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Introduction
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Who Uses Econometrics

Statistical analysis of economic data:

I Economics

I Finance

I Business

I Consulting

I Government
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What Makes Econometrics Special

Econometrics is not just “statistics using economic data.”

Special issues related to the properties of economic data.

I No experiments; only “observational data”

I Special issues and features that arise routinely in economic
data

I Predictive modeling, causal modeling
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Types of Recorded Economic Data

I Continuous vs. discrete

I Time series vs. cross section

I Panel

Complement: Explore nominal, ordinal, interval and ratio data
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Web Data Resources

I Resources for Economists (AEA)

I FRED (Federal Reserve Economic Data)

I National Bureau of Economic Research

I Quandl

I FRB Phila Real-Time Data Research Center
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http://www.rfe.org
http://www.research.stlouisfed.org/fred2/
http://www.nber.org
http://www.quandl.com
http://www.philadelphiafed.org/research-and-data/real-time-center/


Software

I R
CRAN

RStudio

R-bloggers

I More: Eviews, Python

I Still more: Econometrics Journal software links
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http://www.r-project.org
http://cran.r-project.org
http://www.rstudio.com
http://www.r-bloggers.com/
http://www.eviews.com
https://www.python.org/
http://www.feweb.vu.nl/econometriclinks/software.html


Graphics
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Graphics

Let’s have some fun and look at the pictures first...
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Time Series Plot:
1-Year Goverment Bond Yield, Levels
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Time Series Plot:
1-Year Goverment Bond Yield, Levels and Changes
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Histogram: 1-Year Government Bond Yield
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Bivariate Scatterplot
1-Year and 10-Year Government Bond Yields
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Scatterplot Matrix:
1-, 10-, 20- and 30-Year Government Bond Yields
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Graphics

I Summarize and reveal patterns in univariate time-series data.
Time Series plots. Trend, seasonal, cycle, outliers, ...

I Summarize and reveal patterns in univariate cross-section
data. Histograms are helpful for learning about distributional
shape. Symmetric, skewed, fat-tailed, ...

I Identify relationships and understand their nature, in both
multivariate time-series and multivariate cross-section
environments. Bivariate scatterplots. Does a relationship
exist? Is it linear or nonlinear? Are there outliers?

I Identify relationships and understand their nature in panel
data. Cross-sectional histograms across time periods, or time
series plots across cross-sectional units.

I Compare different pieces of data via multiple comparisons.
Scatterplot matrix.
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Univariate and Multivariate Graphics

I Time-series plot

I levels
I change

I Density estimate

I histogram
I smoothed

I Scatterplot

I Two-way
I Multi-way
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Principles of Graphical Style

I Know your audience, and know your goals.

I Appeal to the viewer.

I Show the data, and only the data, withing the bounds of
reason.

I Avoid distortion. The sizes of effects in graphics should match
their size in the data. Use common scales in multiple
comparisons.

I Minimize, within reason, non-data ink. Avoid chartjunk.
I Third, choose aspect ratios to maximize pattern revelation.

Bank to 45 degrees.
I Maximize graphical data density.

I Revise and edit, again and again (and again). Graphics
produced using software defaults are almost never satisfactory.
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Distributions of Wages and Log Wages
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Probability and Statistics Review
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“Sample” EPC: Simple vs. Partial Correlation

(Read them all carefully!)

The set of pairwise scatterplots that comprises a multiway
scatterplot provides useful information about the joint distribution
of the set of variables, but it’s incomplete information and should
be interpreted with care. A pairwise scatterplot summarizes
information regarding the simple correlation between, say, x and
y . But x and y may appear highly related in a pairwise scatterplot
even if they are in fact unrelated, if each depends on a third
variable, say z . The crux of the problem is that there’s no way in a
pairwise scatterplot to examine the correlation between x and y
controlling for z , which we call partial correlation. When
interpreting a scatterplot matrix, keep in mind that the pairwise
scatterplots provide information only on simple correlation.
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Moments, Sample Moments and Their Sampling
Distributions

I Discrete random variable, y

I Discrete probability distribution p(y)

I Continuous random variable y

I Probability density function f (y)
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Population Moments: Expectations of Powers of R.V.’s

Mean measures location:

µ = E (y) =
∑
i

piyi (discrete case)

µ = E (y) =

∫
y f (y) dy (continuous case)

Variance, or standard deviation, measures dispersion, or scale:

σ2 = var(y) = E (y − µ)2.

– σ easier to interpret than σ2. Why?
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More Population Moments

Skewness measures skewness (!)

S =
E (y − µ)3

σ3
.

Kurtosis measures tail fatness relative to a Gaussian distribution.

K =
E (y − µ)4

σ4
.
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Covariance and Correlation

Multivariate case: Joint, marginal and conditional distributions
f (x , y), f (x), f (y), f (x |y), f (y |x)

Covariance measures linear dependence:

cov(y , x) = E [(yt − µy )(xt − µx)].

So does correlation:

corr(y , x) =
cov(y , x)

σyσx
.

Correlation is often more convenient. Why?
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Sampling and Estimation

Sample : {yi}Ni=1 ∼ f (y)

Sample mean:

ȳ =
1

N

N∑
i=1

yi

Sample variance:

σ̂2 =

∑N
i=1(yi − ȳ)2

N

Unbiased sample variance:

s2 =

∑N
i=1(yi − ȳ)2

N − 1
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More Sample Moments

Sample skewness:

Ŝ =
1
N

∑N
i=1(yt − ȳ)3

σ̂3

Sample kurtosis:

K̂ =
1
N

∑N
i=1(yt − ȳ)4

σ̂4
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Still More Sample Moments

Sample covariance:

ĉov(y , x) =
1

N

N∑
i=1

[(yi − ȳ)(xi − x̄)]

Sample correlation:

ĉorr(y , x) =
ĉov(y , x)

σ̂y σ̂x
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Exact Sampling Distribution of the Sample Mean
(Requires iid Normality)

Simple random sampling : yi ∼ iid N(µ, σ2), i = 1, ...,N

ȳ is unbiased, consistent, normally distributed with variance σ2/N,
and minimum variance unbiased (MVUE).

ȳ ∼ N

(
µ,
σ2

N

)
√

N(ȳ − µ) ∼ N(0, σ2)

µ ∈
[

ȳ ± t1−α
2

(N − 1)
s√
N

]
w .p. α

µ = µ0 =⇒ ȳ − µ0
s√
N

∼ t(N − 1)
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Approximate Asymptotic Sampling Distribution
(Does Not Require Normality)

Simple random sampling : yi ∼ iid(µ, σ2), i = 1, ...,N

ȳ is unbiased, consistent, asymptotically normally distributed with
variance σ2/N, and best linear unbiased (BLUE).

ȳ
a
∼ N

(
µ,
σ2

N

)
√

N(ȳ − µ)→d N(0, σ2)

As N →∞, µ ∈
[

ȳ ± z1−α
2

σ̂√
N

]
w .p. α

As N →∞, ȳ − µ0
σ̂√
N

∼ N(0, 1)
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Notational Aside

Standard cross-section notation: i = 1, ...,N

Standard time-series notation: t = 1, ...,T

Much of our discussion will be valid in both cross-section and
time-series environments, but still we have to pick a notation.

Without loss of generality, we will use t = 1, ...,T .
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Regression
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Regression

Surely the all-time greatest statistical and econometric workhorse...
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Distributions of Log Wage, Education and Experience
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Scatterplot: Log Wage vs. Education
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Regression as Curve Fitting

Fit a line:

yt = β1 + β2xt

Solve:

minβ

T∑
t=1

(yt − β1 − β2xt)
2

β is the set of two parameters β1 and β2

β̂ is the set of fitted parameters β̂1 and β̂2
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Scatterplot: Log Wage vs. Education with Superimposed
Regression Line

̂LWAGE = 1.273 + .081EDUC
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Actual Values, Fitted Values and Residuals

The fitted values are

ŷt = β̂1 + β̂2xt ,

t = 1, ...,T .

The residuals are the difference between actual and fitted values,

et = yt − ŷt ,

t = 1, ...,T .
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Multiple Linear Regression (K RHS Variables))

Solve:

minβ

T∑
t=1

(yt − β1 − β2x2t − ...− βKxKt)
2

Fitted line:

ŷt = β̂1 + β̂2x2t + β̂3x3t + ...+ β̂KxKt

More compactly:

ŷt =
K∑
i=1

β̂ixit ,

where x1t = 1 for all t.

Wage dataset:

̂LWAGE = .867 + .093EDUC + .013EXPER
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Regression as a Probability Model

yt = β1 + β2x2t + ...+ βKxKt + εt

εt ∼ iidN(0, σ2),

t = 1, ...,T .

Note:

E (yt |xt = x∗t ) = β1 + β2x∗2t + ...+ βKx∗Kt

Estimation:

minβ

T∑
t=1

ε2t
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Some Crucial Matrix Notation

You already understand matrix (”spreadsheet”) notation
although you may not know it!

y =


y1
y2
...

yT

 X =


1 x21 x31 . . . xK1

1 x22 x32 . . . xK2

...
1 x2T x3T . . . xKT

 β =


β1
β2
...
βK

 ε =


ε1
ε2
...
εT


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Elementary Matrices and Matrix Operations

0 =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


Transposition: A′ij = Aji

Addition: For A and B n ×m, (A + B)ij = Aij + Bij

Multiplication: For A n ×m and B m × p, (AB)ij =
∑m

k=1 AikBkj .

Inversion: For non-singular A n × n, A−1 satisfies
A−1A = AA−1 = I . Many algorithms exist for calculation.
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We Used to Write This:

yt = β1 + β2x2t + ...+ βKxKt + εt

εt ∼ iidN(0, σ2)

t = 1, 2, ...,T
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Now, Equivalently, We Write This:

y = Xβ + ε (1)

ε ∼ N(0, σ2I ) (2)


y1
y2
...

yT

 =


1 x21 x31 . . . xK1

1 x22 x32 . . . xK2
...
1 x2T x3T . . . xKT



β1
β2
...
βK

+


ε1
ε2
...
εT

 (1)


ε1
ε2
...
εT

 ∼ N




01
02
...

0T

 ,


σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2


 (2)
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The Full Ideal Conditions (FIC)
1. The true data-generating process is:

y = Xβ + ε

ε ∼ N(0, σ2I ),

and the fitted model matches it exactly.

1.1 The relationship, if any, is truly linear, with no omitted
variables, no measurement error, etc.

1.2 The coefficients, β, are fixed.
1.3 ε ∼ N.
1.4 The εt ’s have constant variance σ2.
1.5 The εt ’s are uncorrelated.

2. There is no redundancy among the variables contained in X ,
so that X ′X is non-singular.

3. X is a non-stochastic matrix, fixed in repeated samples.

Surely these are heroic assumptions in economic environments.
Much of econometrics (and this course) is devoted to relaxing
them.
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Results

The OLS estimator is:

β̂LS = (X ′X )−1X ′y

Under the full ideal conditions it is unbiased, consistent, normally
distributed with covariance matrix σ2(X ′X )−1, and MVUE.

We write:

β̂LS ∼ N
(
β, σ2(X ′X )−1

)
,

or equivalently,

√
T (β̂ − β) ∼ N

(
0, σ2

(
X ′X

T

)−1)
.
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Regression Analysis of Wages, Education and Experience

Figure: Wage Regression Output
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“Top Matter”: Background Information

I Dependent variable

I Method

I Date

I Sample

I Included observations
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“Middle Matter”: Estimated Regression Function

I Variable

I Coefficient

I Standard error

I t-statistic

I p-value
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“Bottom Matter: Statistics”

There are many...
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Regression Statistics: Mean dependent var 2.342

ȳ =
1

T

T∑
t=1

yt
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Regression Statistics: S.D. dependent var .561

SD =

√∑T
t=1(yt − ȳ)2

T − 1
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Regression Statistics: Sum squared resid 319.938

SSR =
T∑
t=1

e2t
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Regression Statistics: Log likelihood -938.236

I Likelihood

I Log likelihood

I Maximum-likelihood estimation

I Hypothesis tests and model selection
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Regression Statistics: F -statistic 199.626

F =
(SSRres − SSR)/(K − 1)

SSR/(T − K )
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Regression Statistics: S.E. of regression .492

s2 =

∑T
t=1 e2t

T − K

SER =
√

s2 =

√∑T
t=1 e2t

T − K
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Regression Statistics: R-squared .232

R2 = 1−
∑T

t=1 e2t∑T
t=1(yt − ȳ)2
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Regression Statistics: Adjusted R-squared .231

R̄2 = 1−
1

T−K
∑T

t=1 e2t
1

T−1
∑T

t=1(yt − ȳ)2
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Regression Statistics: Schwarz criterion 1.435

SIC = T (K
T )
∑T

t=1 e2t
T
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Regression Statistics: Akaike info criterion 1.423

AIC = e( 2K
T )
∑T

t=1 e2t
T
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Regression Statistics: Durbin-Watson stat. 1.926

εt = φεt−1 + vt

vt ∼ iidN(0, σ2)

DW =

∑T
t=2(et − et−1)2∑T

t=1 e2t
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Residual Scatter

Figure: Wage Regression Residual Scatter
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Residual Plot

Figure: Wage Regression Residual Plot
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Beyond OLS: Non-Quadratic Objectives
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Ordinary Least Squares (OLS)

Recall that the OLS estimator, β̂OLS , solves:

minβ

T∑
t=1

(yt − β1 − β2x2t − ...− βKxKt)
2 = minβ

T∑
t=1

ε2t

– Simple
(analytic closed-form expression, (X ′X )−1X ′y)

– Wonderful properties under FIC
(Unbiased, consistent, Gaussian, MVUE)

But other approaches are possible and sometimes useful.

65 / 307



Least Absolute Deviations (LAD)

The LAD estimator, β̂LAD , solves:

minβ

T∑
t=1

|εt |

– Not as simple as OLS, but still simple
(Solves a linear programming problem)

– Useful properties under some violations of FIC
(Robust to outliers; more on that later)

– But there’s a much bigger reason to be interested
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Conditional Mean and Median Functions

– OLS fits the conditional mean function:

mean(y |X ) = xβ

– LAD fits the conditional median function (50% quantile):

median(y |X ) = xβ

– The two are equal under symmetry as with FIC, but not under
asymmetry, in which case the median is a better measure of central

tendency
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Quantile Regression (QR)

Objective like LAD but unequal slopes on each side of 0.

QR estimator β̂QR minimizes “linlin loss,” or “check function loss”:

minβ

T∑
t=1

linlin(εt),

where:

linlin(e) =


a|e|, if e ≤ 0

b|e|, if e > 0

= a|e| I (e ≤ 0) + b|e| I (e > 0).

I (x) = 1 if x is true, and I (x) = 0 otherwise.

“I (·)” stands for “indicator” variable.
“linlin” refers to linearity on each side of the origin.

Not as simple as OLS, but still simple
(solves a linear programming problem)
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What Does Quantile Regression Fit?

– QR fits the d · 100% quantile:

quantiled(y |X ) = xβ

where

d =
b

a + b
=

1

1 + a/b

– Median regression (LAD) is special case of d = .5

– Important generalization of median regression
(e.g., How do the wages of people in the far left tail of the wage

distribution vary with education and experience, and how does that
compare to those in the center of the wage distribution?)
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Indicator Variables in Cross Sections:
Group Effects
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Dummy Variables for Group Effects

A dummy variable, or indicator variable, is just a 0-1 variable that
indicates something, such as whether a person is female:

FEMALEt =

{
1 if person t is female

0 otherwise

(It really is that simple.)

“Intercept dummies”

Note that the sample mean of a dummy variable is the fraction of
the sample with the indicated attribute.
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Histograms for Wage Covariates
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Important Issues

I The intercept corresponds to the “base case” across all
dummies (i.e., when all dummies are simultaneously 0), and
the dummy coefficients give the extra effects (i.e., when the
respective dummies are 1).

I Alternatively, use a full set of dummies for each category (e.g.,
both a union dummy and a non-union dummy) and drop the
intercept. (More useful/common for in time-series situations)

I Never include a full set of dummies and an intercept.
Would be totally redundant: “Perfect Multicollinearity”
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Controlling for Sex, Race and Union Status
in the Wage Regression

Before:

LWAGE → C ,EDUC ,EXPER
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Wage Regression on Education and Experience
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Controlling for Sex, Race and Union Status
in the Wage Regression

Now:

LWAGE → C ,EDUC ,EXPER,FEMALE ,NONWHITE ,UNION
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Wage Regression on Education, Experience and Group
Dummies
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Residual Scatter from Wage Regression on Education,
Experience and Group Dummies
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Indicator Variables in Time Series:
Trend and Seasonality
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Liquor Sales
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Log Liquor Sales
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Linear Deterministic Trend

Trendt = β1 + β2TIMEt

where TIMEt = t

Simply run the least squares regression y → c,TIME , where

TIME =



1
2
3
...

T − 1
T


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Various Linear Trends
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Linear Trend Estimation

Dependent Variable: LSALES
Method: Least Squares
Date: 08/08/13   Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.  

C 6.454290 0.017468 369.4834 0.0000
TIME 0.003809 8.98E-05 42.39935 0.0000

R-squared 0.843318     Mean dependent var 7.096188
Adjusted R-squared 0.842849     S.D. dependent var 0.402962
S.E. of regression 0.159743     Akaike info criterion -0.824561
Sum squared resid 8.523001     Schwarz criterion -0.801840
Log likelihood 140.5262     Hannan-Quinn criter. -0.815504
F-statistic 1797.705     Durbin-Watson stat 1.078573
Prob(F-statistic) 0.000000
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Residual Plot
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Deterministic Seasonality

Seasonal t =
s∑

i=1

βiSEASit (s seasons per year)

where SEASit =

{
1 if observation t falls in season i

0 otherwise

Simply run the least squares regression y → SEAS1, ...,SEASs

(or blend: y → TIME ,SEAS1, ...,SEASs)

where (e.g., in quarterly data case, assuming Q1 start and Q4 end):
SEAS1 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, ..., 0)′

SEAS2 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, ..., 0)′

SEAS3 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, ..., 0)′

SEAS4 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, ..., 1)′.
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Linear Trend with Seasonal Dummies
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Residual Plot
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Seasonal Pattern
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Nonlinearity in Cross Sections
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Anscombe’s Quartet
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Anscombe’s Quartet: Regressions
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Anscombe’s Quartet: Graphics

Figure: Anscombe’s Quartet: Graphs
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Parametric and Nonparametric Nonlinearity...

...and the gray area in between.
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Log-Log Regression

lnyt = β1 + β2lnxt + εt

Example: Cobb-Douglas production function

yt = ALαt Kβ
t exp(εt)

lnyt = lnA + αlnLt + βlnKt + εt

For close yt and xt , (ln yt − ln xt) is approximately the percent
difference between yt and xt . Hence the coefficients in log-log
regressions give the expected percent change in E (yt |xt) for a

one-percent change in xt , the elasticity of yt with respect to xt .
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Log-Lin Regression

lnyt = βxt + ε

Example: Exponential growth

yt = Aert

lnyt = lnA + rt

The growth rate r gives the approximate percent change in E (yt |t)
for a one-unit change in time

Example: LWAGE regression!
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Box-Cox Regression

B(yt) = β1 + β2xt + εt

where

B(yt) =
yλt − 1

λ

Because

limλ→0

(
yλ − 1

λ

)
= ln(yt),

the Box-Cox model corresponds to the log-lin model
in the special case of λ = 0.
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Generalized Linear Model

G (yt) = β1 + β2xt + εt ,

Wide classes of link functions G can be entertained. Log-lin
regression, for example, emerges when G (yt) = ln(yt), and

Box-Cox regression emerges when G (yt) = yλ
t −1
λ .
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Intrinsically Non-Linear Models

One example is the logistic model,

y =
1

a + br x

(0 < r < 1)

– No way to transform to linearity

– Use non-linear least squares (NLS)

– Under the remaining FIC (that is, dropping only linearity), β̂NLS
has a sampling distribution similar to that of β̂LS under the FIC
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Series Expansions

Really no such thing as an intrinsically non-linear model...

In the bivariate case we can think of the relationship as

yt = g(xt , εt)

or slightly less generally as

yt = f (xt) + εt
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Taylor

First consider Taylor series expansions of f (xt).
The linear (first-order) approximation is

f (xt) ≈ β1 + β2x ,

and the quadratic (second-order) approximation is

f (xt) ≈ β1 + β2xt + β3x2
t .

In the multiple regression case, Taylor approximations also involve
interaction terms. Consider, for example, f (xt , zt):

f (xt , zt) ≈ β1 + β2xt + β3zt + β4x2
t + β5z2

t + β6xtzt + ....

– Equally relevant for dummy variables: “interactions”
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Fourier

f (xt) ≈ β1 + β2sin(xt) + β3cos(xt) + β4sin(2xt) + β5cos(2xt) + ...

– One can also mix Taylor and Fourier approximations by
regressing not only on powers and cross products (“Taylor terms”),

but also on various sines and cosines (“Fourier terms”).
Mixing may facilitate parsimony.
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A Key Insight

The ultimate point is that so-called “intrinsically non-linear”
models are themselves linear when viewed from the series-expansion

perspective. In principle, of course, an infinite number of series
terms are required, but in practice nonlinearity is often quite gentle

(e.g., quadratic) so that only a few series terms are required.

– So non-linearity is in some sense
really an omitted-variables problem
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Testing for Non-Linearity I: t and F Tests

Just test for omitted series expansion terms!

104 / 307



Testing for Non-Linearity II: RESET

Run:

yt → c ,Xt

and obtain the fitted values ŷt .

Then run

yt → c ,Xt , ŷ
2
t , ..., ŷ

m
t .

Note that the powers of ŷt are linear combinations of powers and
cross products of the X variables. No need to include the first

power of ŷt , because that would be redundant with the included X
variables. Instead we include powers ŷ2

t , ŷ3
t , ... Typically a small m

is adequate. Significance of the included set of powers of ŷt can be
checked using an F test.
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Basic Wage Regression

Figure: Basic Linear Wage Regression
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Quadratic Wage Regression

Figure: Quadratic Wage Regression
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Dummy Interactions?

Figure: Wage Regression on Education, Experience, Group Dummies, and
Interactions
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Everything

Figure: Wage Regression with Continuous Non-Linearities and
Interactions, and Discrete Interactions

109 / 307



So Drop Dummy Interactions and Tighten the Rest

Figure: “Final” Wage Regression
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Nonlinearity in Time Series
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Non-Linear Trend: Exponential (Log-Linear)

Trendt = β1eβ2TIMEt

ln(Trendt) = ln(β1) + β2TIMEt
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Figure: Various Exponential Trends
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Non-Linear Trend: Quadratic

Allow for gentle curvature by including TIME and TIME 2:

Trendt = β1 + β2TIMEt + β3TIME 2
t
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Figure: Various Quadratic Trends
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Recall Log-Linear Liquor Sales Trend Estimation

Dependent Variable: LSALES
Method: Least Squares
Date: 08/08/13   Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.  

C 6.454290 0.017468 369.4834 0.0000
TIME 0.003809 8.98E-05 42.39935 0.0000

R-squared 0.843318     Mean dependent var 7.096188
Adjusted R-squared 0.842849     S.D. dependent var 0.402962
S.E. of regression 0.159743     Akaike info criterion -0.824561
Sum squared resid 8.523001     Schwarz criterion -0.801840
Log likelihood 140.5262     Hannan-Quinn criter. -0.815504
F-statistic 1797.705     Durbin-Watson stat 1.078573
Prob(F-statistic) 0.000000
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Residual Plot
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Log-Quadratic Liquor Sales Trend Estimation

Dependent Variable: LSALES
Method: Least Squares
Date: 08/08/13   Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.  

C 6.231269 0.020653 301.7187 0.0000
TIME 0.007768 0.000283 27.44987 0.0000

TIME2 -1.17E-05 8.13E-07 -14.44511 0.0000

R-squared 0.903676     Mean dependent var 7.096188
Adjusted R-squared 0.903097     S.D. dependent var 0.402962
S.E. of regression 0.125439     Akaike info criterion -1.305106
Sum squared resid 5.239733     Schwarz criterion -1.271025
Log likelihood 222.2579     Hannan-Quinn criter. -1.291521
F-statistic 1562.036     Durbin-Watson stat 1.754412
Prob(F-statistic) 0.000000
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Residual Plot
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Log-Quadratic Liquor Sales Trend Estimation
with Seasonal Dummies

Dependent Variable: LSALES
Method: Least Squares
Date: 08/08/13   Time: 08:53
Sample: 1987M01 2014M12
Included observations: 336

Variable Coefficient Std. Error t-Statistic Prob.  

TIME 0.007739 0.000104 74.49828 0.0000
TIME2 -1.18E-05 2.98E-07 -39.36756 0.0000

D1 6.138362 0.011207 547.7315 0.0000
D2 6.081424 0.011218 542.1044 0.0000
D3 6.168571 0.011229 549.3318 0.0000
D4 6.169584 0.011240 548.8944 0.0000
D5 6.238568 0.011251 554.5117 0.0000
D6 6.243596 0.011261 554.4513 0.0000
D7 6.287566 0.011271 557.8584 0.0000
D8 6.259257 0.011281 554.8647 0.0000
D9 6.199399 0.011290 549.0938 0.0000

D10 6.221507 0.011300 550.5987 0.0000
D11 6.253515 0.011309 552.9885 0.0000
D12 6.575648 0.011317 581.0220 0.0000

R-squared 0.987452     Mean dependent var 7.096188
Adjusted R-squared 0.986946     S.D. dependent var 0.402962
S.E. of regression 0.046041     Akaike info criterion -3.277812
Sum squared resid 0.682555     Schwarz criterion -3.118766
Log likelihood 564.6725     Hannan-Quinn criter. -3.214412
Durbin-Watson stat 0.581383
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Residual Plot
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Moving-Average Trend and De-Trending

Two-sided moving average:

st =
1

2m + 1

m∑
i=−m

yt−i

One-sided moving average:

st =
1

m + 1

m∑
i=0

yt−i

One-sided weighted moving average:

st =
m∑
i=0

wiyt−i
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Hodrick-Prescott Trend and De-Trending

min
{st}Tt=1

(
T∑
t=1

(yt − st)
2 + λ

T−1∑
t=2

((st+1 − st)− (st − st−1))2
)
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More Problems
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Measurement Error

DGP:

yt = β1 + β2xt + εt

Measurement:

xm
t = xt + vt , vt ∼ iid(0, σ2)

We incorrectly run:

y → c , xm

As σ2v / σ2x gets large, the regression is progressively less able to
identify the true relationship. In the limit as σ2v / σ2x →∞, it is
impossible. In any event, β̂LS is biased toward zero, in small as

well as large samples.
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Omitted Variables

DGP:

yt = β1 + β2zt + εt

We incorrectly run:

y → c , x

where corr(xt , zt) > 0.
Clearly we’ll estimate a positive effect of x on y , in large as well as

small samples, even though it’s completely spurious and would
vanish if z had been included in the regression. The positive bias

arises because in our example we assumed that corr(zt , zt) > 0; in
general the sign of the bias could go either way.
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Multicollinearity

Perfect Multicollinearity (e.g., dummy-variable trap):

– Drop a variable!

Imperfect Multicollinearity:

– Large F and R2, yet small t’s (large s.e.’s). Hard to parse effects
of x ’s on y , yet it’s clear that there is an overall relationship.

– That’s just the way life is. Not really a “problem.”

– OLS is natural: orthogonal projection.
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Multicollinearity and Variance Inflation

var(β̂j) = f

 σ2︸︷︷︸
+

, σ2xj︸︷︷︸
−

, R2
j︸︷︷︸

+


where R2

j is regression of xj on all other regressors

R2
j affects var(β̂j) as (1− R2

j )−1

Hence as R2
j → 1 the variance inflation approaches infinity

(xj completely redundant)
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Non-Normality and Outliers

– Distributional results

– Diagnostics

– Outliers

– Robust estimation
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Recall Sample Mean Under iid Normality

ȳ is unbiased, consistent, normally distributed with variance σ2/T ,
and indeed the minimum variance unbiased (MVUE) estimator.

We write:

ȳ ∼ N

(
µ,
σ2

T

)
or equivalently

√
T (ȳ − µ) ∼ N(0, σ2)
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Recall Sample Mean Under iid (Less Normality)

ȳ is unbiased, consistent, asymptotically normally distributed with
variance σ2/T , and best linear unbiased (BLUE).

We write:

ȳ
a
∼ N

(
µ,
σ2

T

)
or more precisely, as T →∞,

√
T (ȳ − µ)→d N(0, σ2)
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OLS Under FIC (Including Normality)

β̂LS is unbiased, consistent, normally distributed with covariance
matrix σ2(X ′X )−1, and indeed MVUE.

We write:

β̂LS ∼ N
(
β, σ2(X ′X )−1

)
or equivalently

√
T (β̂ − β) ∼ N

(
0, σ2

(
X ′X

T

)−1)
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OLS Under FIC (Less Normality)

β̂LS is consistent, asymptotically normally distributed, and BLUE.

We write

β̂LS

a
∼ N

(
β, σ2(X ′X )−1

)
,

or more precisely, as T →∞,

√
T (β̂LS − β)→d N

(
0, σ2

(
X ′X

T

)−1)
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Residual Normality Diagnostics

I Sample skewness and kurtosis, Ŝ and K̂

I Jarque-Bera test. Under normality we have:

JB =
T

6

(
Ŝ2 +

1

4
(K̂ − 3)2

)
∼ χ2

2

I More exotic: Outlier probabilities, tail indexes

I All can be done on observed data or residuals
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Recall Our “Final” Wage Regression
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Residual Plot
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Residual Scatter
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Residual Histogram and Statistics
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More Residual Normality Tests
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Residual QQ Plots

I We introduced histograms earlier...

I ...but if interest centers on the tails of distributions, QQ plots
often provide sharper insight as to the agreement or
divergence between the actual and reference distributions

I QQ plot is simply a plot of the quantiles of the standardized
data against the quantiles of a standardized reference
distribution (e.g., normal)

I If the distributions match, the QQ plot is the 45 degree line

I To the extent that the QQ plot does not match the 45 degree
line, the nature of the divergence can be very informative, as
for example in indicating fat tails

I Can be done on observed data or residuals
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Wage Regression Residual QQ Plot
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Outlier Detection and Robust Estimation

I Data scatterplots

I Residual plots and scatterplots

I “Leave-one-out” plots:(
β̂k − β̂k(−t)

)
, t = 1, ...T (k = 1, ...,K )

I Robust estimation: LAD

min
β

T∑
t=1

|yt − β1 − β2x2t − ...− βKxKt |
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Wage Regression LAD Estimation
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Residual Plot
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Generalized Least Squares (GLS)

Consider the FIC except that we now let:

ε ∼ N(0, σ2Ω)

The old case is Ω = I , but things are very different when Ω 6= I :
– OLS parameter estimates consistent but inefficient

(no longer MVUE or BLUE)

– OLS standard errors biased and inconsistent. Hence t ratios do
not have the t distribution in finite samples and do not have the

N(0, 1) distribution asymptotically

The GLS estimator is:

β̂GLS = (X ′Ω−1X )−1X ′Ω−1y

Under the remaining full ideal conditions it is consistent, normally
distributed with covariance matrix σ2(X ′Ω−1X )−1, and MVUE:

β̂GLS ∼ N
(
β, σ2(X ′Ω−1X )−1

)
.
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Heteroskedasticity in Cross-Section Regression

Homoskedasticity: variance of εi is constant across i

Heteroskedasticity: variance of εi is not constant across i

Relevant cross-sectional heteroskedasticity situation
(on which we focus for now):

εi independent across i but not identically distributed across i

Ω =


σ21 0 . . . 0
0 σ22 . . . 0
...

...
. . .

...
0 0 . . . σ2N


– Can arise for many reasons

– Engel curve (e.g., food expenditure vs. income) is classic example
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Consequences

OLS inefficient (no longer MVUE or BLUE),
in finite samples and asymptotically

Standard errors biased and inconsistent.
Hence t ratios do not have the t distribution in finite samples

and do not have the N(0, 1) distribution asymptotically
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Detection

I Graphical heteroskedasticity diagnostics

I Formal heteroskedasticity tests
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Graphical Diagnostics

Graph e2i against xi , for various regressors

Problem: Purely pairwise
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Recall Our “Final” Wage Regression
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Squared Residual vs. EDUC
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The Breusch-Godfrey-Pagan Test (BGP)

I Estimate the OLS regression, and obtain the squared residuals

I Regress the squared residuals on all regressors

I To test the null hypothesis of no relationship, examine NR2

from this regression. In large samples NR2 ∼ χ2 under the
null.
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BPG Test
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White’s Test

I Estimate the OLS regression, and obtain the squared residuals

I Regress the squared residuals on all regressors, squared
regressors, and pairwise regressor cross products

I To test the null hypothesis of no relationship, examine NR2

from this regression. In large samples NR2 ∼ χ2 under the
null.

(White’s test is a natural and flexible
generalization of the Breusch-Pagan-Godfrey test)
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White Test
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GLS for Heteroskedasticity

I “Weighted least squares” (WLS)

– Take a stand on the DGP. Get consistent standard errors
and efficient parameter estimates.
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(Infeasible) Weighted Least Squares

DGP:

yi = x ′iβ + εi

εi ∼ idN(0, σ2i )

Weight the data (yi , xi ) by 1/σi :

yi
σi

=
x ′iβ

σi
+
εi
σi

The DGP is now:

y∗i = x∗i
′β + ε∗i

ε∗i ∼ iidN(0, 1)

I OLS is MVUE!
I Problem: We don’t know σ2i
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Remark on Weighted Least Squares

Weighting the data by 1/σi is the same as
weighting the residuals by 1/σ2i :

min
β

N∑
i=1

(
yi − x ′iβ

σi

)2

= min
β

N∑
i=1

1

σ2i

(
yi − x ′iβ

)2
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Feasible Weighted Least Squares

Intuition: Replace the unknown σ2i values with estimates

Some good ideas:

I Use wi = 1/ê2i , where ê2i are from the BGP test regression

I Use wi = 1/ê2i , where ê2i are from the White test regression

What about WLS directly using wi = 1/e2i ?

I Not such a good idea

I e2i too noisy; we’d like to use not e2i but rather E (e2i |xi ). So

we use an estimate of E (e2i |xi ), namely ê2i from e2 → X
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Regression Weighted by Fit From White Test Regression
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A Different Approach
(Advanced but Very Important)
White’s Heteroskedasticity-Consistent Standard Errors

Perhaps surprisingly, we make direct use of e2i

Don’t take a stand on the DGP
Give up on efficient parameter estimates, but get consistent s.e.’s.

Using advanced methods, one can obtain consistent
s.e.’s (if not an efficient β̂) using only e2i

I Standard errors are rendered consistent.

I β̂ remains unchanged at its OLS value. (Is that a problem?)

“Robustness to heteroskedasticity of unknown form”
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Regression with White’s Heteroskedasticity-Consistent
Standard Errors
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A Tiny Bit of Time-Series Theory:
White Noise and AR(1) Processes

White noise: yt ∼WN(µ, σ2) (serially uncorrelated)

Zero-mean white noise: yt ∼WN(0, σ2)

Independent (strong) white noise: yt

iid
∼ (0, σ2)

Gaussian white noise: yt

iid
∼ N(0, σ2)
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Autocovariance, Autocorrelation
and Partial Autocorrelation Functions

Population autocovariances:
γy (τ) = cov(yt , yt−τ ), τ = 0, 1, 2, ...

Population autocorrelations:

ρy (τ) =
γy (τ)
γy (0)

= corr(yt , yt−τ ), τ = 0, 1, 2, ...

Population partial autocorrelations:
py (τ) is the coefficient on yt−τ in the projection

yt → c , yt−1, ..., yt−(τ−1), yt−τ , τ = 0, 1, 2, ...
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Moment Structure of Strong White Noise

E (yt) = 0, var(yt) = σ2, E (yt |Ωt−1) = 0

var(yt |Ωt−1) = E [(yt − E (yt |Ωt−1))2|Ωt−1] = σ2

where Ωt−1 = {yt−1, yt−2, ...}

γ(τ) =


σ2, τ = 0

0, τ ≥ 1

ρ(τ) =


1, τ = 0

0, τ ≥ 1

p(τ) =


1, τ = 0

0, τ ≥ 1
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Zero-Mean AR(1)

yt = φyt−1 + εt

εt ∼ iidN(0, σ2), |φ| < 1

– Regression on just a lagged dependent variable

– “Autoregression”

Back-substitution reveals that:

yt =
∞∑
j=0

φjεt−j

=⇒ E (yt) = 0
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Realizations of Zero-Mean Two AR(1) Processes
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Moment Structure of the Zero-Mean AR(1) Process

yt = φyt−1 + εt

E (yt) = 0 (of course)

var(yt) =
σ2

1− φ2
(hmmm...)

E (yt |Ωt−1) = φyt−1 (obvious)

var(yt |Ωt−1) = σ2 (obvious)

ρ(τ) =

{
1, τ = 0
φτ , τ ≥ 1

(hmmm...)

p(τ) =


1, τ = 0
φ, τ = 1
0, τ ≥ 2

(obvious)
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AR(1) Autocorrelation Function

yt = φyt−1 + εt

=⇒ ytyt−τ = φyt−1yt−τ + εtyt−τ (1)

First consider τ = 0. Immediately:

γ(0) = var(yt) =
σ2

1− φ2

Now consider τ > 0. Taking expectations of (1) produces:

γ(τ) = φγ(τ − 1)

Hence γ(τ) = φτ σ2

1−φ2 , so ρ(τ) = φτ , τ = 0, 1, 2, ...
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γ(τ), ρ(τ), and p(τ) for Generic AR(p)

AR(p)Process :

yt = φ1yt−1 + φ2yt−2 + φpyt−p + εt

γ(τ)→ 0 as τ →∞, gradually

ρ(τ)→ 0 as τ →∞, gradually

p(τ)→ 0 at τ = p, sharply
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Non-Zero Mean I (AR(1) Example):
Regression on an Intercept and yt−1,
With White Noise Disturbances

(yt − µ) = φ(yt−1 − µ) + εt

εt ∼ iidN(0, σ2), |φ| < 1

=⇒ yt = c + φyt−1 + εt , where c = µ(1− φ)

Back-substitution reveals that:

yt = µ+
∞∑
j=0

φjεt−j

=⇒ E (yt) = µ
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Non-Zero Mean II (AR(1) Example, Cont’d):
Regression on an Intercept Alone,
with AR(1) Disturbances

yt = µ+ εt

εt = φεt−1 + vt

vt ∼ iidN(0, σ2), |φ| < 1
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The Sample Autocorrelation Function

Autocorrelations:

ρy (τ) = corr(yt , yt−τ ) =
cov(yt , yt−τ )√

var(yt)
√

var(yt−τ )
=

cov(yt , yt−τ )

var(yt)

Sample autocorrelations:

ρ̂y (τ) =
ĉov(yt , yt−τ )

v̂ar(yt)
=

1
T

∑
t ytyt−τ

1
T

∑
t y2

t

We view ρ̂y (τ) as a function of τ and examine its shape.
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The Sample Partial Autocorrelation Function

Partial autocorrelations:

p̂y (τ) is the coefficient on yt−τ in the projection
yt → c , yt−1, ..., yt−(τ−1), yt−τ , τ = 0, 1, 2, ...

Sample partial autocorrelations:

p̂y (τ) is the coefficient on yt−τ in the regression
yt → c , yt−1, ..., yt−(τ−1), yt−τ , t = 1, ...,T , τ = 0, 1, 2, ...

We view ρ̂y (τ) as a function of τ and examine its shape.
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Bartlett Standard Errors

Under H0 : yt ∼ iidN(0, σ2), we have (as T →∞):

(1) ρ̂y (τ)
a
∼ N

(
0,

1

T

)
, ∀τ

(used for inference on individual autocorrelations)
95% “Bartlett bands” under the iid null: 0± 2√

T

(2) cov(ρ̂y (τ), ρ̂y (τ + v)) = 0, ∀τ, v

(used to derive distributions of Box-Pierce and Ljung-Box stats)
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Box-Pierce and Ljung-Box Q Statistics

Under H0 : yt ∼ iidN(0, σ2), we have (as T →∞):

QBP = T
m∑
τ=1

ρ̂2(τ) ∼ χ2
m

QLB = T (T + 2)
m∑
τ=1

(
1

T − τ

)
ρ̂2(τ) ∼ χ2

m

(We test an implication of iid, ρ(1) = ρ(2) = ... = ρ(m) = 0)
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(Part of a) Correlogram

Figure: Sample Acorr Fn, Daily Stock Market Returns
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Serial Correlation in Time-Series Regression

Consider:

ε ∼ N(0, σ2Ω)

The FIC case is Ω = I . When is Ω 6= I ?

We’ve already seen heteroskedasticity.

Now we consider “serial correlation” or “autocorrelation.”

→ εt is correlated with εt−τ ←

Can arise for many reasons, but they all boil down to:

The included X variables fail to capture all the dynamics in y .

– No additional explanation needed!
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On Ω with Heteroskedasticity vs. Serial Correlation

With heteroskedasticity, εi is independent across i but not
identically distributed across i (variance of εi varies with i):

σ2Ω =


σ21 0 . . . 0
0 σ22 . . . 0
...

...
. . .

...
0 0 . . . σ2N


With serial correlation, εt is correlated across t

but unconditionally identically distributed across t:

σ2Ω =


σ2 γ(1) . . . γ(T − 1)
γ(1) σ2 . . . γ(T − 2)

...
...

. . .
...

γ(T − 1) γ(T − 2) . . . σ2


185 / 307



Consequences of Serial Correlation

OLS inefficient (no longer BLUE),
in finite samples and asymptotically

Standard errors biased and inconsistent. Hence t ratios do not
have the t distribution in finite samples and do not have the

N(0, 1) distribution asymptotically

Does this sound familiar?
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Detection

I Graphical autocorrelation diagnostics

I Residual plot
I Scatterplot of et against et−τ

I Formal autocorrelation tests and analyses

I Durbin-Watson
I Breusch-Godfrey
I Residual correlogram
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Liquor Sales Regression on Trend and Seasonals
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Graphical Diagnostics - Residual Plot
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Graphical Diagnostics - Scatterplot of et against et−1
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Formal Tests and Analyses: Durbin-Watson (0.59!)

Simple paradigm (AR(1)):

yt = x ′tβ + εt

εt = φεt−1 + vt

vt ∼ iid N(0, σ2)

We want to test H0 : φ = 0 against H1 : φ 6= 0

Regress y → X and obtain the residuals et

DW =

∑T
t=2(et − et−1)2∑T

t=1 e2t
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Understanding the Durbin-Watson Statistic

DW =

∑T
t=2(et − et−1)2∑T

t=1 e2t
=

1
T

∑T
t=2(et − et−1)2

1
T

∑T
t=1 e2t

=
1
T

∑T
t=2 e2t + 1

T

∑T
t=2 e2t−1 − 2 1

T

∑T
t=2 etet−1

1
T

∑T
t=1 e2t

Hence as T →∞:

DW ≈ σ2 + σ2 − 2cov(et , et−1)

σ2
= 2(1− corr(et , et−1)︸ ︷︷ ︸

ρe(1)

)

=⇒ DW ∈ [0, 4], DW → 2 as φ→ 0, and DW → 0 as φ→ 1
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Formal Tests and Analyses: Breusch-Godfrey

General AR(p) environment:

yt = x ′tβ + εt

εt = φ1εt−1 + ...+ φpεt−p + vt

vt ∼ iidN(0, σ2)

We want to test H0 : (φ1, ..., φp) = 0 against H1 : (φ1, ..., φp) 6= 0

I Regress yt → xt and obtain the residuals et

I Regress et → xt , et−1, ..., et−p

I Examine TR2. In large samples TR2 ∼ χ2
p under the null.

Does this sound familiar?
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BG for AR(1) Disturbances
(TR2 = 168.5, p = 0.0000)
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BG for AR(4) Disturbances
(TR2 = 216.7, p = 0.0000)
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BG for AR(8) Disturbances
(TR2 = 219.0, p = 0.0000)
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Formal Tests and Analyses: Residual Correlogram

ρ̂e(τ) =
ĉov(et , et−τ )

v̂ar(et)
=

1
T

∑
t etet−τ

1
T

∑
t e2t

p̂e(τ) is the coefficient on et−τ in the regression
et → c , et−1, ..., et−(τ−1), et−τ

Approximate 95% “Bartlett bands” under the iid N null: 0± 2√
T

QBP = T
m∑
τ=1

ρ̂2e(τ) ∼ χ2
m−K under iid N

QLB = T (T + 2)
m∑
τ=1

(
1

T − τ

)
ρ̂2e(τ) ∼ χ2

m−K
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Residual Correlogram for Trend + Seasonal Model
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Correcting for Autocorrelation

I Generalized least squares
– Transform the data such that the classical conditions hold

I Heteroskedasticity and autocorrelation consistent (HAC) s.e.’s
– Use OLS, but calculate standard errors robustly
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Recall Generalized Least Squares (GLS)

Consider the FIC except that we now let:

ε ∼ N(0, σ2Ω)

The GLS estimator is:

β̂GLS = (X ′Ω−1X )−1X ′Ω−1y

Under the remaining full ideal conditions it is consistent, normally
distributed with covariance matrix σ2(X ′Ω−1X )−1, and MVUE:

β̂GLS ∼ N
(
β, σ2(X ′Ω−1X )−1

)
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Infeasible GLS
(Illustrated in the Durbin-Watson AR(1) Environment)

yt = x ′tβ + εt (1a)

εt = φεt−1 + vt (1b)

vt ∼ iid N(0, σ2) (1c)

Suppose that you know φ. Then you could form:

φyt−1 = φx ′t−1β + φεt−1 (1a∗)
=⇒ (yt−φyt−1) = (x ′t−φx ′t−1)β+(εt−φεt−1) (just (1a)− (1a∗))

=⇒ yt = φyt−1 + x ′tβ − x ′t−1(φβ) + vt

– Satisfies the classical conditions! Note the restriction.

So, two key closely-related regressions:

yt → xt (with AR(1) disturbances)

yt → yt−1, xt , xt−1 (with WN disturbances and a coef. restr.)
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Feasible GLS

(1) Replace the unknown φ value with
an estimate and run the OLS regression:

(yt − φ̂yt−1)→ (x ′t − φ̂x ′t−1)

– Iterate if desired: β̂1, φ̂1, β̂2, φ̂2, ...

(2) Run the OLS Regression

yt → yt−1, xt , xt−1

subject to the constraint noted earlier (or not)

– Generalizes trivially to AR(p):
yt → yt−1, ..., yt−p, xt , xt−1, ..., xt−p

(Select p using the usual AIC , SIC , etc.)
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Trend + Seasonal Model with AR(4) Disturbances

Figure: ***. ***.
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Trend + Seasonal Model with AR(4) Disturbances
Residual Plot

Figure: ***. ***.
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Trend + Seasonal Model with AR(4) Disturbances
Residual Correlogram

Figure: ***. ***.
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Trend + Seasonal Model with Four Lags of Dep. Var.
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How Did we Arrive at AR(4) Dynamics?

Everything points there:
– Supported by original trend + seasonal residual correlogram

– Supported by DW
– Supported by BG

– Supported by SIC pattern:
AR(1) = −3.797
AR(2) = −3.941
AR(3) = −4.080
AR(4) = −4.086
AR(5) = −4.071
AR(6) = −4.058
AR(7) = −4.057
AR(8) = −4.040
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Heteroskedasticity-and-Autocorrelation Consistent (HAC)
Standard Errors

Using advanced methods, one can obtain consistent
standard errors (if not an efficient β̂), under minimal assumptions

I “HAC standard errors”

I “Robust standard errors”

I “Newey-West standard errors”

I β̂ remains unchanged at its OLS value. Is that a problem?
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Trend + Seasonal Model with HAC Standard Errors

Figure: ***. ***.
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Structural Change
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Structural Change: Gradual

yt = β1 + β2txt + εt

where

β1t = γ1 + γ2TIMEt

β2t = δ1 + δ2TIMEt

Then we have:

yt = (γ1 + γ2TIMEt) + (δ1 + δ2TIMEt)xt + εt

We simply run:

yt → c , ,Timet , xt , TIMEt ∗ xt

This is yet another important use of dummies. The regression can
be used both to test for structural change (F test of γ2 = δ2 = 0),

and to accommodate it if present.
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Structural Change: Sharp Exogenous

yt =

{
β11 + β12xt + εt , t = 1, ...,T ∗

β21 + β22xt + εt , t = T ∗ + 1, ...,T

Let

Dt =

{
0, t = 1, ...,T ∗

Dt = 1, t = T ∗ + 1, ...T

Then we can write the model as:

yt = (β11 + (β21 − β11)Dt) + (β12 + (β22 − β12)Dt)xt + εt

We simply run:

yt → c , Dt , xt , Dt × xt
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Structural Change: Sharp Exogenous, Continued

The regression can be used both to test for structural change, and
to accommodate it if present. It represents yet another use of

dummies. The no-break null corresponds to the joint hypothesis of
zero coefficients on Dt and Dt × xt , for which the “F ” statistic is

distributed χ2 asymptotically (and F in finite samples under
normality).

In the general case, under the no-break null the so-called Chow
breakpoint test statistic,

Chow =
(e ′e − (e ′1e1 + e ′2e2))/K

(e ′1e1 + e ′2e2)/(T − 2K )
,

is distributed F in finite samples (under normality) and χ2

asymptotically.
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Structural Change: Sharp Endogenous

MaxChow = max
τ1≤τ≤τ2

Chow(τ),

where τ denotes sample fraction
(typically we take τ1 = .15 and τ2 = .85).

The distribution of MaxChow has been tabulated.
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Recursive Estimation

yt =
K∑

k=1

βkxkt + εt

εt ∼ iidN(0, σ2),

t = 1, ...,T .
OLS estimation uses the full sample, t = 1, ...,T .

Recursive least squares uses an expanding sample.
Begin with the first K observations and estimate the model.
Then estimate using the first K + 1 observations, and so on.
At the end we have a set of recursive parameter estimates:

β̂k,t , for k = 1, ...,K and t = K , ...,T .
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Recursive Residuals

At each t, t = K , ...,T − 1, compute a 1-step forecast,

ŷt+1,t =
K∑

k=1

β̂ktxk,t+1.

The corresponding forecast errors, or recursive residuals, are

êt+1,t = yt+1 − ŷt+1,t .

êt+1,t ∼ N(0, σ2rt)

where rt > 1 for all t
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Standardized Recursive Residuals and CUSUM

wt+1,t ≡
êt+1,t

σ
√

r t
,

t = K , ...,T − 1.

Under the maintained assumptions,

wt+1,t ∼ iidN(0, 1).

Then

CUSUMt∗ ≡
t∗∑

t=K

wt+1,t , t∗ = K , ...,T − 1

is just a sum of iid N(0, 1)’s (i.e. a Gaussian random walk).
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Recursive Analysis, Constant Parameter
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Recursive Analysis, Breaking Parameter
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Regime Switching I: Observed-Regime Threshold Model

yt =



c(u) + φ(u)yt−1 + ε
(u)
t , θ(u) < yt−d

c(m) + φ(m)yt−1 + ε
(m)
t , θ(l) < yt−d < θ(u)

c(l) + φ(l)yt−1 + ε
(l)
t , θ(l) > yt−d
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Regime Switching II: Markov-Switching Model

Regime governed by latent 2-state Markov process:

M =

(
p00 1− p00

1− p11 p11

)

Switching mean:

f (yt |st) =
1√
2πσ

exp

(
−(yt − µst )

2

2σ2

)
.

Switching regression:

f (yt |st) =
1√
2πσ

exp

(
−(yt − x ′tβst )

2

2σ2

)
.
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Rolling Regression for Generic Structural Change
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Heteroskedasticity in Time Series

Figure: Time Series of Daily NYSE Returns.
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Key Fact 1: Stock Returns are Approximately Serially
Uncorrelated

Figure: Correlogram of Daily Stock Market Returns.
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Key Fact 2: Returns are Unconditionally Non-Gaussian

Figure: Histogram and Statistics for Daily NYSE Returns.
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Unconditional Volatility Measures

Variance: σ2 = E (rt − µ)2 (or standard deviation: σ)

Mean Absolute Deviation: MAD = E |rt − µ|

Interquartile Range: IQR = 75% − 25%

Outlier probability: P|rt − µ| > 5σ (for example)

Tail index: γ s.t. P(rt > r) = k r−γ

Kurtosis: K = E (r − µ)4/σ4

p% Value at Risk (VaRp)): x s.t. P(rt < x) = p
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Key Fact 3: Returns are Conditionally Heteroskedastic I

Figure: Time Series of Daily Squared NYSE Returns
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Key Fact 3: Returns are Conditionally Heteroskedastic II

Figure: Correlogram of Daily Squared NYSE Returns.
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Background: Financial Economics Changes Fundmentally
When Volatility is Dynamic

I Risk management

I Portfolio allocation

I Asset pricing

I Hedging

I Trading
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Asset Pricing I: Sharpe Ratios

Standard Sharpe:

E (rit − rft)

σ

Conditional Sharpe:

E (rit − rft)

σt
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Asset Pricing II: CAPM

Standard CAPM:

(rit − rft) = α + β(rmt − rft)

β =
cov((rit − rft), (rmt − rft))

var(rmt − rft)

Conditional CAPM:

βt =
covt((rit − rft), (rmt − rft))

vart(rmt − rft)
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Asset Pricing III: Derivatives

Black-Scholes:

C = N(d1)S − N(d2)Ke−rτ

d1 =
ln(S/K) + (r + σ2/2)τ

σ
√
τ

d2 =
ln(S/K) + (r − σ2/2)τ

σ
√
τ

PC = BS(σ, ...)

(Standard Black-Scholes options pricing)

Completely different when σ varies!
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Conditional Return Distributions

f (rt) vs. f (rt |Ωt−1)

Key 1: E (rt |Ωt−1)

Are returns conditional mean independent? Arguably yes.

Returns are (arguably) approximately serially uncorrelated, and
(arguably) approximately free of additional non-linear conditional

mean dependence.
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Conditional Return Distributions, Continued

Key 2: var(rt |Ωt−1) = E ((rt − µ)2|Ωt−1)

Are returns conditional variance independent? No way!

Squared returns serially correlated, often with very slow decay.
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Linear Models (e.g., AR(1))

rt = φrt−1 + εt

εt ∼ iid(0, σ2), |φ| < 1

Uncond. mean: E (rt) = 0 (constant)
Uncond. variance: E (r2t ) = σ2/(1− φ2) (constant)

Cond. mean: E (rt | Ωt−1) = φrt−1 (varies)
Cond. variance: E ([rt − E (rt | Ωt−1)]2 | Ωt−1) = σ2 (constant)

– Conditional mean adapts, but conditional variance does not
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ARCH(1) Process

rt |Ωt−1 ∼ N(0, ht)

ht = ω + αr2t−1

E (rt) = 0

E (rt
2) =

ω

(1− α)

E (rt |Ωt−1) = 0

E ([rt − E (rt |Ωt−1)]2|Ωt−1) = ω + αr2t−1
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GARCH(1,1) Process (“Generalized ARCH”)

rt | Ωt−1 ∼ N(0, ht)

ht = ω + αr2t−1 + βht−1

E (rt) = 0

E (rt
2) =

ω

(1− α− β)

E (rt |Ωt−1) = 0

E ([rt − E (rt | Ωt−1)]2 | Ωt−1) = ω + αr2t−1 + βht−1

Well-defined and covariance stationary if
0 < α < 1, 0 < β < 1, α + β < 1
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GARCH(1,1) and Exponential Smoothing

Exponential smoothing recursion:

σ̂2t = λσ̂2t−1 + (1− λ)r2t

=⇒ σ̂2t = (1− λ)
∑
j

λj r2t−j

But in GARCH(1,1) we have:

ht = ω + αr2t−1 + βht−1

ht =
ω

1− β
+ α

∑
βj−1r2t−j
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Unified Theoretical Framework

I Volatility dynamics (of course, by construction)

I Volatility clustering produces unconditional leptokurtosis

I Temporal aggregation reduces the leptokurtosis
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Tractable Empirical Framework

L(θ; r1, . . . , rT ) = f (rT |ΩT−1; θ)f ((rT−1|ΩT−2; θ) . . . ,

where θ = (ω, α, β)′

If the conditional densities are Gaussian,

f (rt |Ωt−1; θ) =
1√
2π

ht(θ)−1/2 exp

(
−1

2

r2t
ht(θ)

)
,

so

ln L = const − 1

2

∑
t

ln ht(θ)− 1

2

∑
t

r2t
ht(θ)
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Variations on the GARCH Theme

I Explanatory variables in the variance equation: GARCH-X

I Fat-tailed conditional densities: t-GARCH

I Asymmetric response and the leverage effect: T-GARCH

I Regression with GARCH disturbances

I Time-varying risk premia: GARCH-M
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Explanatory variables in the Variance Equation: GARCH-X

ht = ω + αr2t−1 + βht−1 + γzt

where z is a positive explanatory variable
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Fat-Tailed Conditional Densities: t-GARCH

If r is conditionally Gaussian, then

rt =
√

ht N(0, 1)

But often with high-frequency data,

rt√
ht
∼ leptokurtic

So take:

rt =
√

ht
td

std(td)

and treat d as another parameter to be estimated

243 / 307



Asymmetric Response and the Leverage Effect: T-GARCH

Standard GARCH: ht = ω + αr2t−1 + βht−1

T-GARCH: ht = ω + αr2t−1 + γr2t−1Dt−1 + βht−1

Dt =

{
1 if rt < 0
0 otherwise

positive return (good news): α effect on volatility

negative return (bad news): α + γ effect on volatility

γ 6= 0: Asymetric news response
γ > 0: “Leverage effect”
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Regression with GARCH Disturbances

yt = x ′tβ + εt

εt |Ωt−1 ∼ N(0, ht)
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Time-Varying Risk Premia: GARCH-M

Standard GARCH regression model:

yt = x ′tβ + εt

εt |Ωt−1 ∼ N(0, ht)

GARCH-M model is a special case:

yt = x ′tβ + γht + εt

εt |Ωt−1 ∼ N(0, ht)
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Back to Empirical Work – “Standard” GARCH(1,1)
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GARCH(1,1)
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GARCH(1,1)

Figure: GARCH(1,1) Estimation, Daily NYSE Returns.
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GARCH(1,1)

Figure: Estimated Conditional Standard Deviation, Daily NYSE Returns.
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GARCH(1,1)

Figure: Conditional Standard Deviation, History and Forecast, Daily
NYSE Returns.
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A Useful Specification Diagnostic

rt |Ωt−1 ∼ N(0, ht)

rt =
√

htεt , εt ∼ iidN(0, 1)

rt√
ht

= εt , εt ∼ iidN(0, 1)

Infeasible: examine εt . iid? Gaussian?

Feasible: examine ε̂t = rt/
√

ĥt . iid? Gaussian?

Key deviation from iid is volatility dynamics. So examine
correlogram of squared standardized returns, ε̂2t
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GARCH(1,1)

Figure: Correlogram of Squared Standardized GARCH(1,1) Residuals,
Daily NYSE Returns.
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“Fancy” GARCH(1,1)
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“Fancy” GARCH(1,1)

 
Dependent Variable: R   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Date: 04/10/12   Time: 13:48  
Sample (adjusted): 2 3461   
Included observations: 3460 after adjustments 
Convergence achieved after 19 iterations 
Presample variance: backcast (parameter = 0.7) 
GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*RESID(-1)^2*(RESID(-1)<0)  
        + C(7)*GARCH(-1)   

Variable Coefficient Std. Error z-Statistic Prob.  

@SQRT(GARCH) 0.083360 0.053138 1.568753 0.1167
C 1.28E-05 0.000372 0.034443 0.9725

R(-1) 0.073763 0.017611 4.188535 0.0000

 Variance Equation   

C 1.03E-06 2.23E-07 4.628790 0.0000
RESID(-1)^2 0.014945 0.009765 1.530473 0.1259

RESID(-1)^2*(RESID(-
1)<0) 0.094014 0.014945 6.290700 0.0000

GARCH(-1) 0.922745 0.009129 101.0741 0.0000

T-DIST. DOF 5.531579 0.478432 11.56188 0.0000

 

 

Figure: AR(1) Returns with Threshold t-GARCH(1,1)-in Mean.
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Causal Predictive Modeling

Consider a standard linear regression setting with K regressors and
sample size N.
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T-Consistency

We will say that an estimator β̂ is consistent for a treatment effect
(“T-consistent”) if

plimβ̂k = ∂E (y |x)/∂xk , ∀k = 1, ...,K ; that is, if(
β̂k −

∂E (y |x)

∂xk

)
→p 0, ∀k = 1, ...,K .

Hence in large samples β̂k provides a good estimate of the effect
on y of a one-unit “treatment” or “intervention” performed on xk .

T-consistency is the standard econometric notion of consistency.
OLS is T-consistent under the FIC.

OLS is generally not T-consistent without the FIC.
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And Remember How Stringent the FIC Are!

1. The fitted model is:
y = Xβ + ε

ε ∼ N(0, σ2I ),

and it matches the true data-generating process.

1.1 The relationship, if any, is truly linear, with no omitted
variables, no measurement error, etc.

1.2 The coefficients, β, are fixed.
1.3 ε ∼ N.
1.4 The ε’s have constant variance σ2.
1.5 The ε’s are uncorrelated.

2. There is no redundancy among the variables contained in X ,
so that X ′X is non-singular.

3. X is a non-stochastic matrix, fixed in repeated samples (old
style), or X is a stochastic matrix such that E (ε|X ) = 0 (new
style).
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Non-Causal Predictive Modeling

Again consider a standard linear regression setting with K
regressors and sample size N.
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P-Consistency

Assuming quadratic loss,
the predictive risk of a parameter configuration β is

R(β) = E (y − x ′β)2.

Let B be a set of β’s and let β∗ ∈ B minimize R(β).

We will say that β̂ is consistent for a predictive effect
(“P-consistent”) if plimR(β̂) = R(β∗); that is, if(

R(β̂)− R(β∗)
)
→p 0.

Hence in large samples β̂ provides a good way to predict y for any
hypothetical x : simply use x ′β̂.

OLS is effectively always P-consistent;
we require almost no conditions of any kind!
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Correlation vs. Causality, and
P-Consistency vs. T-consistency

The distinction between P-consistency and T-consistency is related
to the distinction between correlation and causality. As is well
known, correlation does not imply causality! As long as x and y
are correlated, we can exploit the correlation (as captured in β̂)
very generally to predict y given knowledge of x . That is, there
will be a nonzero “predictive effect” of x knowledge on y . But
nonzero correlation doesn’t necessarily tell us anything about the
causal “treatment effect” of x treatments on y . That requires the
full ideal conditions. Even if there is a non-zero predictive effect of
x on y (as captured by β̂LS), there may or may not be a nonzero
treatment effect of x on y , and even if nonzero it will generally not
equal the predictive effect.
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Correlation vs. Causality, and
P-Consistency vs. T-consistency,
Continued

So, assembling things:

P-consistency is consistency for a non-causal predictive effect.
(Almost trivially easy to obtain.)

T-consistency is consistency for a causal predictive effect.
(Notoriously difficult to obtain.)
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An Example of Correlation Without Causality

To take a simple example, suppose that y and x are in fact
causally unrelated, so that the true treatment effect of x on y is 0
by construction. But suppose that x is also highly correlated with
an unobserved variable z that does cause y . Then y and x will be
correlated due to their joint dependence on z , and that correlation

can be used to predict y given x , despite the fact that, by
construction, x treatments (interventions) will have no effect on y .
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A Thought Experiment

True DGP:

yi = zi + εi

Suppose also that there exists a variable x such that corr(x , z) > 0.

Fitted OLS Regression Model:

y → x

Is β̂OLS P-consistent?

Is β̂OLS T-consistent?
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Nonstationarity
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Nonstationarity and Random Walks

Random walk:

yt = yt−1 + εt

εt ∼ iid(0, σ2)

Just a simple special case of AR(1) φ = 1
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Random Walk with Drift

yt = δ + yt−1 + εt

εt ∼ iid(0, σ2)

yt = tδ + y0 +
t∑

i=1

εi

E (yt) = y0 + tδ

var(yt) = tσ2

lim
t→∞

var(yt) =∞
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Recall Properties of AR(1) with |φ| < 1

– Shocks εt have persistent but not permanent effects

yt =
∞∑
j=0

φjεt−j (note φj → 0)

– Series yt varies but not too extremely

var(yt) =
σ2

1− φ2
(note var(yt) <∞)

– Autocorrelations ρ(τ) nonzero but decay to zero

ρ(τ) = φτ (note φτ → 0)
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Properties of the Random Walk (AR(1) With |φ| = 1)

– Shocks have permanent effects

yt = y0 +
t−1∑
j=0

εt−j

– Series is infinitely variable

E (yt) = y0

var(yt) = tσ2

lim
t→∞

var(yt) =∞

– Autocorrelations ρ(τ) do not decay

ρ(τ) ≈ 1 (formally not defined)
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A Key Insight Regarding the Random Walk

– Level series yt is non-stationary (of course)

– Differenced series yt is stationary (indeed white noise)!

∆yt = εt

A series is called I (d) if it is non-stationary in levels but is
appropriately made stationary by differencing d times.

Random walk is the key I (1) process.
Other I (1) processes are similar. Why?
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The Beveridge-Nelson Decomposition

yt ∼ I (1) =⇒ yt = xt + zt
xt = random walk

zt = covariance stationary

Hence the random walk is the key ingredient for all I (1) processes.

The Beveridge-Nelson decomposition implies that shocks to any
I (1) process have some permanent effect, as with a random walk.

But the effects are not completely permanent,
unless the process is a pure random walk.
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I (1) Processes and “Unit Roots”

Random walk is an I (1) AR(1) process:
yt = yt−1 + εt
(1− L)︸ ︷︷ ︸ yt = εt

deg 1
One (unit) root, L = 1

∆yt is standard covariance-stationary WN

More general I (1) AR(p) process:
Φ(L)︸︷︷︸ yt = εt

deg p
[Φ′(L)︸ ︷︷ ︸ (1− L)︸ ︷︷ ︸]yt = εt

(deg p-1)(deg 1)
p − 1 stationary roots, one unit root

∆yt is standard covariance stationary AR(p − 1)

272 / 307



Unit Root Distribution for the AR(1) Process

Key issue (hypothesis) in economics:

I (1) vs. I (0), unit root vs. stationary process

When |φ| < 1,

√
T (φ̂LS − φ)

d
→ N

When φ = 1,

T (φ̂LS − 1)
d
→ DF

Superconsistent
Nonstandard limiting distribution

Downward finite-sample bias (“Dickey-Fuller bias”)
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Studentized Statistic

τ̂ =
φ̂ − 1

s
√

1∑
y2
t−1

Not t in finite samples
Not N(0, 1) asymptotically

Trick:
Don’t run yt → yt−1

Instead run ∆yt → yt−1
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AR(1) With Nonzero Mean Under the Alternative

(yt − µ) = φ(yt−1 − µ) + εt

yt = α + φyt−1 + εt

where α = µ(1− φ)

Random walk null vs. mean-reverting alternative

Studentized statistic τ̂µ
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AR(1) With Trend Under the Alternative

(yt − a− bt) = φ(yt−1 − a− b(t − 1)) + εt

yt = α + βt + φyt−1 + εt

where α = a(1− φ) + bφ and β = b(1− φ)

H0 : φ = 1 (unit root)
H1 : φ < 1 (stationary root)

Studentized statistic τ̂τ

“Random walk with drift” vs. “stat. AR(1) around linear trend”
“Stochastic trend” vs. “deterministic trend”
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Stochastic Trend vs. Deterministic Trend
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AR(p)

yt +

p∑
j=1

φjyt−j = εt

yt = ρ1yt−1 +

p∑
j=2

ρj(yt−j+1 − yt−j) + εt

where p ≥ 2, ρ1 = −
∑p

j=1 φj , and ρi =
∑p

j=i φj , i = 2, ..., p

Studentized statistic τ̂ is still relevant
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AR(p) With Nonzero Mean Under the Alternative

(yt − µ) +

p∑
j=1

φj(yt−j − µ) = εt

yt = α + ρ1yt−1 +

p∑
j=2

ρj(yt−j+1 − yt−j) + εt

where α = µ(1 +
∑p

j=1 φj)

Studentized statistic τ̂µ is still relevant
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AR(p) With Trend Under the Alternative

(yt − a− bt) +

p∑
j=1

φj(yt−j − a− b(t − j)) = εt

yt = k1 + k2 t + ρ1yt−1 +

p∑
j=2

ρj(yt−j+1 − yt−j) + εt

k1 = a

(
1 +

p∑
i=1

φi

)
− b

p∑
i=1

iφi

k2 = b

(
1 +

p∑
i=1

φi

)

Under the null hypothesis, k1 = −b
∑p

i=1 iφi and k2 = 0

Studentized statistic τ̂τ is still relevant
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“Trick Form” of ADF in the General AR(p) Case

(yt − yt−1) = (ρ1 − 1)yt−1 +
k−1∑
j=2

ρj(yt−j+1 − yt−j) + εt

– Unit root corresponds to (ρ1 − 1) = 0

– Use standard automatically-computed t-statistic
(which of course does not have the t-distribution)
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USD/GBP Exchange Rate, 1971.01-2012.10
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Log USD/GBP Exchange Rate, 1971.01-2012.10
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Change in USD/GBP Exchange Rate, 1971.01-2012.10
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Trend-Stationary Model
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Trend-Stationary Model
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Difference-Stationary Model (Random Walk With Drift)
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Difference-Stationary Model (Random Walk With Drift)
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DF Tests – Option Screen
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ADF Test, Allowing for Trend Under the Alternative
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*************************
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The Lag Operator

Lyt = yt−1

AR(1) illustration:

yt = φyt−1 + εt

yt = φLyt + εt

yt − φLyt = εt

(1− φL)yt = εt

Φ(L)yt = εt

Φ(L) is a polynomial of degree 1 in the L
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The Lag Operator, Continued (AR(p))

yt = φ1yt−1 + ...+ φpyt−p + εt

yt = φ1Lyt + ...+ φpLpyt + εt

yt − φ1Lyt − ...− φpLpyt = εt

(1− φ1L− ...− φpLp)yt = εt

Φ(L)yt = εt

Φ(L) is a polynomial of degree p in the lag operator

Roots of Φ(L) are important for nature and stability of dynamics
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Covariance Stationarity in AR(p)

AR(p) is

yt = φ1yt−1 + ...+ φpyt−p + εt

(1− φ1L− ...− φpLp)yt = εt

Φ(L)yt = εt

Stable if the p roots of Φ(L) are outside the unit circle
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Big Data

296 / 307



Selection, Shrinkage and Derived Inputs

“Data-rich” environments

“Wide data”

Dimensionality reduction is key: Selection, shrinkage, more.
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Selection Methods

• All Subsets
Quickly gets hard as there are 2K subsets of K regressors!

• Greedy Forward Selection
Start with intercept only and add the new regressor that minimizes
RSS, then take the one variable model and add the new regressor

that minimizes RSS, etc.

• Greedy Backward Selection
Start with K -variable model and remove the “least significant”
variable, then take that K − 1-variable model and remove the

“least significant” variable, etc.

• Posterior odds and marginal likelihood:

p(Mi |y)

p(Mj |y)︸ ︷︷ ︸
posterior odds

=
p(y |Mi )

p(y |Mj)︸ ︷︷ ︸
Bayes factor

p(Mi )

p(Mj)︸ ︷︷ ︸
prior odds

• Information criteria:

BIC = T (K
T )
∑T

t=1 e2t
T

• Also AIC , Cp, Cross validation, etc.

“Oracle property”
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Model Selection by MSE (or R2)

MSE =

∑T
t=1 e2t
T

R2 = 1 −
1
T

∑T
t=1 e2t

1
T

∑T
t=1(yt − ȳ)2

= 1− MSE
1
T

∑T
t=1(yt − ȳ)2

Selection by MSE (or R2) produces in-sample over-fitting
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Model Selection by s2 (or R̄2)

s2 =
1

T − K

T∑
t=1

e2t =

(
T

T − K

) ∑T
t=1 e2t
T

R̄2 = 1 −
1

T−K
∑T

t=1 e2t
1

T−1
∑T

t=1(yt − ȳ)2
= 1 − s2

1
T−1

∑T
t=1(yt − ȳ)2

Selection by s2 (or R̄2) still produces in-sample over-fitting
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Information Criteria for Model Selection

SIC =
(

T ( k
T )
) ∑T

t=1 e2t
T

“Oracle property”
No over-fitting (asmptotically)!

AIC =
(

e( 2k
T )
) ∑T

t=1 e2t
T
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Information Criteria for Model Selection

Figure: Degrees-of-Freedom Penalties
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Shrinkage Methods

• Bayesian regression:

β̂bayes = ω1β̂MLE + ω2β0

• Ridge Regression:

β̂ridge = (X ′X + λI )−1X ′y

• Penalized regression:

β̃ = argminβ1...βK

 T∑
t=1

(
yt −

K∑
i=1

βixit

)2

+ λ

K∑
i=1

|βi |q


– penalties smooth at the origin produce shrinkage
– penalties non-differentiable at the origin produce selection

– q = 2 is ridge; q = 1 is lasso; q → 0 is selection.
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Aside: Review of Principal Components Analysis (PCA)
for ata (X Matrix) Description

Think of a wide X matrix and how to “reduce” it.

X ′X eigendecomposition:

X ′X = VD2V ′

The j th column of V , vj , is the j th eigenvector of X ′X
Diagonal matrix D2 contains the descending eigenvalues of X ′X

First principal component:
z1 = Xv1

var(z1) = d2
1/T

(maximal sample var among all possible l.c.’s of columns of X )

In general:
zj = Xvj ⊥ zj ′ , j

′ 6= j
var(zj) ≤ d2

j /T
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Derived Input Variable Methods I:
PC Regression (PCR) and its First Problem

“Factor-Augmented Regression”
“Distill, then select then proceed”

Ridge and PCR are both shrinkage procedures.

BUT:

Ridge effectively includes all PC’s and shrinks according to sizes of
eigenvalues associated with the PC’s.

PCR effectively shrinks some PCs completely to zero (those not
included) and doesn’t shrink others at all (those included).

– Awkward
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Derived Input Variable Methods I (Continued):
PC Regression (PCR) and its Second Problem

No “supervision”
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Derived Input Variable Methods II:
Partial Least Squares Regression (PLS)
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