains constant as both step sizes approach zero,

equation.

Computation Fluid Dynamics — p.162/18!

Stability

Consider the first order explicit scheme which can be
written as

wit! = gu?_ +(1-2B8)wi+puwf,,, 1<j<N-1,

with wf, wk; given. We can write the above in matrix

form as

Computation Fluid Dynamics — p.163/18!

Stability

kE+1 __

where w” = (

k

p
(1-28) B
p (1-26) B

k

k)T.

Wy, Wy, .o, Wir_q

Computation Fluid Dynamics — p.164/18"

Stability

Thus we have
Wk—l—l _ AWk

Computation Fluid Dynamics — p.165/18"

Stability

Thus we have
Wk—l—l _ Awk

Recall convergence of iterative methods.

Computation Fluid Dynamics — p.165/18"

Stability

Thus we have
Wk—l—l _ AWk

Recall convergence of iterative methods.
The above scheme is stable if and only if ||A|| < 1.

Computation Fluid Dynamics — p.165/18"

Stability
Now the infinity norm ||A || is defined by

N
A |oo = mj‘@XZ i j
1

for an V x N matrix A.

Computation Fluid Dynamics — p.166/18!

Stability

For the above matrix we we have

|Allo =B+ 11 =261+ 6 =26+ |1 28]

Computation Fluid Dynamics — p.167/18!

Stability

For the above matrix we we have
Ao =8+ 1=26|+ 8 =26+ [1-24|.
Soif (1 —20) > 0ie 8 < 1/2 then

Computation Fluid Dynamics — p.167/18!

Stability
For the above matrix we we have
[Alloe = B+ |1 = 28] + 8 =26+ [1 = 20].
Soif (1 —20) > 0ie 8 < 1/2 then
Ao =20+1—-20=1.

Computation Fluid Dynamics — p.167/18!

Stability

For the above matrix we we have
[Alloo = 6+ 1 =26+ 5 =26+ 1 -20].
Soif (1 —20) > 0ie 8 < 1/2 then
Ao =280+1—-20=1.
If (1 —203) < 0 then

Computation Fluid Dynamics — p.167/18!

Stability

For the above matrix we we have
[Alloo = 6+ 1 =26+ 5 =26+ 1 -20].
Soif (1 —20) > 0ie 8 < 1/2 then
Ao =280+1—-20=1.
If (1 —203) < 0 then

1Al =28+28—-1=43—1> 1.

Thus we have proved that the explicit scheme 1s unsta-
bleif 3 > 1/2.

Computation Fluid Dynamics — p.167/18!

Stability of Crank-Nicolson
scheme

The Crank-Nicolson scheme may be written as

— Bw;_1 441 + (2 4+ 28)w; jp1 — BWjt1 k41 =
Bwj_1x + (2 — 28)w;k + Bwji1k,
j=1,2...N—1

Computation Fluid Dynamics — p.168/18!

In matrix form with w”* = (

[(2+2P)
-0
0

s
0

—0
(2 +20)
—0

[(2-28) B

—0
(2+208)

(2—-26) B

5]

(2 -28)

k

Wy, Wy, ..

—p

—p

k

(2+28) |

p

5]

y wé‘:v_l)T.

k+1 __

(2—-26) |

Computation Fluid Dynamics — p.169/18!

Stability
This 1s of the form
Bw Tl = Aw"

where

B =2Iy_1 — 06Sn_1,
and

A =2Iy_1+ BSn1

and In 1s the NV x N identity matrix.

omputation Fluid Dynamics — p.170/18¢

Stability
Also Sy_;isthe (N — 1) x (N — 1) matrix

92 1
1 -2 1
0 1 -2 1

Sn_1 =

Computation Fluid Dynamics — p.171/18!

Stability

Hence
witl — B~ LAw".

Computation Fluid Dynamics — p.172/18!

Stability

Hence
witl — B~ LAw".

Thus the Crank-Nicolson scheme will be stable i1f the
spectral radius of the matrix B~ A is less than unity,
1e

Computation Fluid Dynamics — p.172/18!

Stability

Hence
witl — B~ LAw".

Thus the Crank-Nicolson scheme will be stable i1f the
spectral radius of the matrix B~ A is less than unity,
1e

p(B'A) < 1.

Computation Fluid Dynamics — p.172/18!

Stability

Hence
wtl = B 1Aw".

Thus the Crank-Nicolson scheme will be stable i1f the
spectral radius of the matrix B~ A is less than unity,
1e

p(B'A) < 1.

We therefore need the eigenvalues of the matrix

B 'A.

Computation Fluid Dynamics — p.172/18!

Stability

Recall that A 1s an eigenvalue of the matrix S, and x a
corresponding eigenvector if

Sx = \X.

Computation Fluid Dynamics — p.173/18!

Stability

Recall that A 1s an eigenvalue of the matrix S, and x a
corresponding eigenvector if

Sx = \X.

Thus for any integer p

SP’x = SP71Sx = SP " Ia\xx = ... = \Px.

Computation Fluid Dynamics — p.173/18!

Stability

Recall that A 1s an eigenvalue of the matrix S, and x a
corresponding eigenvector if

Sx = \X.

Thus for any integer p

SP’x = SP71Sx = SP " Ia\xx = ... = \Px.

Hence the eigenvalues of S? are AP with eigenvector x.

Computation Fluid Dynamics — p.173/18!

Stability

Extending this result, if P(S) is the matrix polynomial

P(S) — qpS" + alsn_l + ...+ a,l

then

Computation Fluid Dynamics — p.174/18"

Stability

Extending this result, if P(S) is the matrix polynomial

P(S) — qpS" + alsn_l + ...+ a,l

Computation Fluid Dynamics — p.174/18"

Stability

Extending this result, if P(S) is the matrix polynomial

P(S) — qpS" + CLlsn_l + ...+ a,l

P(S)x = P(\)x, and P (S)x ﬁx.

Finally if Q(S) is any other polynomial in S then we

see that
P(S)Q(S)x = %X.

Computation Fluid Dynamics — p.174/18"

Stability

Extending this result, if P(S) is the matrix polynomial

P(S) — qpS" + CLlsn_l + ...+ a,l

P(S)x = P(\)x, and P (S)x ﬁx.

Finally if Q(S) is any other polynomial in S then we

see that
P(S)Q(S)x = %X.

Computation Fluid Dynamics — p.174/18"

Stability
If we let
P =B(Sy_1) =2In_1 — BSn_1,

and
Q=A(Sy_1)=2In_1+ P3SN

Computation Fluid Dynamics — p.175/18"

Stability

If we let

P =B(Sy_1) =2In_1 — BSn_1,

and

Q=A(Sy_1) =2Iy_1+ BSNn_1

then the eigenvalues of the matrix B~ A are given by

2

B

P9 g

where A is an eigenvalue of the matrix Sy _.

Computation Fluid Dynamics — p.175/18"

Stability

Now the eigenvalues of the N X /N matrix

a b
c a b

O ¢ a b

can be shown to be given by

)\:)\n:a—l—Q\/%cos

it
N+1’

n=12,.,N.

Computation Fluid Dynamics — p.176/18!

Stability

Hence the eigenvalues of Sy _; are

o NT

Ap=—4sin“"—, n=12, ..

2N’
and so the eigenvalues of B~ A are

-2 nm
2 —40sin” 7

— -2 nm
2+ 40sin” 7

Vi

n=1,2,..

N -1

N —1.

Computation Fluid Dynamics — p.177/18!

Stability
Clearly

p(B'A) = max |u,| <1 V3> 0.

This proves that the Crank-Nicolson scheme 1s uncon-

ditionally stable.

Computation Fluid Dynamics — p.178/18!

SlaiDlly Conaiuon anuowliilg cx-
ponential growth

In the above discussion of stability we have said that
the solution of

W/-c—l—l _ Awk

is stable if ||A]| < 1.

Computation Fluid Dynamics — p.179/18!

SlalDlly COonaiuon aluowliig cCx-
ponential growth

In the above discussion of stability we have said that
the solution of

Wk—l—l _ Awk

is stable if ||A]| < 1.

This condition does not make allowance for solutions
of the pde which may be growing exponentially in
time.

Computation Fluid Dynamics — p.179/18!

SlalDlly COonaiuon aluowliig cCx-
ponential growth

In the above discussion of stability we have said that
the solution of

Wk—l—l _ Awk

is stable if ||A]| < 1.

This condition does not make allowance for solutions
of the pde which may be growing exponentially in
time.

A necessary and sufficient condition for stability
when the solution of the pde is increasing
exponentially in time 1s that

A]| <1+ MA; =1+ O(Ay)

where M is a constant independent of A, and A,.

Computation Fluid Dynamics — p.179/18!

Von-Neumann stability analysis

A very versatile tool for analysing stability 1s the
Fourier method developed by von Neumann.

Here initial values at mesh points are expressed 1n
terms of a finite Fourier series, and we consider the

growth of individual Fourier components.

Computation Fluid Dynamics — p.180/18!

Von-Neumann stability analysis

A finite sine or cosine series expansion in the interval
a < x < b takes the form

, nﬂx nwx
E a, sin(E b,, cos(

n

where L = b — a.

Computation Fluid Dynamics — p.181/18!

Von-Neumann stability analysis

A finite sine or cosine series expansion in the interval
a < x < b takes the form

, nﬂx nww
E anSIH(g b,, cos(

n

where L. = b — a. Now consider an individual
component written in complex exponential form at a
mesh point x = z; = a + jA,

TN inam zanAx ~

Ael =AeL — A elniBe

where o, = nm/L.

Computation Fluid Dynamics — p.181/18!

Von-Neumann stability analysis

Given 1nitial data we can express the 1nitial values as

N
w, = A, e'nPBs p=20,1,...., N,

n=0

-

and we have /V + 1 equations to determine the N + 1

unknowns A.

Computation Fluid Dynamics — p.182/18!

Von-Neumann stability

To find how each Fourier mode develops in time,
assume a simple separable solution of the form

Computation Fluid Dynamics — p.183/18!

Von-Neumann stability

To find how each Fourier mode develops in time,
assume a simple separable solution of the form

w/; _ ezanpre(ltk _ ezanpreﬁkAt

_ Gianprfk

)

where ¢ = "2,

Computation Fluid Dynamics — p.183/18!

Von-Neumann stability

To find how each Fourier mode develops in time,
assume a simple separable solution of the form

w/; _ ezanprQth _ ezanpreﬁkAt . ezanpr€k7

where ¢ = "2,

Here ¢ is called the amplification factor.

Computation Fluid Dynamics — p.183/18!

Von-Neumann stability

To find how each Fourier mode develops in time,
assume a simple separable solution of the form

w/; _ ezanprQth _ ezanprQQkAt

_ eianpré;k

)

where ¢ = "2,

Here ¢ is called the amplification factor.

For stability we thus require |£| < 1. If the exact
solution of the pde grows exponentially, then the
difference scheme will allow such solutions 1f

€ <1+ MA;

where M does not depend on A, or A,.

Computation Fluid Dynamics — p.183/18!

Von-Neumann stability analysis

Consider the fully implicit scheme

k+1

- k+1
W,

okt k41
27T + w

J

5—1

AQ

X

Computation Fluid Dynamics — p.184/18!

Von-Neumann stability analysis

Consider the fully implicit scheme

k+1 .k okl k+1 k+1
W; w; . w; 2wj + w;
2
AV A2
Let

k _ ¢k _ia,7A,
w; =§&"e .

Then substituting into the above gives

Computation Fluid Dynamics — p.184/18!

Von-Neumann stability analysis

Consider the fully implicit scheme

k+1 .k okl k+1 k+1
W; w; . w; 2wj —I—wj_1
9
AV Aw
Let
wk _ kaZ&"]Aw.

J
Then substituting into the above gives

Ké-k(é- . 1)€zan]Ax _ (e—zoznAx N 6zoznAx)ezan]Ax.
t

Computation Fluid Dynamics — p.184/18!

Stability - fully implicit scheme
Thus with 8 = Ak /A2

QnAx

¢ — 1= pE(2cos(a,A,) —2) = —43¢ sin(5).

Stability - fully implicit scheme
Thus with 8 = Ak /A2
S YA

¢ — 1= pE(2cos(a,A,) —2) = —43¢ sin().

This gives
1

B 1+ 405 sirlz(—o‘?’bf*”b")7

and clearly 0 < & < 1 for all 3 > 0 and for all «,.

§

Computation Fluid Dynamics — p.185/18"

Stability - fully implicit scheme
Thus with 8 = Ak /A2
S YA

¢ — 1= pE(2cos(a,A,) —2) = —43¢ sin().

This gives

B |

1448 sinQ(O‘”TA*”")7

and clearly 0 < & < 1 for all 3 > 0 and for all «,.
Thus the tfully implicit scheme 1s unconditionally sta-

ble.

§

Computation Fluid Dynamics — p.185/18"

Stability - Richardson’s scheme

The Richardson scheme 1s given by

k+1
W

k—1

w -

J

20

— K

k
Wiy q

9k k
207 +w;_4

A

Computation Fluid Dynamics — p.186/18!

Stability - Richardson’s scheme

The Richardson scheme 1s given by

A R | P
W W

20

— K

k
Wiy q

9k k
207 +w;_4

Az

Using a von-Neumann analysis and writing

k
Wp

gives after substitution

_ gkeianpr

)

Computation Fluid Dynamics — p.186/18!

Stability - Richardson’s scheme

6ioznpr£k—1 (5) 65 ([0 THAN 2 eioznAx)eioznpr .

This gives

Computation Fluid Dynamics — p.187/18

Stability - Richardson’s scheme

eioznpAmgk—l (5) 65 ([0 THAN 2 eioznAm)eioznpr .

This gives

€2 _ 1 = _4epsin(Snls

),

where 3 = 2A;x/A2.

Computation Fluid Dynamics — p.187/18!

Stability analysis, Richardson
Thus
£2 + 4606 SiﬂQ(QnAx

This quadratic has two roots &7, &;. The sum and
product of the roots 1s given by

A\,

) —1=0.

& + & = —4£Bsin®(), &&= -1

Computation Fluid Dynamics — p.188/18!

Stability analysis, Richardson

For stability we require |&;| < 1 and |£;| < 1 and the
above shows that if |&;| < 1 then |&| > 1, and
vice-versa. Alsoif & = 1 and & = —1 then again we
must have 5 = 0.

Thus the Richardson scheme 1s unconditionally unsta-
ble.

Computation Fluid Dynamics — p.189/18!

	Garbage In, Garbage Out
	Measures of error
	Measures of error
	Roundoff errors
	{Errors in modelling}
	 Programming errors, ie bugs
	Subtle errors
	{Truncation, discretization errors.}
	 Initial value problems
	Example
	Soln of ODE's
	Example
	 A mathematical result.
	 Euler's Method
	Euler's Method
	Euler's Method
	 Truncation error for Euler's method
	Truncation error
	
	 Higher order methods, Modified Euler
	Modified Euler
	Runge-Kutta method of order 4
	 Systems of equations
	Runge-Kutta 4th order
	m-step multi-step method
	Two types
	 Adams-Bashforth 4th order method (explicit)
	 Boundary Value Problems - Shooting Methods
	BVP
	BVP
	BVP
	BVP, shooting
	 Shooting Method
	Shooting- secant method
	Secant method
	Shooting- Newton's method
	Shooting- Newton's method
	Shooting- Newton's method
	Newton- augmented system
	Multiple shooting
	Multiple shooting
	Multiple shooting
	Multiple shooting
	Multiple shooting
	Richardson Extrapolation
	Richardson extrapolation
	Richardson extrapolation
	Solution of BVP using finite-differences
	Solution of BVP using finite-differences
	Solution of BVP using finite-differences
	Solution of BVP using finite-differences
	Solution of BVP using finite-differences
	Solution of BVP using finite-differences
	 Newton linearization
	BVP FD methods
	BVP, FD methods
	BVP, FD methods
	Thomas's tridiagonal algorithm
	Thomas's tridiagonal algorithm
	Stability
	Stability -Consistency
	Stability -Convergence
	Stability, Theorem
	Stability of m-step methods
	Stability of m-step method
	Stability of m-step method
	Stability of m-step method
	Stability of m-step method
	Stability of m-step method
	Stability of m-step method
	Satbility of m-step method
	 Absolute stability
	Absolute Stability
	Absolute Stability
	Absolute Stability
	Absolute Stability
	
	Numerical Solution of PDes
	Classification of PDE's
	PDE's Classification
	Classification
	Classification
	Classification
	Classification 2
	Classification 2
	Classification 2
	Classification 2
	Classification 2
	Consistency, convergence and Lax equivalence theorem
	Consistency, convergence and Lax equivalence theorem
	Consistency, convergence and Lax equivalence theorem
	Difference formulae
	Difference formulae
	Central Differences
	Central Differences
	One-sided approximations
	Weights for central differences
	Weights for one-sided differences
	Mixed derivatives
	Mixed derivatives
	Central, one-sided differences
	Solution of elliptic pde's
	Boundary Conditions
	Boundary Conditions
	Solution of model problem
	Solution of model problem
	Solution of model problem
	Solution of model problem
	
	Solution of model problem
	Solution of model problem
	Solution of model problem
	Solution of linear system
	Iterative methods
	Iterative methods- Jacobi method
	Iterative methods- Jacobi method
	Iterative methods- Jacobi method
	Iterative methods- Jacobi method
	Iterative methods- Jacobi method
	Gauss-Siedel iteration
	Relaxation and the SOR method
	Line relaxation
	Line Relaxation
	Convergence properties of basic iteration schemes
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Convergence properties
	Parabolic Equations
	Parabolic Equations
	Parabolic Equations
	Parabolic Equations
	Parabolic Equations
	1st order central difference approximation
	Parabolic pde
	Parabolic pde
	Fully implicit, first order
	Fully implicit, first order
	Fully implicit, first order
	Richardson method
	Du-Fort Frankel
	Crank-Nicolson
	Multi-space dimensions
	Multi-dimensional schemes
	Multi-dimensional schemes
	Multi-dimensional schemes
	Consistency revisited
	Consistency revisited
	Consistency revisited
	Consistency revisited
	Consistency revisited
	Consistency revisited
	Stability
	Stability
	Stability
	Stability
	Stability
	Stability of Crank-Nicolson scheme
	
	Stability
	Stability
	Stability
	Stability
	Stability
	Stability
	Stability
	Stability
	Stability
	Stability condition allowing exponential growth
	Von-Neumann stability analysis
	Von-Neumann stability analysis
	Von-Neumann stability analysis
	Von-Neumann stability
	Von-Neumann stability analysis
	Stability - fully implicit scheme
	Stability - Richardson's scheme
	Stability - Richardson's scheme
	Stability analysis, Richardson
	Stability analysis, Richardson

