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Chapter 1

1. Various geometric formulas are given in Appendix E.

(a) Expressing the radius of the Earth as

R =(6.37 x10°m)(10” km/m) = 6.37 x 10° km,
its circumference is s = 27R =27(6.37 x 10’ km) =4.00x10* km.

(b) The surface area of Earth is 4 =4n R*> = 4n (6.37 x 10’ km)2 =5.10 x 10° km”.

(c) The volume of Earth is V/ =4?TE R = % (6.37 x 10° km)3 =1.08 x 10" km’.

2. The conversion factors are: 1 gry=1/10 line, 1 line=1/12 inch and 1 point = 1/72
inch. The factors imply that

1 gry = (1/10)(1/12)(72 points) = 0.60 point.
Thus, 1 gry” = (0.60 point)* = 0.36 point’, which means that 0.50 gry*= 0.18 point>.

3. The metric prefixes (micro, pico, nano, ...) are given for ready reference on the inside
front cover of the textbook (see also Table 1-2).

(a)Since 1 km=1x10"mand I m=1 x 106,um,

1km =10’ m = (10°m)(10° xm/m) =10" xm.

The given measurement is 1.0 km (two significant figures), which implies our result
should be written as 1.0 x 10° um.

(b) We calculate the number of microns in 1 centimeter. Since 1 cm =107 m,
lem =107 m = (10"m)(10° #m/m) = 10* xm.

We conclude that the fraction of one centimeter equal to 1.0 zm is 1.0 x 107,

(c) Since 1 yd = (3 ft)(0.3048 m/ft) = 0.9144 m,
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1.0yd = (0.91m)(106,um/m) =9.1x10° um.

4. (a) Using the conversion factors 1 inch = 2.54 cm exactly and 6 picas = 1 inch, we
obtain

0.80 cm = (0.80 cm) (ZI;ZCh j(i Plcisj ~ 1.9 picas.
54 cm )| linc

(b) With 12 points = 1 pica, we have

0.80 cm = (0.80 cm) Linch /6 picas 12 p(')lnts ~ 23 points.
2.54 cm )\ 1inch 1 pica

5. Given that 1 furlong = 201.168 m, 1rod =5.0292 m and 1chain =20.117 m, we find
the relevant conversion factors to be

1.0 furlong =201.168 m = (201.168 1) — 2% _ 40 rods,
5.0292 af
and
1.0 furlong =201.168 m = (201.168 1) ——T2™_ _10) chains.
20.117 pr

Note the cancellation of m (meters), the unwanted unit. Using the given conversion
factors, we find

(a) the distance d in rods to be

d = 4.0 furlongs =(4.0 fu,ﬂongs)14f(l)%1/lidS =160 rods,
ong

(b) and that distance in chains to be

)—10 chains = 40 chains.

d = 4.0 furlongs =(4.0 furlongs
1 furlong

6. We make use of Table 1-6.

(a) We look at the first (“cahiz”) column: 1 fanega is equivalent to what amount of cahiz?
We note from the already completed part of the table that 1 cahiz equals a dozen fanega.

Thus, 1 fanega :% cahiz, or 8.33 x 107 % cahiz. Similarly, “1 cahiz = 48 cuartilla” (in the
already completed part) implies that 1 cuartilla = % cahiz, or 2.08 x 107 cahiz.

Continuing in this way, the remaining entries in the first column are 6.94 x 10~ and
3.47x107.



(b) In the second (“fanega”) column, we find 0.250, 8.33 x 107, and 4.17 x 1072 for the
last three entries.

(¢) In the third (“cuartilla”) column, we obtain 0.333 and 0.167 for the last two entries.

(d) Finally, in the fourth (“almude”) column, we get % =0.500 for the last entry.

(e) Since the conversion table indicates that 1 almude is equivalent to 2 medios, our
amount of 7.00 almudes must be equal to 14.0 medios.

(f) Using the value (1 almude = 6.94 x 10~ cahiz) found in part (a), we conclude that
7.00 almudes is equivalent to 4.86 x 10~ cahiz.

(g) Since each decimeter is 0.1 meter, then 55.501 cubic decimeters is equal to 0.055501
m’ or 55501 cm’. Thus, 7.00 almudes :7i_(;0 fanega = 7.00 (55501 cm’) = 3.24 x 10" cm’.

12
7. We use the conversion factors found in Appendix D.

1 acre- ft = (43,560 ft*)-ft = 43,560 ft’
Since 2 in. = (1/6) ft, the volume of water that fell during the storm is

v =(26 km*)(1/6 ft)=(26 km>)(3281ft/km)>(1/6 ft) = 4.66x10” ft’.

Thus,
_ 466 x 107 ft*
43560 x 10* ft’ /acre - ft

=11 x 10° acre- ft.

8. From Fig. 1-4, we see that 212 S is equivalent to 258 W and 212 — 32 = 180 S is
equivalent to 216 — 60 = 156 Z. The information allows us to convert S to W or Z.

(a) In units of W, we have

50.0 S = (50.0 S) (2251822’] = 60.8 W

(b) In units of Z, we have

50.0 S = (50.0 S) [%) =4337

9. The volume of ice is given by the product of the semicircular surface area and the
thickness. The area of the semicircle is 4 = nr2/2, where 7 is the radius. Therefore, the
volume is
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V=—rz:
2

where z is the ice thickness. Since there are 10° m in 1 km and 10% cm in 1 m, we have

3 2
r = (2000km) | 12| 107915600 x 10° em.
1km Im

In these units, the thickness becomes
10> cm

Im

z=3000m = (3000m) ( j =3000 x 10* cm

which yields 7 = = (2000 x 10° cm)” (3000 x 10° em) = 1.9 x 10% em’,

N

10. Since a change of longitude equal to 360° corresponds to a 24 hour change, then one
expects to change longitude by 360°/24 =15° before resetting one's watch by 1.0 h.

11. (a) Presuming that a French decimal day is equivalent to a regular day, then the ratio
of weeks is simply 10/7 or (to 3 significant figures) 1.43.

(b) In a regular day, there are 86400 seconds, but in the French system described in the
problem, there would be 10° seconds. The ratio is therefore 0.864.

12. A day is equivalent to 86400 seconds and a meter is equivalent to a million
micrometers, SO

(3.7m)(10° xm/m)
(14 day)(864005s/day)

= 3.1 pm/s.

13. The time on any of these clocks is a straight-line function of that on another, with
slopes # 1 and y-intercepts # 0. From the data in the figure we deduce

2 594 33 662
to=—ty +—\ t,= -—=

7 77 7 40t 5
These are used in obtaining the following results.

(a) We find
: 33
t, —t, =4—O(tA —t,)=495s

when ¢’y — ¢4, = 600 s.



(b) We obtain ¢ — t,. = % (1 —t,) = % (495) = 141 s.

(c) Clock B reads tz = (33/40)(400) — (662/5) = 198 s when clock A4 reads 4 =400 s.
(d) From tc =15 = (2/7)tp + (594/7), we get tg = —245 s.

14. The metric prefixes (micro (x), pico, nano, ...) are given for ready reference on the
inside front cover of the textbook (also Table 1-2).

(a) 1 ucentury = (10’6 century) 100y 365day [ 24 h 160 min ) _ 52.6 min.
1 century ly 1 day lh

(b) The percent difference is therefore

52.6 min — 50 min
52.6 min

= 4.9%.

15. A week is 7 days, each of which has 24 hours, and an hour is equivalent to 3600
seconds. Thus, two weeks (a fortnight) is 1209600 s. By definition of the micro prefix,
this is roughly 1.21 x 10'? zs.

16. We denote the pulsar rotation rate f (for frequency).

B 1 rotation
1.55780644887275 x 10~ s

/

(a) Multiplying f by the time-interval ¢ = 7.00 days (which is equivalent to 604800 s, if
we ignore significant figure considerations for a moment), we obtain the number of
rotations:

Lrotation 1604800 s) = 388238218.4
1.55780644887275 x 107 s

which should now be rounded to 3.88 x 10° rotations since the time-interval was
specified in the problem to three significant figures.

(b) We note that the problem specifies the exact number of pulsar revolutions (one
million). In this case, our unknown is ¢, and an equation similar to the one we set up in
part (a) takes the form N = ft, or

6 1 rotation
1x10° = - |
1.55780644887275 x 10~ s
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which yields the result 1 = 1557.80644887275 s (though students who do this calculation
on their calculator might not obtain those last several digits).

(c) Careful reading of the problem shows that the time-uncertainty per revolution is
+3x107"s . We therefore expect that as a result of one million revolutions, the
uncertainty should be (£3x107"7)(1x10%)= +3x10""'s.

17. None of the clocks advance by exactly 24 h in a 24-h period but this is not the most
important criterion for judging their quality for measuring time intervals. What is
important is that the clock advance by the same amount in each 24-h period. The clock
reading can then easily be adjusted to give the correct interval. If the clock reading jumps
around from one 24-h period to another, it cannot be corrected since it would impossible
to tell what the correction should be. The following gives the corrections (in seconds) that
must be applied to the reading on each clock for each 24-h period. The entries were
determined by subtracting the clock reading at the end of the interval from the clock
reading at the beginning.

CLOCK Sun. Mon. Tues. Wed. Thurs. Fri.
-Mon. -Tues. -Wed. -Thurs. -Fri. -Sat.
A -16 -16 -15 -17 -15 -15
B -3 +5 -10 +5 +6 -7
C -58 —-58 -58 -58 —58 -58
D +67 +67 +67 +67 +67 +67
E +70 +55 +2 +20 +10 +10

Clocks C and D are both good timekeepers in the sense that each is consistent in its daily
drift (relative to WWF time); thus, C and D are easily made “perfect” with simple and
predictable corrections. The correction for clock C is less than the correction for clock D,
so we judge clock C to be the best and clock D to be the next best. The correction that
must be applied to clock A is in the range from 15 s to 17s. For clock B it is the range
from -5 s to +10 s, for clock E it is in the range from -70 s to -2 s. After C and D, A has
the smallest range of correction, B has the next smallest range, and E has the greatest
range. From best to worst, the ranking of the clocks is C, D, A, B, E.

18. The last day of the 20 centuries is longer than the first day by

(20 century) (0.001 s/century) = 0.02 s.

The average day during the 20 centuries is (0 + 0.02)/2 = 0.01 s longer than the first day.
Since the increase occurs uniformly, the cumulative effect 7' is



T = (average increase in length of a day)(number of days)

_ (0.01 sJ (365.25 day] (2000 )

day y
= 7305 s

or roughly two hours.

19. When the Sun first disappears while lying down, your line of sight to the top of the
Sun is tangent to the Earth’s surface at point 4 shown in the figure. As you stand,
elevating your eyes by a height 4, the line of sight to the Sun is tangent to the Earth’s
surface at point B.

Line of sight to

top of the Sun |
First sunset 4 h
f

N

0

Distant Sun

8,
IS

Second sunset

Center of Earth

Let d be the distance from point B to your eyes. From the Pythagorean theorem, we have
d>+r*=(r+h’=r"+2rh+h’

or d* =2rh+h*, where r is the radius of the Earth. Since » > &, the second term can be

dropped, leading to d”> ~ 2rh. Now the angle between the two radii to the two tangent
points 4 and B is 6, which is also the angle through which the Sun moves about Earth
during the time interval #=11.1 s. The value of & can be obtained by using

0 t

360° 24 h
This yields
(360°)(11.1 s)

= - — =10.04625°.
(24 h)(60 min/h)(60 s/min)

Using d =rtan@, we have d* =7’ tan’ @ = 2rh, or

2h
7= >
tan” @

Using the above value for #and 2= 1.7 m, we have » =5.2x10° m.
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20. (a) We find the volume in cubic centimeters

. 3 3
193 gal = (193 gal) | 21 |[ 224} _ 531, 105 e’
g 8 1 gal lin

and subtract this from 1 x 10° cm® to obtain 2.69 x 10°> cm’. The conversion gal — in’ is
given in Appendix D (immediately below the table of Volume conversions).

(b) The volume found in part (a) is converted (by dividing by (100 cm/m)*) to 0.731 m’,
which corresponds to a mass of

(1000 kg/m’) (0.731 m*)= 731 kg

using the density given in the problem statement. At a rate of 0.0018 kg/min, this can be
filled in

731kg
0.0018 kg/min

=4.06x10°min=0.77 y

after dividing by the number of minutes in a year (365 days)(24 h/day) (60 min/h).

21. If Mg is the mass of Earth, m is the average mass of an atom in Earth, and N is the
number of atoms, then My = Nm or N = Mg/m. We convert mass m to kilograms using
Appendix D (1 u=1.661 x 10’ kg). Thus,

24
N=Me _ 598 x 10 lzg — 90 x 10%.
m (40 u) (1661 x 107" kg/u)

22. The density of gold is

1 1932¢

m
= =19.32 g/cm’.
V 1 em’ &

p:

(a) We take the volume of the leaf to be its area 4 multiplied by its thickness z. With
density p=19.32 g/cm’ and mass m = 27.63 g, the volume of the leaf is found to be

y =" _ 1430 cm’.
o)

We convert the volume to SI units:



Im

3
V=(1.430cm3){ j =1.430 x10° m’.

100 cm

Since V= Az with z=1 x 10 m (metric prefixes can be found in Table 1-2), we obtain

e 1430 x 107° m’

- = 1430 m’.
1x10° m

(b) The volume of a cylinder of length 7 is V' = A¢ where the cross-section area is that of
a circle: A = m”. Therefore, with »=2.500 x 10°° m and ¥ = 1.430 x 10"® m’, we obtain

VZ =7.284 x 10* m =72.84 km.

nr

/€:

23. We introduce the notion of density:
_n
P Vv
and convert to S units: 1 g=1 x 107 kg.
(a) For volume conversion, we find 1 cm® = (1 x 107m)’ = 1 x 10 °m’. Thus, the density

in kg/m’ is
-3 3
1g/cm3:(lg3)(10 kgj( (in 3j:1><103 ke/m’ .
cm g 10° m

Thus, the mass of a cubic meter of water is 1000 kg.

(b) We divide the mass of the water by the time taken to drain it. The mass is found from
M = pV (the product of the volume of water and its density):

M = (5700 m*) (1x 10° kg/m’) = 5.70 x 10° kg.

The time is # = (10h)(3600 s/h) = 3.6 x 10*s, so the mass flow rate R is

6
R=%=5'7OXIO4kg:158kg/S.
t 3.6 x10" s

24. The metric prefixes (micro (u), pico, nano, ...) are given for ready reference on the
inside front cover of the textbook (see also Table 1-2). The surface area 4 of each grain
of sand of radius » = 50 zm = 50 x 10° m is given by 4 = 42(50 x 10°)* =3.14 x 10
m’® (Appendix E contains a variety of geometry formulas). We introduce the notion of
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density, p=m/V , so that the mass can be found from m = pV, where p = 2600 kg/m".
Thus, using ¥ = 4/3, the mass of each grain is

3
3 47 (50 x 10° m
m :pV:p(47;r ]=(2600 kgj ( : ) ~1.36 %10 ke.

m’
We observe that (because a cube has six equal faces) the indicated surface area is 6 m”.
The number of spheres (the grains of sand) N that have a total surface area of 6 m” is
given by

B 6 m’

T 3.14x10° m?

=1.91x10%

Therefore, the total mass M is M = Nm = (1.91 X 108) (1.36 x 107 kg) = 0.260 kg.

25. The volume of the section is (2500 m)(800 m)(2.0 m) = 4.0 x 10° m’. Letting “d”
stand for the thickness of the mud after it has (uniformly) distributed in the valley, then
its volume there would be (400 m)(400 m)d. Requiring these two volumes to be equal,
we can solve for d. Thus, d =25 m. The volume of a small part of the mud over a patch
of area of 4.0 m” is (4.0)d = 100 m’. Since each cubic meter corresponds to a mass of
1900 kg (stated in the problem), then the mass of that small part of the mud is

1.9x10° kg.

26. (a) The volume of the cloud is (3000 m)z(1000 m)* = 9.4 x 10° m’. Since each cubic
meter of the cloud contains from 50 x 10° to 500 x 10° water drops, then we conclude
that the entire cloud contains from 4.7 x 10'® to 4.7 x 10" drops. Since the volume of

each drop is % (10 x 10" °m)’ =4.2 x 107> m’, then the total volume of water in a cloud

is from 2x10° to 2x10* m’.

(b) Using the fact that 1 L=1x10’cm® =1x10°m’, the amount of water estimated in
part (a) would fill from 2x10° to 2x10 bottles.

(c) At 1000 kg for every cubic meter, the mass of water is from 2x10° to 2x10" kg.
The coincidence in numbers between the results of parts (b) and (c) of this problem is due
to the fact that each liter has a mass of one kilogram when water is at its normal density
(under standard conditions).

27. We introduce the notion of density, p=m/V , and convert to SI units: 1000 g =1 kg,
and 100 cm = 1 m.

(a) The density p of a sample of iron is
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3
1 kg 100 cm
=(7.87 g/ecm’ = 7870 kg/m’.
p=(787¢/ )[IOOOgj( I'm j s

If we ignore the empty spaces between the close-packed spheres, then the density of an
individual iron atom will be the same as the density of any iron sample. That is, if M is
the mass and V' is the volume of an atom, then

-26
y-M_ 927“? kg3:1.18><10’2° m’,
p  7.87x10 kg/m

(b) We set ¥ = 4nR’/3, where R is the radius of an atom (Appendix E contains several
geometry formulas). Solving for R, we find

1/3
/3 3(1.18x10% m®
e[ (< >] 1o

47 47

The center-to-center distance between atoms is twice the radius, or 2.82 x 107" m.

28. If we estimate the “typical” large domestic cat mass as 10 kg, and the “typical” atom
(in the cat) as 10 u = 2 x 1072 kg, then there are roughly (10 kg)/( 2 x 107 kg) = 5 x
10 atoms. This is close to being a factor of a thousand greater than Avogadro’s number.

Thus this is roughly a kilomole of atoms.

29. The mass in kilograms is

(289 piculs) [ 100&n | 16tahil 1 10¢chee 110 hoon J( 0.3779¢
Ipicul J{ 1gin J{ Itahil J{ 1chee )| 1hoon

which yields 1.747 x 10° g or roughly 1.75x 10’ kg.

30. To solve the problem, we note that the first derivative of the function with respect to
time gives the rate. Setting the rate to zero gives the time at which an extreme value of
the variable mass occurs; here that extreme value is a maximum.

(a) Differentiating m(t) = 5.00¢** —3.00¢ + 20.00 with respect to ¢ gives

am _ 40062 ~3.00.

dt

The water mass is the greatest when dm/dt =0, or at ¢ =(4.00/3.00)""** =4.21s.
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(b) At t =4.21s, the water mass is

m(t =4.215) =5.00(4.21)** —3.00(4.21)+20.00 = 23.2 g.

(c) The rate of mass change at t =2.00s is

dmi [4.00(2.00) > ~3.00 | g/s = 0.48 g/s = 04g2. 1ke  60s
dt |i-2.00s s 1000g 1 min
=2.89x107 kg/min.
(d) Similarly, the rate of mass change at 1 =5.00s is
dm =[4.00(5.00) > ~3.00 | g/s = ~0.101 g/s = 0.1018. ke 60s
dt | i=2.00s s 1000 g 1 min

=—6.05x107 kg/min.

31. The mass density of the candy is

p= L. LOO% =4.00x10" g/mm’ =4.00x10"* kg/cm’.
V- 50.0 mm

If we neglect the volume of the empty spaces between the candies, then the total mass of
the candies in the container when filled to height 4 is M =pA4h, where

A=(14.0 cm)(17.0 cm) =238 cm® is the base area of the container that remains
unchanged. Thus, the rate of mass change is given by

d;\;[ = d(f;h) = pA% =(4.00x107* kg/cm®)(238 cm?)(0.250 cm/s)

=0.0238 kg/s =1.43 kg/min.

32. The total volume V of the real house is that of a triangular prism (of height # = 3.0 m
and base area 4 = 20 x 12 = 240 m?) in addition to a rectangular box (height 4" = 6.0 m
and same base). Therefore,

V:lhA+h'A:(ﬁ+h'jA:18OOm3.
2 2
(a) Each dimension is reduced by a factor of 1/12, and we find

3
Vi = (1800 m*) (%j ~ 1.0 m’.
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(b) In this case, each dimension (relative to the real house) is reduced by a factor of 1/144.
Therefore,

1

3
Voiniarare = (1800 m’) (mj ~6.0 x 107 m’.

miniature

33. In this problem we are asked to differentiate between three types of tons:
displacement ton, freight ton and register ton, all of which are units of volume. The three
different tons are given in terms of barrel bulk, with

1 barrel bulk =0.1415 m* =4.0155 U.S. bushels
using 1 m’ =28.378 U.S. bushels. Thus, in terms of U.S. bushels, we have

4.0155 U.S. bushels

1 displacement ton = (7 barrels bulk) x[ j =28.108 U.S. bushels

1 barrel bulk
1 freight ton = (8 barrels bulk) x 4.0155 US. bushels =32.124 U.S. bushels
1 barrel bulk
I register ton = (20 barrels bulk)x| 20133 US- BUShels } g 4115 ¢ b1ichels
1 barrel bulk

(a) The difference between 73 “freight” tons and 73 “displacement” tons is

AV = T3(freight tons — displacement tons) = 73(32.124 U.S. bushels —28.108 U.S. bushels)
=293.168 U.S. bushels = 293 U.S. bushels

(b) Similarly, the difference between 73 “register” tons and 73 “displacement” tons is

AV =T3(register tons — displacement tons) = 73(80.31 U.S. bushels —28.108 U.S. bushels)
=3810.746 U.S. bushels ~ 3.81x10° U.S. bushels

34. The customer expects a volume ¥, = 20 x 7056 in® and receives V5 = 20 x 5826 in.>,
the difference being AV =V, -V, =24600 in.’, or

3
AV =(24600 in?) [2'54““} ( IL

= 403L
linch ) (1000 cm’ j

where Appendix D has been used.

35. The first two conversions are easy enough that a formal conversion is not especially
called for, but in the interest of practice makes perfect we go ahead and proceed formally:
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2 peck

(a) 11 tuffets = (11 tuffets)
1 tuffet

J = 22 pecks.

0.50 Imperial bushel

(b) 11 tuffets = (11 tuffets)
1 tuffet

j = 5.5 Imperial bushels .

36.3687 L
1 Imperial bushel

(c) 11 tuffets = (5.5 Imperial bushel) ( J ~200 L.

36. Table 7 can be completed as follows:

(a) It should be clear that the first column (under “wey”) is the reciprocal of the first

row — so that 19—0 =0.900, 43—0 =7.50 x 10_2, and so forth. Thus, 1 pottle = 1.56 x 1073 wey

and 1 gill = 8.32 x 107® wey are the last two entries in the first column.

(b) In the second column (under “chaldron”), clearly we have 1 chaldron = 1 chaldron
(that is, the entries along the “diagonal” in the table must be 1°’s). To find out how many

chaldron are equal to one bag, we note that 1 wey = 10/9 chaldron = 40/3 bag so that %

chaldron = 1 bag. Thus, the next entry in that second column is % =833 x 107
Similarly, 1 pottle = 1.74 x 10~ chaldron and 1 gill = 9.24 x 10~ chaldron.

(c) In the third column (under “bag”), we have 1 chaldron = 12.0 bag, 1 bag = 1 bag, 1
pottle =2.08 x 107 bag, and 1 gill = 1.11 x 10~ bag.

(d) In the fourth column (under “pottle”), we find 1 chaldron = 576 pottle, 1 bag = 48
pottle, 1 pottle = 1 pottle, and 1 gill = 5.32 x 10~ pottle.

(e) In the last column (under “gill”), we obtain 1 chaldron = 1.08 x 10° gill, 1 bag = 9.02
x 10 gill, 1 pottle = 188 gill, and, of course, 1 gill = 1 gill.

() Using the information from part (¢), 1.5 chaldron = (1.5)(12.0) = 18.0 bag. And since
each bag is 0.1091 m’ we conclude 1.5 chaldron = (18.0)(0.1091) = 1.96 m".

37. The volume of one unit is 1 cm® =1 x 107 m3, so the volume of a mole of them is
6.02 x 10 cm’= 6.02 x 10'" m®. The cube root of this number gives the edge length:
8.4x10° m’. This is equivalent to roughly 8 x 10% km.

38. (a) Using the fact that the area 4 of a rectangle is (width) x (length), we find
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A = (3.00acre) + (25.0perch )(4.00 perch)
40 perch)(4 perch)

lacre

(3.00 acre) (( } + 100 perch’
= 580 perch’.

We multiply this by the perch” — rood conversion factor (1 r00d/40 perch?) to obtain the
answer: Aiota = 14.5 roods.

(b) We convert our intermediate result in part (a):

16.51t
1 perch

2
= perc =1.58 x t°.
.t = (580 perch? 1.58 x 10° ft?

Now, we use the feet — meters conversion given in Appendix D to obtain

1m
3.2811t

2
A = (158 < 10° ft*) ( } =1.47 x 10" m?,

39. This problem compares the U.K gallon with U.S. gallon, two non-SI units for volume.
The interpretation of the type of gallons, whether U.K. or U.S., affects the amount of
gasoline one calculates for traveling a given distance.

If the fuel consumption rate is R (in miles/gallon), then the amount of gasoline (in
gallons) needed for a trip of distance d (in miles) would be

d (miles)

V(gallon) =
(8 ) R (miles/gallon)

Since the car was manufactured in the U.K., the fuel consumption rate is calibrated based
on U.K. gallon, and the correct interpretation should be “40 miles per U.K. gallon.” In
U.K., one would think of gallon as U.K. gallon; however, in the U.S., the word “gallon”
would naturally be interpreted as U.S. gallon. Note also that since
1 U.K. gallon =4.5460900 L and 1 U.S. gallon =3.7854118 L, the relationship between
the two is

1 U.S. gallon

1 U.K. gallon = (4.5460900 L)
3.7854118 L

j =1.20095 U.S. gallons

(a) The amount of gasoline actually required is

- 750 miles
40 miles/U. K. gallon

=18.75 U. K. gallons ~ 18.8 U. K. gallons
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This means that the driver mistakenly believes that the car should need 18.8 U.S. gallons.

(b) Using the conversion factor found above, the actual amount required is equivalent to

1.20095 U.S. gallons
1 U.K. gallon

40. Equation 1-9 gives (to very high precision!) the conversion from atomic mass units to
kilograms. Since this problem deals with the ratio of total mass (1.0 kg) divided by the
mass of one atom (1.0 u, but converted to kilograms), then the computation reduces to
simply taking the reciprocal of the number given in Eq. 1-9 and rounding off
appropriately. Thus, the answer is 6.0 x 10%°.

V'=(18.75 U.K. gallons)x( j ~22.5U.S. gallons.

41. Using the (exact) conversion 1 in = 2.54 cm = 0.0254 m, we find that

0.0254 m

1ft=12in.=(12 in.)x(
lin.

J =0.3048 m

and 1ft’ =(0.3048 m)’ =0.0283 m’ for volume (these results also can be found in
Appendix D). Thus, the volume of a cord of wood is ¥ = (8 ft)x (4 ft)x (4 ft) =128 ft’.
Using the conversion factor found above, we obtain

0.0283 m3j
3

V =1cord =128 ft’ = (128 ft3)><[ =3.625m’

which implies that 1 m’ = (3 6125 j cord =0.276 cord = 0.3 cord .

42. (a) In atomic mass units, the mass of one molecule is (16 + 1 + 1)u = 18 u. Using Eq.
1-9, we find

1.6605402 x 107 kg
lu

18u = (18u)(

] =3.0x10kg.

(b) We divide the total mass by the mass of each molecule and obtain the (approximate)

number of water molecules:
21
L Lax1om 5% 10%
3.0x107%

43. A million milligrams comprise a kilogram, so 2.3 kg/week is 2.3 x 10° mg/week.
Figuring 7 days a week, 24 hours per day, 3600 second per hour, we find 604800 seconds
are equivalent to one week. Thus, (2.3 x 10° mg/week)/(604800 s/week) = 3.8 mg/s.

44. The volume of the water that fell is
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2
26 km?) (2.0 in.) = (26 km?) (1000 mj (2.0 in.) (wj
1 km I in.

V=
(26 x10° m ) (0.0508 m)
1.3x10° m

We write the mass-per-unit-volume (density) of the water as:
p=%=l><103 kg/m’.

The mass of the water that fell is therefore given by m = pV-
= (1x10° kg/m’) (1.3x10° m*) = 1.3 x 10’ kg.

45. The number of seconds in a year is 3.156 x 10’. This is listed in Appendix D and
results from the product

(365.25 day/y) (24 h/day) (60 min/h) (60 s/min).

(a) The number of shakes in a second is 10%; therefore, there are indeed more shakes per
second than there are seconds per year.

(b) Denoting the age of the universe as 1 u-day (or 86400 u-sec), then the time during
which humans have existed is given by

10°
10"

=10 u-day,

86400 u-sec

= 8.6 u-sec.
1 u-day

which may also be expressed as (10‘4 u—day) (
46. The volume removed in one year is
V=(75 x10"m*) (26 m) ~2 x 10’ m’

1 km
1000 m

3
which we convert to cubic kilometers: V' = (2 x 107 m3) ( ] = 0.020 km°.

47. We convert meters to astronomical units, and seconds to minutes, using
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1000 m =1 km
1 AU =1.50 x 10* km

60 s =1 min.
Thus, 3.0 x 10® m/s becomes

8
30x10° m 1 km AU8 6Qs o012 AU/min.
S 1000 m | |1.50 x 10° km | | min

48. Since one atomic mass unit is 1u=1.66x10"* g (see Appendix D), the mass of one

mole of atoms is about m = (1.66x107* g)(6.02x10%) =1g. On the other hand, the mass
of one mole of atoms in the common Eastern mole is

75¢g
m'=——==10
7.5 8

Therefore, in atomic mass units, the average mass of one atom in the common Eastern
mole is
' 1
mo__ 108 66x10% g=10u.
N, 6.02x10

49. (a) Squaring the relation 1 ken = 1.97 m, and setting up the ratio, we obtain

1ken® 197 m’

= = 3.88.
I m’ I m?

(b) Similarly, we find
1 ken’ B 197’ m’

3

= = 7.65.
1m I m

(c) The volume of a cylinder is the circular area of its base multiplied by its height. Thus,
ar*h = (3.00) (5.50) = 156 ken’.

(d) If we multiply this by the result of part (b), we determine the volume in cubic meters:
(155.5)(7.65) = 1.19 x 10° m’.

50. According to Appendix D, a nautical mile is 1.852 km, so 24.5 nautical miles would
be 45.374 km. Also, according to Appendix D, a mile is 1.609 km, so 24.5 miles is
39.4205 km. The difference is 5.95 km.

51. (a) For the minimum (43 cm) case, 9 cubits converts as follows:
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9 cubits =(9cubits)((1)'4iri[1j =39m
cubi

And for the maximum (53 cm) case we obtain

9 cubits = (9 cubits)((l)jir'lj = 4.8m.
cubi

(b) Similarly, with 0.43 m — 430 mm and 0.53 m — 530 mm, we find 3.9 x 10> mm and
4.8 x 10° mm, respectively.

(c) We can convert length and diameter first and then compute the volume, or first
compute the volume and then convert. We proceed using the latter approach (where d is
diameter and ¢ is length).

3
= " 0d? = 28 cubit’ = (28 cubit’) 043m | _ 5o me.
4 1 cubit

cylinder, min

Similarly, with 0.43 m replaced by 0.53 m, we obtain Veylinger, max = 4.2 m’.

52. Abbreviating wapentake as “wp” and assuming a hide to be 110 acres, we set up the
ratio 25 wp/11 barn along with appropriate conversion factors:

100 hide \ {110 acre \ [ 4047 m?
(25 Wp)( 1wp )( 1 hide )( lacre

(11 barn) (1x10*28m2)

)z1x1036.

1 barn

53. The objective of this problem is to convert the Earth-Sun distance to parsecs and
light-years. To relate parsec (pc) to AU, we note that when € is measured in radians, it is
equal to the arc length s divided by the radius R. For a very large radius circle and small
value of 6, the arc may be approximated as the straight line-segment of length 1 AU.
Thus,

@ =1 arcsec = (1 arcsec) I aremin ! _ (27{ radlanj =4.85%107° rad
60 arcsec )\ 60 arcmin 360°

Therefore, one parsec is

tpe=R =2=—1AY __06x10° AU
0 485x10

Next, we relate AU to light-year (ly). Since a year is about 3.16 x 10’ s, we have
Iy = (186,000mi/s) (3.16 x 107s) = 5.9 x 10"* mi.

(a) Since 1 pc=2.06 x 10’ AU, inverting the relationship gives
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1 pc
2.06 x 10° AU

R=1AU=(1AU)( J=4.9><10_6pc.

(b) Given that 1AU=92.9x10° mi and lly = 5.9 x 10" mi , the two expressions
together lead to
Ily

1AU =92.9%x10° mi:(92.9><106 mi) —
59%x10° mi

J:1.57><105 ly~1.6x107 ly.

Our results can be further combined to give 1 pc=3.2 ly.

54. (a) Using Appendix D, we have 1 ft =0.3048 m, 1 gal =231 in.’, and 1 in.” = 1.639 x
107 L. From the latter two items, we find that 1 gal = 3.79 L. Thus, the quantity 460

ft*/gal becomes
P 2
460 ftz/gal=(460ft j( L m } [ ! gal j:n.s m?/L.

gal 3281t ) (3.79L

(b) Also, since 1 m’ is equivalent to 1000 L, our result from part (a) becomes

2
11.3my/L=| L3m [ 1000L Ty s pg o,
L 1l m

(c) The inverse of the original quantity is (460 ft*/gal)™ =2.17 x 10~ gal/ft’.

(d) The answer in (c¢) represents the volume of the paint (in gallons) needed to cover a
square foot of area. From this, we could also figure the paint thickness [it turns out to be
about a tenth of a millimeter, as one sees by taking the reciprocal of the answer in part

(b)].



Chapter 2

1. The speed (assumed constant) is v = (90 km/h)(1000 m/km) /(3600 s/h) = 25 m/s.
Thus, in 0.50 s, the car travels a distance d = v¢ = (25 m/s)(0.50 s) = 13 m.

2. (a) Using the fact that time = distance/velocity while the velocity is constant, we
find
_732m+732m

Voe T 730m | B2m
125 mis T305m

=1.74 m/s.

(b) Using the fact that distance = v¢ while the velocity v is constant, we find

~ (122 m/s)(60 s) +(3.05 m/s)(60 s)
e 120 s

=214 m/s.

(c) The graphs are shown below (with meters and seconds understood). The first
consists of two (solid) line segments, the first having a slope of 1.22 and the second
having a slope of 3.05. The slope of the dashed line represents the average velocity (in
both graphs). The second graph also consists of two (solid) line segments, having the
same slopes as before — the main difference (compared to the first graph) being that
the stage involving higher-speed motion lasts much longer.

256

734 /

t . :
60 84 60 120

3. Since the trip consists of two parts, let the displacements during first and second
parts of the motion be Ax; and Ax; and the corresponding time intervals be Az; and Az,
respectively. Now, because the problem is one-dimensional and both displacements
are in the same direction, the total displacement is Ax = Ax; + Ax,, and the total time
for the trip is Az = At; + At,. Using the definition of average velocity given in Eq. 2-2,
we have
S Ax _ Ax, +Ax,
MEOAt AL +AL

To find the average speed, we note that during a time At if the velocity remains a
positive constant, then the speed is equal to the magnitude of velocity, and the
distance is equal to the magnitude of displacement, with d =|Ax|=vAt.

21
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(a) During the first part of the motion, the displacement is Ax; = 40 km and the time
interval is
= _(A0km) ooy
(30 km/ h)

Similarly, during the second part the displacement is Ax, = 40 km and the time
interval is
(40 km)

2T 60km/h)
The total displacement is Ax = Ax; + Ax; = 40 km + 40 km = 80 km, and the total time
elapsed is At = At; + A, = 2.00 h. Consequently, the average velocity is

67 h.

_ Ax _ (80 km)

v, = = 40 km/h.
At (2.0h)

(b) In this case, the average speed is the same as the magnitude of the average
velocity: s,,, =40 km/h.

(c) The graph of the entire trip is shown below; it consists of two contiguous line
segments, the first having a slope of 30 km/h and connecting the origin to (At;, Ax;) =
(1.33 h, 40 km) and the second having a slope of 60 km/h and connecting (At;, Ax;)

to (Af, Ax) = (2.00 h, 80 km).

Ax (km)

(2.0 h, 80 km)
80 _
60 P g
40 7
- (1.33 h, 40 km)
20 s
- T T T T At (h)
0 0.5 1 1.5 2

4. Average speed, as opposed to average velocity, relates to the total distance, as
opposed to the net displacement. The distance D up the hill is, of course, the same as
the distance down the hill, and since the speed is constant (during each stage of the
motion) we have speed = D/t. Thus, the average speed is

Dup + Ddown 2D
ty +1 D D

down — +

up Vdown

which, after canceling D and plugging in vy, = 40 km/h and vgown = 60 km/h, yields 48
km/h for the average speed.

5. Using x = 3¢ — 4¢ + £ with SI units understood is efficient (and is the approach we
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will use), but if we wished to make the units explicit we would write
x =3 m/s) — (4 m/sH)F + (1 m/s’)e.

We will quote our answers to one or two significant figures, and not try to follow the
significant figure rules rigorously.

(a) Pluggingin¢t=1syieldsx=3-4+1=0.

(b) With £ =2 s we get x = 3(2) — 4(2)*+(2)’ =2 m.

(c) With =3 s we have x =0 m.

(d) Plugging in =4 s gives x = 12 m.

For later reference, we also note that the position at =0 1is x = 0.

(e) The position at ¢+ = 0 is subtracted from the position at # = 4 s to find the
displacement Ax = 12 m.

(f) The position at ¢ = 2's is subtracted from the position at t = 4 s to give the
displacement Ax = 14 m. Eq. 2-2, then, leads to

Ax 14m _

Vag =~ = 7 m/s.
At 2s

(g) The position of the object for the interval 0 < ¢ < 4 is plotted below. The straight
line drawn from the point at (¢, x) = (2 s, —2 m) to (4 s, 12 m) would represent the
average velocity, answer for part (f).

x(m) (4s, 12m)
42
10
8
6 slope = Vavg/ /
4
2
0 1\;_/3 1(s)
2

(25, —2m)
6. Huber’s speed is
vo= (200 m)/(6.509 s) =30.72 m/s = 110.6 km/h,

where we have used the conversion factor 1 m/s = 3.6 km/h. Since Whittingham beat
Huber by 19.0 km/h, his speed is v; = (110.6 km/h + 19.0 km/h) = 129.6 km/h, or 36
m/s (1 km/h = 0.2778 m/s). Thus, using Eq. 2-2, the time through a distance of 200 m
for Whittingham is
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_£_200m

At =
v, 36 m/s

=5.554s.

7. Recognizing that the gap between the trains is closing at a constant rate of 60 km/h,
the total time that elapses before they crash is ¢t = (60 km)/(60 km/h) = 1.0 h. During
this time, the bird travels a distance of x = v¢ = (60 km/h)(1.0 h) = 60 km.

8. The amount of time it takes for each person to move a distance L with speed v, is

At = L/v,. With each additional person, the depth increases by one body depth d

(a) The rate of increase of the layer of people is

pod _ d _dv,_(0.25m)3.50ms)

At Liv, L 1.75 m

(b) The amount of time required to reach a depth of D =5.0 mis

——=10s
0.50 m/s

2_ 50m
R

9. Converting to seconds, the running times are #; = 147.95 s and #, = 148.15 s,
respectively. If the runners were equally fast, then

Sy =8 = L_L
avg] — Pavgy P ¢
1 2

~

From this we obtain

L1 =(i—2—1j L, :ij;_lj I, =0.00135L, ~1.4 m
1 .

where we set L; = 1000 m in the last step. Thus, if L; and L, are no different than
about 1.4 m, then runner 1 is indeed faster than runner 2. However, if L is shorter
than L, by more than 1.4 m, then runner 2 would actually be faster.

10. Let v, be the speed of the wind and v, be the speed of the car.

(a) Suppose during time interval ¢, the car moves in the same direction as the wind.

Then the effective speed of the car is given by v, |

= (v, +v,)t,. On the other hand, for the return trip during time interval ,,

=v_+v,, and the distance traveled

is d=v,
the car moves in the opposite direction of the wind and the effective speed would be

Vg2 =V.—V,. The distance traveled is d =v, ,t, =(v,—v,)i,. The two expressions

can be rewritten as
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d
v.+v, =— and v -v, =—
tl tZ
. . e : 1(d d
Adding the two equations and dividing by two, we obtain v, :5 —+—|. Thus,
tl t2
method 1 gives the car’s speed v, a in windless situation.

(b) If method 2 is used, the result would be

g__d _2d 2 v-vi_ | (n)
Co+t)/2 t+t, d d v ¢ v '

The fractional difference is

2
Ye Ve :[V—wj = (0.0240)* =5.76x10™".
1%

c

11. The values used in the problem statement make it easy to see that the first part of
the trip (at 100 km/h) takes 1 hour, and the second part (at 40 km/h) also takes 1 hour.
Expressed in decimal form, the time left is 1.25 hour, and the distance that remains is
160 km. Thus, a speed v = (160 km)/(1.25 h) = 128 km/h is needed.

12. (a) Let the fast and the slow cars be separated by a distance d at ¢ = 0. If during the
time interval ¢=L/v, =(12.0 m)/(5.0 m/s) =2.40 s in which the slow car has moved
a distance of L =12.0 m, the fast car moves a distance of vt =d + L to join the line
of slow cars, then the shock wave would remain stationary. The condition implies a

separation of
d=vt—L=(25m/s)(2.45)—12.0 m=48.0 m.

(b) Let the initial separation at t=0 be d =96.0 m. At a later time ¢, the slow and
the fast cars have traveled x =v ¢ and the fast car joins the line by moving a distance

d +x. From
X d+x
t = — = N
v, v
we get
x=—Y g S00m/s 960 m)=24.0m,

v—v. 250 m/s—5.00m/s

which in turn gives ¢=(24.0 m)/(5.00 m/s) =4.80s. Since the rear of the slow-car

pack has moved a distance of Ax=x—L =24.0 m—12.0 m =12.0 mdownstream, the
speed of the rear of the slow-car pack, or equivalently, the speed of the shock wave, is

Ax 120m

Vook =— = =2.50 m/s.
t 480s
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(c) Since x> L, the direction of the shock wave is downstream.

13. (a) Denoting the travel time and distance from San Antonio to Houston as 7' and D,
respectively, the average speed is

_ D _ (55 knvh)(7/2) + (90 km/h)(T'/2)

St = =72.5 km/h
T T

which should be rounded to 73 km/h.
(b) Using the fact that time = distance/speed while the speed is constant, we find

D D
angz?: D/2 N D/ =683k1’1’]/h
55 km/h * 90 km/h

N

which should be rounded to 68 km/h.

(c) The total distance traveled (2D) must not be confused with the net displacement
(zero). We obtain for the two-way trip

Spve = 2D 5 — =70 km/h.

avg D 4
72.5 km/h * 68.3 km/h

(d) Since the net displacement vanishes, the average velocity for the trip in its entirety
is zero.

(e) In asking for a sketch, the problem is allowing the student to arbitrarily set the
distance D (the intent is not to make the student go to an atlas to look it up); the
student can just as easily arbitrarily set 7 instead of D, as will be clear in the following
discussion. We briefly describe the graph (with kilometers-per-hour understood for
the slopes): two contiguous line segments, the first having a slope of 55 and
connecting the origin to (¢1, x1) = (7/2, 557/2) and the second having a slope of 90 and
connecting (¢, x;) to (7, D) where D = (55 + 90)7/2. The average velocity, from the
graphical point of view, is the slope of a line drawn from the origin to (7, D). The
graph (not drawn to scale) is depicted below:

73 km/h - -7 90 km/h

-
-
-
-
-

-~ —"55km/h
= I I - ¢

72 T
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14. Using the general property -+ exp(bx) =bexp(bx), we write

o (d(19t)J e (190) - [de”] ‘
dt

Tdr \ dr

If a concern develops about the appearance of an argument of the exponential (—f)
apparently having units, then an explicit factor of 1/7 where 7 = 1 second can be
inserted and carried through the computation (which does not change our answer).
The result of this differentiation is

v=16(1 — t)e™’

with ¢# and v in SI units (s and m/s, respectively). We see that this function is zero
when # = 1 s. Now that we know when it stops, we find out where it stops by
plugging our result £ = 1 into the given function x = 16te * with x in meters. Therefore,
we find x = 5.9 m.

15. We use Eq. 2-4 to solve the problem.
(a) The velocity of the particle is

v:ﬂ:i (4-12t+3t%) =—12+6t.
dt dt

Thus, at £ =1 s, the velocity is v=(-12 + (6)(1)) = —6 m/s.
(b) Since v < 0, it is moving in the —x direction at # =1 s.
(c) Att=1 s, the speed is [v| = 6 m/s.

(d) For 0 < ¢ < 2 s, |v| decreases until it vanishes. For 2 < ¢ < 3 s, |v| increases from
zero to the value it had in part (c). Then, |v| is larger than that value for # > 3 s.

(e) Yes, since v smoothly changes from negative values (consider the ¢ = 1 result) to

positive (note that as t — + oo, we have v — + ). One can check that v = 0 when
t=2s.

(f) No. In fact, from v=—12 + 6¢, we know that v> 0 for ¢ > 2 s.

16. We use the functional notation x(7), v(¢), and a(?) in this solution, where the latter
two quantities are obtained by differentiation:

dx(t) dv(t)

=-12

v(t) =

=—12¢t and a(t)=

with SI units understood.

(a) From v(¢) = 0 we find it is (momentarily) at rest at z = 0.
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(b) We obtain x(0) = 4.0 m.

(c) and (d) Requiring x(¢) = 0 in the expression x(¢) = 4.0 — 6.07 leads to 7 = +0.82 s
for the times when the particle can be found passing through the origin.

(e) We show both the asked-for graph (on the left) as well as the “shifted” graph that
is relevant to part (f). In both cases, the time axis is given by —3 < ¢ < 3 (SI units
understood).

t o g

-100 -100

(f) We arrived at the graph on the right (shown above) by adding 207 to the x(¢)
expression.

(g) Examining where the slopes of the graphs become zero, it is clear that the shift
causes the v = 0 point to correspond to a larger value of x (the top of the second curve
shown in part (e) is higher than that of the first).

17. We use Eq. 2-2 for average velocity and Eq. 2-4 for instantaneous velocity, and
work with distances in centimeters and times in seconds.

(a) We plug into the given equation for x for £ = 2.00 s and # = 3.00 s and obtain x, =
21.75 cm and x3 = 50.25 cm, respectively. The average velocity during the time
interval 2.00 <7 <3.00 s is

y _& B 5025 cm—-21.75 cm
&AL 300s —2.00s

which yields v, = 28.5 cm/s.

(b) The instantaneous velocity is v =<4 =4.5¢*, which, at time ¢ = 2.00 s, yields v =
(4.5)(2.00)* = 18.0 cr/s.

(c) At £=3.00 s, the instantaneous velocity is v = (4.5)(3.00)> = 40.5 cm/s.
(d) At ¢ =2.50 s, the instantaneous velocity is v = (4.5)(2.50)* = 28.1 cis.

(e) Let #,, stand for the moment when the particle is midway between x, and x; (that is,
when the particle is at x,, = (x2 + x3)/2 = 36 cm). Therefore,

x, =975 + 152 = 1, =259

in seconds. Thus, the instantaneous speed at this time is v = 4.5(2.596)* = 30.3 cu/s.



29

(f) The answer to part (a) is given by the slope of the straight line between ¢ = 2 and ¢
= 3 in this x-vs-f plot. The answers to parts (b), (c¢), (d), and (e) correspond to the
slopes of tangent lines (not shown but easily imagined) to the curve at the appropriate

points.
x (cm)

60

40 (a)

201

18. (a) Taking derivatives of x(f) = 12¢ — 2 we obtain the velocity and the
acceleration functions:

W) =24t— 6/ and a(f)=24— 12t

with length in meters and time in seconds. Plugging in the value ¢ = 3 yields
x(3)=54 m.

(b) Similarly, plugging in the value ¢ = 3 yields v(3) = 18 m/s.
(c) For t=3, a(3) =—12 m/s*.

(d) At the maximum x, we must have v = 0; eliminating the ¢ = 0 root, the velocity
equation reveals ¢t = 24/6 = 4 s for the time of maximum x. Plugging ¢ = 4 into the
equation for x leads to x = 64 m for the largest x value reached by the particle.

(e) From (d), we see that the x reaches its maximum at = 4.0 s.

(f) A maximum v requires a = 0, which occurs when ¢ = 24/12 = 2.0 s. This, inserted
into the velocity equation, gives Vimax = 24 m/s.

(g) From (f), we see that the maximum of v occurs at ¢ =24/12=2.0s.

(h) In part (e), the particle was (momentarily) motionless at # = 4 s. The acceleration at
that time is readily found to be 24 — 12(4) =24 m/s%.

(i) The average velocity is defined by Eq. 2-2, so we see that the values of x at t = 0
and ¢ = 3 s are needed; these are, respectively, x = 0 and x = 54 m (found in part (a)).
Thus,
Vg = 2 18 s,
3-0

19. We represent the initial direction of motion as the +x direction. The average
acceleration over a time interval ¢, <¢<¢,is given by Eq. 2-7:
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o Ay _vn)-vE)
ME At -t
Letvi=+18 m/sat ¢, =0and v, =-30 m/s at , = 2.4 s. Using Eq. 2-7 we find

_v(t)—v(t) _ (30 m/s) — (+1mvs)

e —-20 m/s’.
t,—t, 24s5-0

The average acceleration has magnitude 20 m/s® and is in the opposite direction to the
particle’s initial velocity. This makes sense because the velocity of the particle is
decreasing over the time interval.

20. We use the functional notation x(¢), v(¢) and a(¢) and find the latter two quantities
by differentiating:

V() = =—15¢> +20 and a(z) :d‘;—(tt) = —30¢

with SI units understood. These expressions are used in the parts that follow.

(a) From 0= —15¢* + 20, we see that the only positive value of ¢ for which the
particle is (momentarily) stopped is ¢ =+20/15=12s.

(b) From 0 = —30¢, we find a(0) = 0 (that is, it vanishes at ¢t = 0).
(c) It is clear that a(¢) = — 30z is negative for > 0.
(d) The acceleration a(f) = — 30¢ is positive for < 0.

(e) The graphs are shown below. SI units are understood.

X 14

2204 —50:

304

21. We use Eq. 2-2 (average velocity) and Eq. 2-7 (average acceleration). Regarding
our coordinate choices, the initial position of the man is taken as the origin and his
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direction of motion during 5 min < 7 < 10 min is taken to be the positive x direction.
We also use the fact that Ax = vA¢#' when the velocity is constant during a time
interval Af'.

(a) The entire interval considered is Af = 8 — 2 = 6 min, which is equivalent to 360 s,
whereas the sub-interval in which he is moving is only At' =8 —5=3min =180 s.

His position at # = 2 min is x = 0 and his position at £ = 8 min is x=vA¢f' =
(2.2)(180) =396 m. Therefore,
3% m-0

Vv =110 m/s.
360 s

(b) The man is at rest at # = 2 min and has velocity v = +2.2 m/s at ¢t = 8 min. Thus,
keeping the answer to 3 significant figures,

22m/s-0

ay =0.00611m/s” .
360 s

(c) Now, the entire interval considered is Az =9 — 3 = 6 min (360 s again), whereas the
sub-interval in which he is moving is A¢#'=9-5=4min =240 s). His position at
t=3minis x = 0 and his position at t = 9 min isx =vAt' =(2.2)(240)=528 m.
Therefore,
y =B8m =04y
¢ 360 s

(d) The man is at rest at £+ = 3 min and has velocity v = +2.2 m/s at ¢t = 9 min.
Consequently, @ay, = 2.2/360 = 0.00611 m/s” just as in part (b).

(e) The horizontal line near the bottom of this x-vs-# graph represents the man
standing at x = 0 for 0 < ¢ < 300 s and the linearly rising line for 300 < ¢ < 600 s

represents his constant-velocity motion. The lines represent the answers to part (a)
and (c) in the sense that their slopes yield those results.

i (©

(2)

o T 7 7 50

The graph of v-vs-¢ is not shown here, but would consist of two horizontal “steps”
(one at v =0 for 0 < ¢ <300 s and the next at v = 2.2 m/s for 300 < ¢ < 600 s). The
indications of the average accelerations found in parts (b) and (d) would be dotted
lines connecting the “steps™ at the appropriate ¢ values (the slopes of the dotted lines
representing the values of dayg).
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22. In this solution, we make use of the notation x(#) for the value of x at a particular z.
The notations v(¢) and a(¢) have similar meanings.

(a) Since the unit of ¢ is that of length, the unit of ¢ must be that of length/time?, or
m/s” in the SI system.

(b) Since b¢* has a unit of length, b must have a unit of length/time’, or m/s’.
(c) When the particle reaches its maximum (or its minimum) coordinate its velocity is

zero. Since the velocity is given by v = dx/dt = 2¢t — 3bt*, v = 0 occurs for ¢ = 0 and
for

2
zzz 2(3.0 m/s}) _10s
3b 320m/s’)

Fort=0,x=xp=0and for t=1.0s, x = 1.0 m > x. Since we seek the maximum, we
reject the first root (¢ = 0) and accept the second (¢ = 1s).

(d) In the first 4 s the particle moves from the origin to x = 1.0 m, turns around, and
goes back to

x(45)=(30m/s’)(4.0s)> — (20m/s’)(4.05s)’ =-80m.
The total path length it travelsis 1.0 m+ 1.0 m + 80 m = 82 m.
(e) Its displacement is Ax = x, — x;, where x; = 0 and x, = —80 m. Thus, Ax=-80 m .
The velocity is given by v =2ct — 3b* = (6.0 m/s>)t — (6.0 m/s’)¢.
(f) Plugging in ¢ = 1 s, we obtain

v(1's)=(6.0 m/s*)(1.0 s) — (6.0 m/s*)(1.0 s)> = 0.
(g) Similarly, v(2 s)=(6.0 m/s*)(2.0 s)—(6.0 m/s*)(2.0s)* = —12m/s .
(h) v(3s)=(6.0 m/s*)(3.0 s)— (6.0 m/s’)(3.0 s)* = —36 m/s .
(i) v(4s)=(6.0 m/s*)(4.0 s)—(6.0 m/s’)(4.0 s)* =—72 m/s .
The acceleration is given by a = dv/dt = 2¢ — 6b = 6.0 m/s* — (12.0 m/s’)z.
(j) Plugging in #=1s, we obtain
a(1s)=6.0 m/s> —(12.0 m/s*)(1.0 s) = —6.0 m/s’.

(k) a(2s)=6.0 m/s> — (12.0 m/s’)(2.0 s) = —18 m/s>.
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(1) a3 s)=6.0 m/s’ — (12.0 m/s*)(3.0 s) = —30 m/s>.
(m) a(4s)=6.0m/s’ — (12.0 m/s’)(4.0 s) = —42 m/s’.

23. Since the problem involves constant acceleration, the motion of the electron can
be readily analyzed using the equations in Table 2-1:

v=v,+at (2-11)

[
x—x0=v0t+5at (2-15)
v =1 +2a(x—x,) (2-16)

The acceleration can be found by solving Eq. (2-16). With v, =1.50x10° m/s,

v=5.70x10° m/s, xo= 0 and x = 0.010 m, we find the average acceleration to be

. vi—v,  (5.7x10° m/s)’ —(1.5x10° m/s)’
2 2(0.010 m)

=1.62x10" m/s*.

24. In this problem we are given the initial and final speeds, and the displacement, and
are asked to find the acceleration. We use the constant-acceleration equation given in
Eq. 2-16, V=g + 2a(x — xo).

(a) Given that v, =0, v=1.6m/s, and Ax=5.0um, the acceleration of the spores
during the launch is
B vi—v; (16 m/s)’
C2x 2(5.0x10° m)

=2.56x10° m/s’ =2.6x10%g

(b) During the speed-reduction stage, the acceleration is

vi—v; _0-(1.6 m/s)’

% 200x10° )=—1.28x103m/s2=—1.3><102g
X UX m

a=

The negative sign means that the spores are decelerating.

25. We separate the motion into two parts, and take the direction of motion to be
positive. In part 1, the vehicle accelerates from rest to its highest speed; we are
given vo = 0; v =20 m/s and a = 2.0 m/s>. In part 2, the vehicle decelerates from its
highest speed to a halt; we are given vy = 20 m/s; v = 0 and @ = —1.0 m/s” (negative
because the acceleration vector points opposite to the direction of motion).

(a) From Table 2-1, we find #; (the duration of part 1) from v = vy + at. In this way,
20=0+2.0¢,yields #; = 10 s. We obtain the duration # of part 2 from the same

equation. Thus, 0 =20 + (—1.0)#, leads to #, =20 s, and the total is t=¢; + £, = 30 s.

(b) For part 1, taking xo = 0, we use the equation v* = v§ + 2a(x — x¢) from Table 2-1
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and find
vV -w _ (20m/s)* —(0)

=100 m.
2a 2(2.0 m/s?)

X

This position is then the initial position for part 2, so that when the same equation is
used in part 2 we obtain
vi—vy  (0)*—(20 m/s)’

x—100 m= 5
2a 2(-1.0 m/s%)

Thus, the final position is x = 300 m. That this is also the total distance traveled
should be evident (the vehicle did not "backtrack" or reverse its direction of motion).

26. The constant-acceleration condition permits the use of Table 2-1.

(a) Setting v=0and xo=01in v’ =v; +2a(x—x,), we find

2 6\2
SR CLU L L M ST
2a 2 -1.25x10

Since the muon is slowing, the initial velocity and the acceleration must have opposite
signs.

(b) Below are the time plots of the position x and velocity v of the muon from the
moment it enters the field to the time it stops. The computation in part (a) made no
reference to #, so that other equations from Table 2-1 (such as v=v, + af and

x =v,t + Lat’) are used in making these plots.

X (cm) v (Mnvs)
10+ 8.0
75 6.0
5.0+ 4.0
2.504 2.0
0 T T T T t (ns) 0 T T T T t (ns)
10 20 30 40 10 20 30 40

27. We use v = vy + at, with ¢ = 0 as the instant when the velocity equals +9.6 m/s.

(a) Since we wish to calculate the velocity for a time before t = 0, we set = 2.5 s.
Thus, Eq. 2-11 gives

v=(9.6m/s) +(32m/s’) (-25s)=16m/s.
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(b) Now, t =+2.5 s and we find

v=(9.6m/s) +(32m/s’) 25s)=18 m/s.

28. We take +x in the direction of motion, so vo = +24.6 m/s and a = — 4.92 m/s>. We
also take xo = 0.

(a) The time to come to a halt is found using Eq. 2-11:

0=v, +at = t= 220MS _ 5405,
-4.92m/s

(b) Although several of the equations in Table 2-1 will yield the result, we choose Eq.
2-16 (since it does not depend on our answer to part (a)).

(24.6 m/s)’

2(—4.92 m/sz):61'5m'

0=v, +2ax = x= —

(¢) Using these results, we plot vt++at® (the x graph, shown next, on the left) and
vo + at (the v graph, on the right) over 0 <¢ < 5 s, with SI units understood.

X v
60
20
401
: 'lO_
207 ]
—— T 7 /[ e ——————————————— !
0 1 2 3 4 5 0 1 2 3 4 5

29. We assume the periods of acceleration (duration ¢#;) and deceleration (duration #,)
are periods of constant a so that Table 2-1 can be used. Taking the direction of motion
to be +x then a; = +1.22 m/s? and a =-1.22 m/s>. We use SI units so the velocity at ¢
=t is v=1305/60 = 5.08 m/s.

(a) We denote Ax as the distance moved during ¢, and use Eq. 2-16:

2
Vi =y, +2aAx = =M=10.59mz10.6 m.
2(1.22 m/s?)
(b) Using Eq. 2-11, we have
g =Y=% 508 m/i =417 s.
a 1.22 m/s

1

The deceleration time ¢, turns out to be the same so that #; + #, = 8.33 s. The distances
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traveled during ¢, and #, are the same so that they total to 2(10.59 m) = 21.18 m. This
implies that for a distance of 190 m — 21.18 m = 168.82 m, the elevator is traveling at
constant velocity. This time of constant velocity motion is

16882 m

= =3321s.
508 m/s

3

Therefore, the total time is 8.33 s + 33.21 s = 41.5s.

30. We choose the positive direction to be that of the initial velocity of the car
(implying that a < 0 since it is slowing down). We assume the acceleration is constant
and use Table 2-1.

(a) Substituting vo = 137 km/h = 38.1 m/s, v = 90 km/h = 25 m/s, and a = -5.2 m/s>
into v = vy + at, we obtain

t_25m/s—38m/s_

25s
-52 m/s’

X (cm)

(b) We take the car to be at x = 0 when the brakes

are applied (at time ¢ = 0). Thus, the coordinate of g
the car as a function of time is given by
60
1

x=(38mis)t + —(-5.2m/s’) 7 40-
. . . .. 20
in SI units. This function is plotted from ¢ = 0 to ¢
= 2.5 s on the graph to the right. We have not | : | : :
shown the v-vs-f graph here; it is a descending 05 1.0 15 20 25
straight line from vy to v. 1)

31. The constant acceleration stated in the problem permits the use of the equations in
Table 2-1.

(a) We solve v = v, + at for the time:

_ 1 8
;Y v0210(3.0><10 1211/8)23.1><10(‘S
a 98m/s

which is equivalent to 1.2 months.

(b) We evaluate x = x, +v,t++at’, withxo= 0. The result is

x=—(9.8m/s*) (3.1x10°s)* =4.6x10" m.

1
2

Note that in solving parts (a) and (b), we did not use the equationv’ =v; +2a(x-x,) .
This equation can be employed for consistency check. The final velocity based on this
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equation is
v= Vi +2a(x-x,) =J0+2(9.8 m/s>)(4.6x10" m—0) =3.0x10" m/s,

which is what was given in the problem statement. So we know the problems have
been solved correctly.

32. The acceleration is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7).

1000 m/ km

(1020 km/h)
Av 3600 s/h 5
a=—= =2024 m/s" .

At 14 s

In terms of the gravitational acceleration g, this is expressed as a multiple of 9.8 m/s”
as follows:

L _[2024ms
9.8 m/s’

jg=21g.

33. The problem statement (see part (a)) indicates that a = constant, which allows us
to use Table 2-1.

(a) We take xo = 0, and solve x = vyt + %at2 (Eq. 2-15) for the acceleration: a = 2(x —
vot)/£. Substituting x = 24.0 m, vo = 56.0 km/h = 15.55 my/s and 7= 2.00 s, we find

2x—v) 2(24.0m- (15.55m/s) (2.00s))
a= =

2 (200S)2 = —3.56m/s’,

or |a| =3.56 m/s’. The negative sign indicates that the acceleration is opposite to
the direction of motion of the car. The car is slowing down.

(b) We evaluate v = v, + at as follows:

v=1555m/s - (356 m/s’) (2.00 s)=843 m/s

which can also be converted to 30.3 km/h.
34. Let d be the 220 m distance between the cars at ¢t = 0, and v, be the 20 km/h = 50/9
m/s speed (corresponding to a passing point of x; = 44.5 m) and v, be the 40 km/h

=100/9 m/s speed (corresponding to a passing point of x, = 76.6 m) of the red car.
We have two equations (based on Eq. 2-17):

1
d—x =vot; + Eatlz where ¢, = x,/v;

1
d—x=vot, + gatzz where L=x, /V,
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We simultaneously solve these equations and obtain the following results:

(a) The initial velocity of the green car is v, = — 13.9 m/s. or roughly — 50 km/h (the
negative sign means that it’s along the —x direction).

(b) The corresponding acceleration of the car is @ = — 2.0 m/s* (the negative sign
means that it’s along the —x direction).

35. The positions of the cars as a function of time are given by

1 1
x(t)=x, +§art2 =(-35.0m) +§arrt2

X, () = X, +v,t = (270 m) — (20 m/s)z

where we have substituted the velocity and not the speed for the green car. The two
cars pass each other at #=12.0s when the graphed lines cross. This implies that

(270 m)— (20 m/s)(12.0s) = 30 m = (-35.0 m) +%ar(12.0 s)’

which can be solved to givea, =0.90 m/s’.

36. (a) Equation 2-15 is used for part 1 of the trip and Eq. 2-18 is used for part 2:

Ax;=vor g + % art’ where a; = 2.25 m/s” and Ax; = 9%0 m
A=wnh- 5 nl where a> = -0.75 m/s” and Ax, = 25 m

In addition, v, = v,= 0. Solving these equations for the times and adding the results
givest =1t + 1t =56.6s.

(b) Equation 2-16 is used for part 1 of the trip:

V= (Vo1)* + 2a1Ax =0 + 2(2.25)[¥j =1013 m%/s*

which leads to v = 31.8 m/s for the maximum speed.
37. (a) From the figure, we see that xo = 2.0 m. From Table 2-1, we can apply
X —xo=vot+ %atz

with ¢ = 1.0 s, and then again with ¢ = 2.0 s. This yields two equations for the two
unknowns, v and a:
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0.0—(-2.0 m)=v,(1.0 s)+%a(1.0 s)’

6.0 m—(~2.0 m)=v, (2.0 s)+%a(2.0 s)’.

Solving these simultaneous equations yields the results vo = 0 and a = 4.0 m/s”.

(b) The fact that the answer is positive tells us that the acceleration vector points in
the +x direction.

38. We assume the train accelerates from rest ( vy=0 and x,=0) at
a,=+134 m/s’ until the midway point and then decelerates at a, =-134 m/s’

until it comes to a stop (v2 = O) at the next station. The velocity at the midpoint is vy,
which occurs at x; = 806/2 = 403m.

(a) Equation 2-16 leads to

V=9 +2ax = v =2(134m/s)(403 m) =329 mss.
(b) The time ¢, for the accelerating stage is (using Eq. 2-15)

1, 2(403 m)
X =vh +—aft = t= |~——=24535s.
2 1.34 m/s

Since the time interval for the decelerating stage turns out to be the same, we double
this result and obtain = 49.1 s for the travel time between stations.

(c) With a “dead time” of 20 s, we have 7=t + 20 = 69.1 s for the total time between
start-ups. Thus, Eq. 2-2 gives

_806m g,

%
™ 69.1s

(d) The graphs for x, v and « as a function of 7 are shown below. The third graph, a(?),
consists of three horizontal “steps” — one at 1.34 m/s* during 0 < ¢ < 24.53 s, and
the next at —1.34 m/s” during 24.53 s < ¢ < 49.1 s and the last at zero during the “dead
time” 49.1 s <1< 69.1 s).

x (m) v (m/s)
800 30
600 2

400

200

1(s)
TR (R R < e el A O 10 20 30 40 50 60 70
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a (m/s?)
1.5
1
05 :
0 -
0.5 10 20I 30 40 ISO 60 70 t(S)
, | |
1.5 L

39. (a) We note that vo4 = 12/6 = 2 m/s (with two significant figures understood).
Therefore, with an initial x value of 20 m, car A will be at x = 28 m when ¢t = 4 s.
This must be the value of x for car B at that time; we use Eq. 2-15:

28m=(12m/s)t + 3 ap*  wheret=4.05s.

This yields ag =— 2.5 m/s”.

(b) The question is: using the value obtained for ap in part (a), are there other values
of t (besides ¢ = 4 s) such that x4 = xg ? The requirement is

20+2¢=12t+ 3 apf’

where ag = -5/2. There are two distinct roots unless the discriminant

\/10? = 2(-20)(ap) is zero. In our case, it is zero — which means there is only one root.
The cars are side by side only once at =4 s.

(c) A sketch is shown below. It consists of a straight line (xa) tangent to a parabola (xg)
atr=4.

x (m)

40 XA
35
20 (4 s,28m)
25
20 | XB

15 '

10 '

5 :

2 4 6 8 g Al

(d) We only care about real roots, which means 10> — 2(-20)(ag) = 0. If |ag| > 5/2
then there are no (real) solutions to the equation; the cars are never side by side.

(e) Here we have 10* —2(-20)(ag) >0 => two real roots. The cars are side by side
at two different times.
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40. We take the direction of motion as +x, so @ = —5.18 m/s’, and we use SI units, so
vo = 55(1000/3600) = 15.28 m/s.

(a) The velocity is constant during the reaction time 7, so the distance traveled during
it is
d,=voT—(15.28 m/s) (0.75s) = 11.46 m.

We use Eq. 2-16 (with v = 0) to find the distance d}, traveled during braking:

(15.28 m/s)?

Vvi=v+2ad = d =-
’ ’ T 2(-518ms?)

which yields d, = 22.53 m. Thus, the total distance is d, + dp = 34.0 m, which means
that the driver is able to stop in time. And if the driver were to continue at vy, the car
would enter the intersection in ¢ = (40 m)/(15.28 m/s) = 2.6 s, which is (barely)
enough time to enter the intersection before the light turns, which many people would
consider an acceptable situation.

(b) In this case, the total distance to stop (found in part (a) to be 34 m) is greater than
the distance to the intersection, so the driver cannot stop without the front end of the
car being a couple of meters into the intersection. And the time to reach it at constant
speed is 32/15.28 = 2.1 s, which is too long (the light turns in 1.8 s). The driver is
caught between a rock and a hard place.

41. The displacement (Ax) for each train is the “area” in the graph (since the
displacement is the integral of the velocity). Each area is triangular, and the area of
a triangle is 1/2( base) % (height). Thus, the (absolute value of the) displacement for
one train (1/2)(40 m/s)(5 s) = 100 m, and that of the other train is (1/2)(30 m/s)(4 s) =
60 m. The initial “gap” between the trains was 200 m, and according to our
displacement computations, the gap has narrowed by 160 m. Thus, the answer is
200 — 160 =40 m.

42. (a) Note that 110 km/h is equivalent to 30.56 m/s. During a two-second interval,
you travel 61.11 m. The decelerating police car travels (using Eq. 2-15) 51.11 m. In
light of the fact that the initial “gap” between cars was 25 m, this means the gap has
narrowed by 10.0 m — that is, to a distance of 15.0 m between cars.

(b) First, we add 0.4 s to the considerations of part (a). During a 2.4 s interval, you
travel 73.33 m. The decelerating police car travels (using Eq. 2-15) 58.93 m during
that time. The initial distance between cars of 25 m has therefore narrowed by 14.4
m. Thus, at the start of your braking (call it 7)) the gap between the cars is 10.6 m.
The speed of the police car at # is 30.56 — 5(2.4) = 18.56 m/s. Collision occurs at time
t when Xyou = Xpolice (We choose coordinates such that your position is x = 0 and the
police car’s position is x = 10.6 m at #y). Eq. 2-15 becomes, for each car:

Xpotice — 10.6 = 18.56(1 —10) — 5 (5)(t —10)°
Xyou=30.56(t o) = 3 (5)(t —10)’
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Subtracting equations, we find

10.6 =(30.56 — 18.56)(t —t)) = 0.883s=1—1.
At that time your speed is 30.56 + a(f — ) = 30.56 — 5(0.883) = 26 m/s (or 94 km/h).

43. In this solution we elect to wait until the last step to convert to SI units. Constant
acceleration is indicated, so use of Table 2-1 is permitted. We start with Eq. 2-17 and
denote the train’s initial velocity as v, and the locomotive’s velocity as v, (which is
also the final velocity of the train, if the rear-end collision is barely avoided). We note
that the distance Ax consists of the original gap between them, D, as well as the
forward distance traveled during this time by the locomotive v,¢. Therefore,

v,+v, Ax D+vit D

v,
2 t t t

We now use Eq. 2-11 to eliminate time from the equation. Thus,

v, +v, D
L= +v,
2 (v,—v,)/a
which leads to
V. +v Vv, —V 1 2
a:( t2 L_ fj( “D ’):—E(W—vt)
Hence,
2
a=—;(29@—161@) — 12888 km/ h?
2(0.676 km) h h

which we convert as follows:
2
a=(~12888 km/h?) (1000 m) ( Lh ) = -0994 m/s’

1 km 3600 s

so that its magnitude is |a| = 0.994 m/s>. A graph is
shown here for the case where a collision is just X
avoided (x along the vertical axis is in meters and ¢
along the horizontal axis is in seconds). The top 800
(straight) line shows the motion of the locomotive
and the bottom curve shows the motion of the
passenger train. 400

600

The other case (where the collision is not quite 200

avoided) would be similar except that the slope of + .,
the bottom curve would be greater than that of the 10 20 30
top line at the point where they meet.

44. We neglect air resistance, which justifies setting a = —g = —9.8 m/s” (taking down
as the —y direction) for the duration of the motion. We are allowed to use Table 2-1
(with Ay replacing Ax) because this is constant acceleration motion. The ground level
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is taken to correspond to the origin of the y axis.

(a) Using y =v,t—1gt’, withy=0.544 m and ¢ = 0.200 s, we find

L _ Yyt g’/2_0544m+ (9.8m/s’)(0.2005) /2

) =370 m/s .
t 0.200s

(b) The velocity at y = 0.544 m is

v =v,—gt =3.70m/s— (9.8 m/s>)(0.200s) = 1.74 m/s .

(c) Using v’ =v; —2gy (with different values for y and v than before), we solve for
the value of y corresponding to maximum height (where v = 0).

2 2
yoto BTms) S)z = 0.698 m.
2¢  2(9.8 m/s?)

Thus, the armadillo goes 0.698 — 0.544 = 0.154 m higher.

45. In this problem a ball is being thrown vertically upward. Its subsequent motion is
under the influence of gravity. We neglect air resistance for the duration of the motion
(between “launching” and “landing”), so a = —g = 9.8 m/s* (we take downward to be
the —y direction). We use the equations in Table 2-1 (with Ay replacing Ax) because
this is @ = constant motion:

v=yv,—gt 2-11)

I
YYo= wl =8l (2-15)
v =vg—2g(y =) (2-16)

We set yo = 0. Upon reaching the maximum height y, the speed of the ball is
momentarily zero (v = 0). Therefore, we can relate its initial speed vy to y via the

equation0=1v" =v, —2gy.

The time it takes for the ball to reach maximum height is given by v=v,—gt=0, or
t=v,/ g . Therefore, for the entire trip (from the time it leaves the ground until the

time it returns to the ground), the total flight timeis 7 =2t=2v,/g.

(a) At the highest point v=0and v, =,/2gy. Since y =150 m we find

Vo =28y =/2(9.8 m/s>)(50 m) =31.3 m/s.

(b) Using the result from (a) for v, we find the total flight time to be
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2y, 2(31.3ms)

T= >
g 9.8 m/s

=6.39s~6.4s.

(¢) SI units are understood in the x and v graphs shown. The acceleration graph is a
horizontal line at —9.8 m/s’.

Y 404 a(m/ 52)
60 v A
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In calculating the total flight time of the ball, we could have used Eq. 2-15. At
t =T >0, the ball returns to its original position ( y = 0). Therefore,

y=vT—tgri=0 = r=2%
2 g

46. Neglect of air resistance justifies setting a = —g = -9.8 m/s* (where down is our —y
direction) for the duration of the fall. This is constant acceleration motion, and we
may use Table 2-1 (with Ay replacing Ax).

(a) Using Eq. 2-16 and taking the negative root (since the final velocity is downward),
we have

v=—\v} —2gAy = —J0-2(9.8 m/s*)(~1700 m) = 183 ms.

Its magnitude is therefore 183 m/s.

(b) No, but it is hard to make a convincing case without more analysis. We estimate
the mass of a raindrop to be about a gram or less, so that its mass and speed (from part
(a)) would be less than that of a typical bullet, which is good news. But the fact that
one is dealing with many raindrops leads us to suspect that this scenario poses an
unhealthy situation. If we factor in air resistance, the final speed is smaller, of course,
and we return to the relatively healthy situation with which we are familiar.

47. We neglect air resistance, which justifies setting a = —g = —9.8 m/s* (taking down
as the —y direction) for the duration of the fall. This is constant acceleration motion,
which justifies the use of Table 2-1 (with Ay replacing Ax).

(a) Starting the clock at the moment the wrench is dropped (vo = 0), then
v =1] —2gAy leads to
(=24 m/s)’

Ay=—2WS) 9 4m
Y08 ms)

so that it fell through a height of 29.4 m.
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(b) Solving v = vy — gt for time, we find:

Vo—v _ 0—(-24m/s)
g 9.8 m/s’

t= =2.45s.

(c) SI units are used in the graphs, and the initial position is taken as the coordinate
origin. The acceleration graph is a horizontal line at —9.8 m/s”.

0 1 1 Ly 0 1 1 | t a(m/sz)
A
-10 —10+
~20- —20- > 1(s)
B0 -304 98
b4 v

As the wrench falls, with a=-g <0, its speed increases but its velocity becomes
more negative.

48. We neglect air resistance, which justifies setting a = —g = —9.8 m/s’ (taking down
as the —y direction) for the duration of the fall. This is constant acceleration motion,
which justifies the use of Table 2-1 (with Ay replacing Ax).

(a) Noting that Ay =y — yy = =30 m, we apply Eq. 2-15 and the quadratic formula

(Appendix E) to compute ¢:
Vv, Ve —2gAy
g

1
Ayzvot—agt2 = t=

which (with vy = —12 m/s since it is downward) leads, upon choosing the positive root
(so that ¢ > 0), to the result:

12 m/s ++/(=12 m/s)* —2(9.8 m/s>)(=30 m)

5 =1.54s.
9.8 m/s

(b) Enough information is now known that any of the equations in Table 2-1 can be
used to obtain v; however, the one equation that does not use our result from part (a)

is Eq. 2-16:
v=4vi —2gAy =271m/s

where the positive root has been chosen in order to give speed (which is the
magnitude of the velocity vector).

49. We neglect air resistance, which justifies setting a = —g = —9.8 m/s” (taking down
as the —y direction) for the duration of the motion. We are allowed to use Table 2-1
(with Ay replacing Ax) because this is constant acceleration motion. We are placing
the coordinate origin on the ground. We note that the initial velocity of the package is
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the same as the velocity of the balloon, vy = +12 m/s, and that its initial coordinate is

(a) We solve y =y, +v,t—Lgt’ for time, with y = 0, using the quadratic formula
(choosing the positive root to yield a positive value for 7).

vtV +2gy,  12mis+ (12 m/s)* +2(9.8 m/s?)(80 m)

g 9.8 m/s’

t

=54s

(b) If we wish to avoid using the result from part (a), we could use Eq. 2-16, but if
that is not a concern, then a variety of formulas from Table 2-1 can be used. For
instance, Eq. 2-11 leads to

v=v,—gt=12m/s—(9.8 m/s*)(5.447 s) = —41.38 m/s
Its final speed is about 41 m/s.

50. The y coordinate of Apple 1 obeys y — y,1 = — % g where y =0 when 1 =2.0s.

This allows us to solve for y,;, and we find y,; = 19.6 m.

The graph for the coordinate of Apple 2 (which is thrown apparently at # = 1.0 s with
velocity v,) is

Y=Y =wit-1.0)~ 3 g (t— 1.0

where y,, = ¥o1 = 19.6 m and where y = 0 when ¢ = 2.25 s. Thus, we obtain |v,| = 9.6
m/s, approximately.

51. (a) With upward chosen as the +y direction, we use Eq. 2-11 to find the initial
velocity of the package:

v=votat = 0=v,—(9.8m/s?)(2.05)

which leads to v, = 19.6 m/s. Now we use Eq. 2-15:
Ay=(19.6 m/s)(2.0 5) + 3 (-9.8 m/s?)(2.0'5)* ~20 m .

We note that the “2.0 s” in this second computation refers to the time interval 2 < <4
in the graph (whereas the “2.0 s in the first computation referred to the 0 <¢ < 2 time
interval shown in the graph).

(b) In our computation for part (b), the time interval (“6.0 s”) refers to the 2 <¢ < 8
portion of the graph:

Ay =(19.6 m/s)(6.0 5) + 3 (9.8 m/s?)(6.0 5 ~~59 m,
or |[Ay|=59 m.
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52. The full extent of the bolt’s fall is given by

1 2
Yy—Y=—58t

where y — yo = —90 m (if upward is chosen as the positive y direction). Thus the time
for the full fall is found to be # =4.29 s. The first 80% of its free-fall distance is given
by —72 = —g t*/2, which requires time t = 3.83 s.

(a) Thus, the final 20% of its fall takes t —t = 0.45 s.
(b) We can find that speed using v =—gt. Therefore, |v| = 38 m/s, approximately.
(c) Similarly, Vi =—gt = |Vinal =42 m/s.

53. The speed of the boat is constant, given by v, = d/t. Here, d is the distance of the
boat from the bridge when the key is dropped (12 m) and ¢ is the time the key takes in
falling. To calculate 7, we put the origin of the coordinate system at the point where
the key is dropped and take the y axis to be positive in the downward direction.
Taking the time to be zero at the instant the key is dropped, we compute the time ¢
when y = 45 m. Since the initial velocity of the key is zero, the coordinate of the key
is given by y=1gt’. Thus,

p= |22 [2EM g4
g 9.8 m/s

Therefore, the speed of the boat is
12 m

3.03s

=40m/s.

Vbz

54. (a) We neglect air resistance, which justifies setting ¢ = —g = —9.8 m/s* (taking
down as the —y direction) for the duration of the motion. We are allowed to use Eq.
2-15 (with Ay replacing Ax) because this is constant acceleration motion. We use
primed variables (except f) with the first stone, which has zero initial velocity, and
unprimed variables with the second stone (with initial downward velocity —vy, so that
v 1s being used for the initial speed). SI units are used throughout.

AY' =O(t)—%gt2

&y =(-w)(t=1)-2 g (1-1)

Since the problem indicates Ay’ = Ay = —43.9 m, we solve the first equation for ¢
(finding ¢ = 2.99 s) and use this result to solve the second equation for the initial speed
of the second stone:
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404

20

0 t

—43.9 m=(-v,)(1.995) —5(9.8 m/s*)(1.99s)’

which leads to vy = 12.3 m/s.

(b) The velocity of the stones are given by

v':M:_gt, v :M:

¥ dt y dr v, —g(t-1)

The plot is shown below:

v(m/s) g5 5 2 25

-5
—10 A
—15 -
—20 A
-25
—30

55. During contact with the ground its average acceleration is given by
_Av
aavg - At
where Av is the change in its velocity during contact with the ground and
At=20.0x10"" sis the duration of contact. Thus, we must first find the velocity of the
ball just before it hits the ground (y = 0).

(a) Now, to find the velocity just before contact, we take = 0 to be when it is dropped.
Using Eq. (2-16) with y, =15.0 m, we obtain

V=V =28(y—yy) = —/0—2(9.8 m/s*)(0—15 m) = ~17.15 m/s

where the negative sign is chosen since the ball is traveling downward at the moment
of contact. Consequently, the average acceleration during contact with the ground is

A 0-(-17.1m/s)

a,, = 7 = 857 m/s>.
At 200x107s
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(b) The fact that the result is positive indicates that this acceleration vector points
upward. In a later chapter, this will be directly related to the magnitude and direction
of the force exerted by the ground on the ball during the collision.

56. We use Eq. 2-16,
ve' = va” + 2a(ys — ya),

with a =-9.8 m/s?, yg — ya = 0.40 m, and vg = % va. It is then straightforward to solve:
va = 3.0 m/s, approximately.

57. The average acceleration during contact with the floor is @y = (v2 — vi) / Af,
where v, is its velocity just before striking the floor, v; is its velocity just as it leaves
the floor, and At is the duration of contact with the floor (12 x 107 s).

(a) Taking the y axis to be positively upward and placing the origin at the point where
the ball is dropped, we first find the velocity just before striking the floor, using

vl =v; —2gy. With vy = 0 and y = — 4.00 m, the result is

v = =22y = —/-2(9.8 m/s?) (~4.00 m) = ~8.85 m/s

where the negative root is chosen because the ball is traveling downward. To find the
velocity just after hitting the floor (as it ascends without air friction to a height of 2.00

m), we use v’ =v; —2g(y—y,) with v =10, y = -2.00 m (it ends up two meters
below its initial drop height), and yy = — 4.00 m. Therefore,

v, =+28(y — y,) = \/2(9.8 m/s*)(-2.00 m+ 4.00 m) = 6.26 m/s .
Consequently, the average acceleration is

aav — VZ - Vl — 6.26 m/S _(_ 87.385 m/S) — 1‘26 % 103 m/Sz.
¢ At 120%x 10" s

(b) The positive nature of the result indicates that the acceleration vector points
upward. In a later chapter, this will be directly related to the magnitude and direction
of the force exerted by the ground on the ball during the collision.

58. We choose down as the +y direction and set the coordinate origin at the point
where it was dropped (which is when we start the clock). We denote the 1.00 s
duration mentioned in the problem as ¢ — ¢’ where ¢ is the value of time when it lands
and ¢’ is one second prior to that. The corresponding distance is y — y' = 0.50A4, where y
denotes the location of the ground. In these terms, y is the same as 4, so we have & —’
=0.50h or 0.50h=y".

(a) We find #' and ¢ from Eq. 2-15 (with vy = 0):
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!/

2y
g

1 2
yz—gz‘2 = = _y'
2 \ ¢

Plugging in y = h and y’'= 0.50/, and dividing these two equations, we obtain

! 1 12

=—gt"”" = ('=
y 2g

t 2h/ g o

Letting ¢'= ¢ — 1.00 (SI units understood) and cross-multiplying, we find

1.00

t —100=t4050 = t=——r
1 -+050

which yields t = 3.41 s.
(b) Plugging this result into y =1gt* we find 4 =57 m.

(c) In our approach, we did not use the quadratic formula, but we did “choose a root”
when we assumed (in the last calculation in part (a)) that +0.50 = +0.707 instead

of —0.707. If we had instead let /050 = —0.707 then our answer for ¢ would have
been roughly 0.6 s, which would imply that "= 7 — 1 would equal a negative number
(indicating a time before it was dropped), which certainly does not fit with the
physical situation described in the problem.

59. We neglect air resistance, which justifies setting a = —g = —9.8 m/s” (taking down
as the —y direction) for the duration of the motion. We are allowed to use Table 2-1
(with Ay replacing Ax) because this is constant acceleration motion. The ground level
is taken to correspond to the origin of the y-axis.

(a) The time drop 1 leaves the nozzle is taken as ¢ = 0 and its time of landing on the
floor ¢, can be computed from Eq. 2-15, with vy = 0 and y; =-2.00 m.

2 g 9.8 m/s

At that moment, the fourth drop begins to fall, and from the regularity of the dripping
we conclude that drop 2 leaves the nozzle at # = 0.639/3 = 0.213 s and drop 3 leaves
the nozzle at r = 2(0.213 s) = 0.426 s. Therefore, the time in free fall (up to the
moment drop 1 lands) for drop 2 is £, = #; — 0.213 s = 0.426 s. Its position at the
moment drop 1 strikes the floor is

y, = —% gt? = —%(9.8 m/s*)(0.426'5)> = —0.889 m,

or about 89 cm below the nozzle.
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(b) The time in free fall (up to the moment drop 1 lands) for drop 3 is 3 =, —0.426 s

=(0.213 s. Its position at the moment drop 1 strikes the floor is

b= _% gt = —%(9.8 m/s?)(0.2135)° =-0.222 m,

or about 22 cm below the nozzle.

60. To find the “launch” velocity of the rock, we apply Eq. 2-11 to the maximum
height (where the speed is momentarily zero)

v=y,—gt = 0=y, - (9.8m/sz)(2.5 5)

so that vy = 24.5 m/s (with +y up). Now we use Eq. 2-15 to find the height of the
tower (taking yo = 0 at the ground level)

J/—J/o=v0t+%at2 = y—0=(24.5m/s)(1.55)—%(9.8m/s2)(1.5s)2.

Thus, we obtain y =26 m.

61. We choose down as the +y direction and place the coordinate origin at the top of
the building (which has height H). During its fall, the ball passes (with velocity v,) the
top of the window (which is at y;) at time #,, and passes the bottom (which is at ) at
time #,. We are told y, —y; = 1.20 m and #, — t; = 0.125 s. Using Eq. 2-15 we have

1
Yo =V =V (tz - tl) + Eg(tz - tl)z

which immediately yields

120 m — (9.8 m/s2)(0.125s)’
y = (0.8 ms’)(0.1255) = 8.99 mJs.
0.125s

From this, Eq. 2-16 (with vy = 0) reveals the value of y;:

(899 m/s)’

- —4.12m.
208 mish)

V12 =2gy,

It reaches the ground (y; = H) at 3. Because of the symmetry expressed in the
problem (“upward flight is a reverse of the fall””) we know that #; — £, = 2.00/2 = 1.00
s. And this means 73 — #; = 1.00 s + 0.125 s = 1.125 s. Now Eq. 2-15 produces

1
Vs=y =t - t1)+5g(t3 - t1)2

y, - 4.12 m=(8.99 m/s)(1.125 s)+%(9.8 m/s?)(1.125's)’
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which yields y; = H=20.4 m.

62. The height reached by the player is y = 0.76 m (where we have taken the origin of
the y axis at the floor and +y to be upward).

(a) The initial velocity vy of the player is

Vo =~/22y =4/2(9.8 m/s>)(0.76 m) = 3.86 m/s .

This is a consequence of Eq. 2-16 where velocity v vanishes. As the player reaches y,
=0.76 m—0.15 m = 0.61 m, his speed v, satisfies v; —v; =2gy, , which yields

v = V2 = 22y, = /(3.86 m/s)* — 2(9.80 m/s*)(0.61 m) =1.71 m/s .

The time ¢, that the player spends ascending in the top Ay; = 0.15 m of the jump can
now be found from Eq. 2-17:

2(0.15m)

= —0.175s
1.71m/s + 0

Ay, = (v1 +V)tl =t

N | —

which means that the total time spent in that top 15 cm (both ascending and
descending) is 2(0.175 s) = 0.35 s = 350 ms.

(b) The time #, when the player reaches a height of 0.15 m is found from Eq. 2-15:
0.15 m=vt, —% gt; =(3.86 m/s)t, —%(9.8 m/s’)e

which yields (using the quadratic formula, taking the smaller of the two positive roots)
tr = 0.041 s = 41 ms, which implies that the total time spent in that bottom 15 cm
(both ascending and descending) is 2(41 ms) = 82 ms.

63. The time ¢ the pot spends passing in front of the window of length L = 2.0 m is
0.25 s each way. We use v for its velocity as it passes the top of the window (going
up). Then, with a = —g = 9.8 m/s* (taking down to be the —y direction), Eq. 2-18
yields

1

L=vi——gt" = v=—-——_gt.
25 ; 2%

The distance H the pot goes above the top of the window is therefore (using Eq. 2-16
with the final velocity being zero to indicate the highest point)

2
> (L/t—at/2)  (2.00m/0.25s—(9.80 m/s*)(0.255s)/2
P Gl ) ( ~ 10259 )=2.34m.
2g 2g 2(9.80 m/s?)
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64. The graph shows y = 25 m to be the highest point (where the speed momentarily
vanishes). The neglect of “air friction” (or whatever passes for that on the distant
planet) is certainly reasonable due to the symmetry of the graph.

(a) To find the acceleration due to gravity g, on that planet, we use Eq. 2-15 (with +y
up)

y—yozvt+%gpt2 - 25m—Oz(O)(2.5s)+%gp(2.55)2

so that g, = 8.0 m/s’.

(b) That same (max) point on the graph can be used to find the initial velocity.

y—yozé(v0+v)t = 25m-0=1 (v, +0)(255)

N |~

Therefore, vy = 20 m/s.

65. The key idea here is that the speed of the head (and the torso as well) at any given
time can be calculated by finding the area on the graph of the head’s acceleration
versus time, as shown in Eq. 2-26:

{area between the acceleration curve]
V =
1 0

and the time axis, from ¢, fo ¢,

(a) From Fig. 2.14a, we see that the head begins to accelerate from rest (vo=0) at t, =
110 ms and reaches a maximum value of 90 m/s’ at t1 = 160 ms. The area of this
region is

area =%(160—110)x103s-(90 m/s” ) =2.25 m/s

which is equal to v;, the speed at ¢;.
(b) To compute the speed of the torso at £,=160 ms, we divide the area into 4 regions:

From 0 to 40 ms, region A has zero area. From 40 ms to 100 ms, region B has the
shape of a triangle with area

area, = %(0.0600 $)(50.0 m/s*)=1.50 m/s .
From 100 to 120 ms, region C has the shape of a rectangle with area
area. = (0.0200 s) (50.0 m/s*) = 1.00 m/s.
From 110 to 160 ms, region D has the shape of a trapezoid with area

area, = %(0.0400 s) (50.0 + 20.0) m/s* = 1.40 mvs.

Substituting these values into Eq. 2-26, with vo= 0 then gives
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v, —0=0+1.50 m/s + 1.00 m/s + 1.40 m/s = 3.90 m/s,
or v, =3.90 m/s.

66. The key idea here is that the position of an object at any given time can be
calculated by finding the area on the graph of the object’s velocity versus time, as
shown in Eq. 2-25:

[area between the velocity curve]
X=X, = .

and the time axis, from ¢, o ¢,

(a) To compute the position of the fist at £ = 50 ms, we divide the area in Fig. 2-34
into two regions. From 0 to 10 ms, region A has the shape of a triangle with area

area, = —(0.010s) (2m/s) =0.01 m.

N |~

From 10 to 50 ms, region B has the shape of a trapezoid with area

(0.040's) 2+ 4) m/s=0.12 m.

N | =

area, =

Substituting these values into Eq. 2-25 with xy= 0 then gives
x,—0=0+0.0lm+0.12m=0.13 m,

or x,=0.13m.

(b) The speed of the fist reaches a maximum at #; = 120 ms. From 50 to 90 ms, region
C has the shape of a trapezoid with area

area. = —(0.040 s) (4 +5) m/s = 0.18 m.

| =

From 90 to 120 ms, region D has the shape of a trapezoid with area

(0.030 s) (5 +7.5) m/s = 0.19 m.

N | —

area,, =

Substituting these values into Eq. 2-25, with xo= 0 then gives

x-0=0+0.0lm+0.12m+0.18 m+ 0.19 m= 0.50 m,

or x,=0.50 m.
67. The problem is solved using Eq. 2-26:

{area between the acceleration curvej
v =
1 0

and the time axis, from ¢, fo ¢,
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To compute the speed of the unhelmeted, bare head at ¢, = 7.0 ms, we divide the area
under the a vs. ¢ graph into 4 regions: From 0 to 2 ms, region A has the shape of a
triangle with area

(0.0020 s) (120 m/s) = 0.12 m/s.

area, =

N | =

From 2 ms to 4 ms, region B has the shape of a trapezoid with area

area, = —(0.0020 s) (120 + 140) m/s* = 0.26 m/s.

N |~

From 4 to 6 ms, region C has the shape of a trapezoid with area

area, = %(0.0020 s) (140 + 200) m/s> = 0.34 m/s.
From 6 to 7 ms, region D has the shape of a triangle with area

area, =%(0.0010 s) (200 m/s*) = 0.10 m/s.

Substituting these values into Eq. 2-26, with v=0 then gives

Y =0.12m/s+0.26 m/s+0.34 m/s+0.10 m/s = 0.82 m/s.

unhelmeted

Carrying out similar calculations for the helmeted head, we have the following

results: From 0 to 3 ms, region A has the shape of a triangle with area
1
area, = 5(0.0030 s) (40 m/s*) = 0.060 m/s.

From 3 ms to 4 ms, region B has the shape of a rectangle with area

area, = (0.0010 s) (40 m/s>) = 0.040 m/s.

From 4 to 6 ms, region C has the shape of a trapezoid with area

area. = %(0.0020 s) (40 + 80) m/s* = 0.12 m/s.

From 6 to 7 ms, region D has the shape of a triangle with area

area, :%(0.0010 s) (80 m/s*) = 0.040 m/s.

Substituting these values into Eq. 2-26, with vo= 0 then gives

=0.060 m/s +0.040 m/s+0.12 m/s +0.040 m/s = 0.26 m/s.

vhelmeted
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Thus, the difference in the speed is

AV=Y, et = Veomeed = 0-82 M/s —0.26 m/s = 0.56 my/s.

68. This problem can be solved by noting that velocity can be determined by the
graphical integration of acceleration versus time. The speed of the tongue of the
salamander is simply equal to the area under the acceleration curve:

v =area = %(102 s)(100 m/s*) +%(102 s)(100 m/s* + 400 m/s*) +%(102 s)(400 m/s®)
=5.0m/s.

69. Since v=dx/dt (Eq. 2-4), then Ax =] vdt, which corresponds to the area
under the v vs ¢ graph. Dividing the total area 4 into rectangular (base x height) and
triangular (1 base x height) areas, we have

A =4 + 4

— “T0<«<2

+ A + A

2<t<10 10<¢<12 12<t<16

= %(2)(8) +(8)(8) + ((2)(4) + %(2)(4)j +(4)(4)

with SI units understood. In this way, we obtain Ax = 100 m.

70. To solve this problem, we note that velocity is equal to the time derivative of a
position function, as well as the time integral of an acceleration function, with the
integration constant being the initial velocity. Thus, the velocity of particle 1 can be
written as

v, _ 4 :i(6.00t2 +3.00¢+2.00) =12.0¢ +3.00.
di dt

Similarly, the velocity of particle 2 is
v, = vy + [ a,dt =20.0+ [ (~8.000)dt = 20.0—4.00¢.

The condition that v, =v, implies

12.0¢+3.00=20.0-4.00 = 4.00¢* +12.0t-17.0=0

which can be solved to give (taking positive root) ¢ = (—3+\/%)/ 2=1.05s. Thus,

the velocity at this time is v, =v, =12.0(1.05)+3.00 =15.6 m/s.

71. (a) The derivative (with respect to time) of the given expression for x yields the
“velocity” of the spot:

W)=9- 737
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with 3 significant figures understood. It is easy to see that v =0 when ¢ =2.00 s.

(b) Atr=2s,x=9(2) — %(2)’ = 12. Thus, the location of the spot when v = 0 is 12.0
cm from left edge of screen.

(¢) The derivative of the velocity is a = — % t, which gives an acceleration of
—~9.00 cm/m” (negative sign indicating leftward) when the spot is 12 cm from the
left edge of screen.

(d) Since v > 0 for times less than =2 s, then the spot had been moving rightward.

(e) As implied by our answer to part (¢), it moves leftward for times immediately after
t =2s. In fact, the expression found in part (a) guarantees that for all £ > 2, v <0
(that is, until the clock is “reset” by reaching an edge).

(f) As the discussion in part (e) shows, the edge that it reaches at some ¢ > 2 s cannot
be the right edge; it is the left edge (x = 0). Solving the expression given in the
problem statement (with x = 0) for positive ¢ yields the answer: the spot reaches the
left edge at = \[12 s~ 3.46s.

72. We adopt the convention frequently used in the text: that "up" is the positive y
direction.

(a) At the highest point in the trajectory v = 0. Thus, with = 1.60 s, the equation
v =1y — gt yields vo = 15.7 m/s.

(b) One equation that is not dependent on our result from part (a) is y — yo = vt + %gt2 ;

this readily gives ymax — yo = 12.5 m for the highest ("max") point measured relative to
where it started (the top of the building).

(c) Now we use our result from part (a) and plug into y — yg = vpt + %gt2 with ¢ = 6.00
s and y = 0 (the ground level). Thus, we have

0 —yo = (15.68 m/s)(6.00 5) — 3 (9.8 m/s>)(6.00 s)°.

Therefore, yy (the height of the building) is equal to 8§2.3 m.

73. We denote the required time as ¢, assuming the light turns green when the clock
reads zero. By this time, the distances traveled by the two vehicles must be the same.

(a) Denoting the acceleration of the automobile as a and the (constant) speed of the
truck as v then

Ax = (% atchar = (Vt)truck

which leads to
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2(9.5m/
[2&2—( ZS)=86S
a 2.2m/s
Therefore,

Ax =vt = (9.5 m/s)(8.6 s) =82 m.
(b) The speed of the car at that moment is

Vo =at =(2.2m/s”)(8.65) =19 m/s .

cai

74. 1If the plane (with velocity v) maintains its present course, and if the terrain
continues its upward slope of 4.3°, then the plane will strike the ground after traveling

h 35m

= = =4655m~ 0.465 km.
tan@d tan4.3°

This corresponds to a time of flight found from Eq. 2-2 (with v = v, since it is
constant)

= Ax_ 0465km 00358 ha13s,
v 1300 km/h

This, then, estimates the time available to the pilot to make his correction.

75. We denote ¢, as the reaction time and #, as the braking time. The motion during ¢,
is of the constant-velocity (call it vo) type. Then the position of the car is given by

1
X =Vt + Vt, + Eat,f

where vy is the initial velocity and a is the acceleration (which we expect to be
negative-valued since we are taking the velocity in the positive direction and we know
the car is decelerating). Affer the brakes are applied the velocity of the car is given by
v = vy + atp. Using this equation, with v = 0, we eliminate #, from the first equation
and obtain
2 2 2
SV IR TP
2 a 2 a

We write this equation for each of the initial velocities:

1 v?

X, =Vyl, — = o

2 a

and

1v2

02
X, =Vl ———.

2 02
"2 a

Solving these equations simultaneously for #, and a we get
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2 2
{ = Vo X1 — Vo X
r

VoiVo2 (Voz _v01)

and

(a) Substituting x; = 56.7 m, vo; = 80.5 km/h = 22.4 m/s, x, = 24.4 m and vy, = 48.3
km/h = 13.4 m/s, we find

. VorXi — VX, (13.4 m/s)’(56.7 m)—(22.4 m/s)*(24.4 m)
" Ve (Ve — Vo) (22.4 m/s)(13.4 m/s)(13.4 m/s—22.4 m/s)
=0.74s.

(b) Similarly, substituting x; = 56.7 m, vo; = 80.5 km/h = 22.4 m/s, x, = 24.4 m, and
vo2 = 48.3 km/h = 13.4 m/s gives

2 VX, = Vo X, - 2 (13.4m/s)(56.7 m)—(22.4 m/s)(24.4 m)

The magnitude of the deceleration is therefore 6.2 m/s”. Although rounded-off values
are displayed in the above substitutions, what we have input into our calculators are
the “exact” values (such as v, =15 m/s).

76. (a) A constant velocity is equal to the ratio of displacement to elapsed time. Thus,
for the vehicle to be traveling at a constant speed v, over a distance D,;, the time

delay shouldbe 7=D,;/v,.

(b) The time required for the car to accelerate from rest to a cruising speed v, is
f, =v,/a. During this time interval, the distance traveled is Ax, = at; /2 :v; /2a.
The car then moves at a constant speed v, over a distance D,, —Ax,—d to reach
intersection 2, and the time elapsed is £, = (D, —Ax, —d)/v,. Thus, the time delay at

intersection 2 should be set to

Vo D, —Ax,—d v D,-(/2a)-d
ttotalztr+t0+t1:t,.+_p+A:tr+_p+ 12 P
a vp a Vp
" 2a v

77. Since the problem involves constant acceleration, the motion of the rod can be
readily analyzed using the equations in Table 2-1. We take +x in the direction of
motion, SO
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1000 m/ km

v =(60 km/h)
3600 s/h

]: +16.7 m/s

and a > 0. The location where it starts from rest (vo = 0) is taken to be xo = 0.
(a) Using Eq. 2-7, we find the average acceleration to be

g _Av_vovy _T67m570 509 1 o 3.1 s
At t—t, 54s5-0

(b) Assuming constant acceleration a =a,, =3.09 m/s’, the total distance traveled

during the 5.4-s time interval is

x=x, +v0t+%alz = 0+0+%(3.09 m/s’)(5.4s) =45 m.

(c) Using Eq. 2-15, the time required to travel a distance of x = 250 m is:

f 2(250
x=lat2 = t= Ez (—n21)=13s.
2 a 3.1m/s

Note that the displacement of the rod as a function of time can be written as

x(t)= %(3.09 m/s*)t*. Also we could have chosen Eq. 2-17 to solve for (b):

x:%@b+@t:%aa7mmx54g:4sm.

78. We take the moment of applying brakes to be ¢ = 0. The deceleration is constant so
that Table 2-1 can be used. Our primed variables (such as v, = 72 km/h = 20 m/s ) refer

to one train (moving in the +x direction and located at the origin when ¢ = 0) and
unprimed variables refer to the other (moving in the —x direction and located at xy =
+950 m when ¢ = 0). We note that the acceleration vector of the unprimed train points
in the positive direction, even though the train is slowing down; its initial velocity is
vo = —144 km/h = —40 m/s. Since the primed train has the lower initial speed, it should
stop sooner than the other train would (were it not for the collision). Using Eq 2-16, it
should stop (meaning v'=0) at

(") = (%) _0-(20msy’

X' = , = —200m.
2a -2 m/s

The speed of the other train, when it reaches that location, is

v=\%; + 2aA = (40 mis)’ +2(1.0 m/s*)(200 m ~ 950 m)

=10 m/s
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using Eq 2-16 again. Specifically, its velocity at that moment would be —10 m/s since
it is still traveling in the —x direction when it crashes. If the computation of v had
failed (meaning that a negative number would have been inside the square root) then
we would have looked at the possibility that there was no collision and examined how
far apart they finally were. A concern that can be brought up is whether the primed
train collides before it comes to rest; this can be studied by computing the time it
stops (Eq. 2-11 yields ¢ = 20 s) and seeing where the unprimed train is at that moment
(Eq. 2-18 yields x = 350 m, still a good distance away from contact).

79. The y coordinate of Piton 1 obeys y — yo1 = — % g where y = 0 when = 3.0 s.

This allows us to solve for y,;, and we find y¢; = 44.1 m. The graph for the coordinate
of Piton 2 (which is thrown apparently at z = 1.0 s with velocity v,) is

Y=y =w(-1.0)- 3 g (1—1.07

where yo; = yo1 + 10 = 54.1 m and where (again) y = 0 when ¢ = 3.0 s. Thus we
obtain |v| = 17 m/s, approximately.

80. We take +x in the direction of motion. We use subscripts 1 and 2 for the data. Thus,
v =+30 m/s, v, = +50 m/s, and x; —x; = +160 m.

(a) Using these subscripts, Eq. 2-16 leads to

Vv (50m/s)’ — (30 mJs)’

=5.0 m/s’ .
2(x, - x) 2(160 m) ’

a=

(b) We find the time interval corresponding to the displacement x; — x; using Eq. 2-17:

L =2(x2—x1): 2(160 m) 40
P oy 4y, 30ms+50mls

(c) Since the train is at rest (vo = 0) when the clock starts, we find the value of #; from
Eq. 2-11:
30 m/s
w=v,tat, = t,=—-—-5=60s
5.0m/s

(d) The coordinate origin is taken to be the location at which the train was initially at
rest (so xo = 0). Thus, we are asked to find the value of x;. Although any of several
equations could be used, we choose Eq. 2-17:

X, :%(vo +v)t, :%(30 m/s)(6.0s)=90 m .

(e) The graphs are shown below, with ST units understood.
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50

200

81. Integrating (from ¢ = 2 s to variable ¢ = 4 s) the acceleration to get the velocity and

using the values given in the problem leads to

y=v,+ j adt = v, + j (5.00)dt = v, +%(5.0)(t2 —2)=17+ 1 (5.0)(4* —2%) =47 ms,

82. The velocity v at ¢+ = 6 (SI units and two significant figures understood) is

vgiven

base x height). The result is v="7 m/s + 32 m/s = 39 m/s.

83. The object, once it is dropped (vo = 0) is in free fall (¢ = —g = —9.8 m/s>
down as the —y direction), and we use Eq. 2-15 repeatedly.

+J:62 adt. A quick way to implement this is to recall the area of a triangle (%

if we take

(a) The (positive) distance D from the lower dot to the mark corresponding to a
certain reaction time ¢ is given by Ay=-D=-1lgt’ or D = gf*/2. Thus,

fort, =50.0 ms,

(9.8 m/ sz) (50.0 x 107 s)2
D, = 5 =00123m=1.23cm.

(9.8m/s?) (100x107s)’

(b) Fort,=100ms, D, = 5 =0.049m=4D,.
(9.8m/s*) (150x107s)’

(¢) For =150 ms, D, = 5 =0.11m=9D.,.
(9.8m/s*) (200x107s)’

(d) Fort4=200ms, D, = 5 =0.196m=16D,.
(9.8 m/sz)(250>< 107 s)2

(e) For t4=250ms, D, = =0306 m=25D,.

2

84. We take the direction of motion as +x, take xo = 0 and use SI units, so v =

1600(1000/3600) = 444 m/s.
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(a) Equation 2-11 gives 444 = a(1.8) or a = 247 m/s>. We express this as a multiple of
g by setting up a ratio:

(247 m/s’

9.8 m/s® j g=2¢

(b) Equation 2-17 readily yields
xX= %(vO +v)it= %(444 m/s)(1.8s) =400 m.

85. Let D be the distance up the hill. Then

total dist traveled 2D
average speed = o CIStnce Tave et _ D D ~ 25 km/h .

total time of travel N
20km/h 35 km/h

86. We obtain the velocity by integration of the acceleration:
— :jo’(6.1—1.2z')dz'.

Lengths are in meters and times are in seconds. The student is encouraged to look at
the discussion in the textbook in §2-7 to better understand the manipulations here.

(a) The result of the above calculation is
v =v,+6.1£-0.61°,

where the problem states that vy = 2.7 m/s. The maximum of this function is found by
knowing when its derivative (the acceleration) is zero (¢ = 0 when t=6.1/1.2 = 5.1 s)
and plugging that value of ¢ into the velocity equation above. Thus, we find
v=18 m/s.

(b) We integrate again to find x as a function of ¢
x=x, = [ vi'= [ (v, + 6.1/ = 0.6 )di' = vt +3.05* = 021",

With xo = 7.3 m, we obtain x = 83 m for = 6. This is the correct answer, but one has
the right to worry that it might not be; after all, the problem asks for the total distance
traveled (and x — xo is just the displacement). If the cyclist backtracked, then his total
distance would be greater than his displacement. Thus, we might ask, "did he
backtrack?" To do so would require that his velocity be (momentarily) zero at some
point (as he reversed his direction of motion). We could solve the above quadratic
equation for velocity, for a positive value of ¢ where v = 0; if we did, we would find
that at £ = 10.6 s, a reversal does indeed happen. However, in the time interval we
are concerned with in our problem (0 < ¢ < 6 s), there is no reversal and the
displacement is the same as the total distance traveled.
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87. The time it takes to travel a distance d with a speed v| is ¢, =d /v,. Similarly, with

a speed v, the time would be ¢, =d /v, . The two speeds in this problem are

v, =55 mi/h = (55 mi/h) SO WM _ 54 58 s
3600 s/h

v, =65 mi/h = (65 mi/n) 220 WM _ 56 05 mys
3600 s/h

With d =700 km =7.0x10°> m, the time difference between the two is

At=t —t,=d {i - LJ=(7.0><105 m)(

Vi W

1 |
2458m/s  29.05m/s

j=4383s=73 min

or 1 hand 13 min.
88. The acceleration is constant and we may use the equations in Table 2-1.

(a) Taking the first point as coordinate origin and time to be zero when the car is there,
we apply Eq. 2-17:

x=% (v+v0)t=% (15.0 m/s +v,) (6.005)

With x = 60.0 m (which takes the direction of motion as the +x direction) we solve for
the initial velocity: vo = 5.00 m/s.

(b) Substituting v =15.0 m/s, vo = 5.00 m/s, and ¢ = 6.00 s into a = (v — vy)/t (Eq. 2-11),
we find a = 1.67 m/s”.

(c) Substituting v=0in v’ =1 +2ax and solving for x, we obtain

2 2
o Y (5.00msy _7.50m |
2a 2(1.67m/s2)

or |[x| =7.50m.

(d) The graphs require computing the time when v = 0, in which case, we use v = v, +
at’'=0. Thus,

, —V, —5.00m/s
t'=—F=——-=-30s
a 1.67m/s

indicates the moment the car was at rest. SI units are understood.
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720 -

89. We neglect air resistance, which justifies setting @ = —g = —9.8 m/s’ (taking down
as the —y direction) for the duration of the motion. We are allowed to use Table 2-1
(with Ay replacing Ax) because this is constant acceleration motion. When something
is thrown straight up and is caught at the level it was thrown from, the time of flight ¢
is half of its time of ascent #,, which is given by Eq. 2-18 with Ay = H and v = 0
(indicating the maximum point).

1
szta+5gtf = (= |—

Writing these in terms of the total time in the air # = 2¢, we have

1 2H
H=—gt’ = t=2|"—.
8 g

We consider two throws, one to height H; for total time #, and another to height H> for
total time #,, and we set up a ratio:

from which we conclude that if ¢, = 2¢, (as is required by the problem) then H, = 2’H 1
=4H 1.

90. (a) Using the fact that the area of a triangle is 1 (base) (height) (and the fact that
the integral corresponds to the area under the curve) we find, from ¢ = 0 through t =5
s, the integral of v with respect to ¢ is 15 m. Since we are told that xo = 0 then we
conclude that x =15 m when 7 = 5.0 s.

(b) We see directly from the graph that v=2.0 m/s when ¢ =5.0 s.

(c) Since a = dv/dt = slope of the graph, we find that the acceleration during the
interval 4 < ¢ < 6 is uniformly equal to —2.0 m/s’.

(d) Thinking of x(¢) in terms of accumulated area (on the graph), we note that x(1) = 1
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m; using this and the value found in part (a), Eq. 2-2 produces

_x(5)—-x(1) 15m-1
e 5-1 4s

m_ 3.5 m/s.

(e) From Eq. 2-7 and the values v(f) we read directly from the graph, we find

_ v —v@) _ 2m/s—2m/s _

0.
e 5-1 4s

91. Taking the +y direction downward and y, = 0, we have y=v,t+1gt’, which

(with vo=0) yields ¢t=.,/2y/g.

(a) For this part of the motion, y; = 50 m so that

f= [2O0m 55
9.8 m/s

(b) For this next part of the motion, we note that the total displacement is y, = 100 m.
Therefore, the total time is

The difference between this and the answer to part (a) is the time required to fall
through that second 50 m distance: Af=¢,-t, =45s5s-32s=13s.

92. Direction of +x is implicit in the problem statement. The initial position (when the
clock starts) is xo = 0 (where vy = 0), the end of the speeding-up motion occurs at x; =
1100/2 = 550 m, and the subway train comes to a halt (v, = 0) at x, = 1100 m.

(a) Using Eq. 2-15, the subway train reaches x; at

2(550
o 2 2E0m) s
a, 1.2 m/s

The time interval #, — #; turns out to be the same value (most easily seen using Eq.
2-18 so the total time is #, = 2(30.3) = 60.6 s.

(b) Its maximum speed occurs at #; and equals
v, =V, +at, =363m/s.

(c) The graphs are shown below:
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93. We neglect air resistance, which justifies setting @ = —g = —9.8 m/s* (taking down
as the —y direction) for the duration of the stone’s motion. We are allowed to use Table

2-1 (with Ax replaced by y) because the ball has constant acceleration motion (and we
choose yp = 0).

(a) We apply Eq. 2-16 to both measurements, with SI units understood.

2
1
vézvé—ZgyB = (EVJ +2g(yA+3)=v§
vi:vg—ZgyA = v2+2gyA=v§

We equate the two expressions that each equal v; and obtain

%vz +2gyA+2g(3)=v2+2gyA = 2g(3):%v2

which yields v=,/2g(4) =885m/s.

(b) An object moving upward at A with speed v = 8.85 m/s will reach a maximum
height y —y, = v2/2g =4.00 m above point 4 (this is again a consequence of Eq. 2-16,
now with the “final” velocity set to zero to indicate the highest point). Thus, the top of
its motion is 1.00 m above point B.

94. We neglect air resistance, which justifies setting a = —g = —9.8 m/s* (taking down
as the —y direction) for the duration of the motion. We are allowed to use Table 2-1
(with Ay replacing Ax) because this is constant acceleration motion. The ground level
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is taken to correspond to the origin of the y-axis. The total time of fall can be
computed from Eq. 2-15 (using the quadratic formula).

Vv, + Ve — 2gAy

g

1
Ayzvot—5g12 = t=

with the positive root chosen. With y =0, vy = 0, and y, = & = 60 m, we obtain

\2gh
=328 2h s
g g

Thus, “1.2 s earlier” means we are examining where the rock is at t = 2.3 s:
1 2
y—h=v,23 s)—Eg(2.3 s’ = y=34m

where we again use the fact that 2 =60 m and vy = 0.

95. (a) The wording of the problem makes it clear that the equations of Table 2-1
apply, the challenge being that vy, v, and « are not explicitly given. We can, however,

apply x — xo = vt + %at2 to a variety of points on the graph and solve for the

unknowns from the simultaneous equations. For instance,

1
16m—0=vy(2.08) + 5 a(2.0s)’

1
27m-0=w(3.05)+ 5 a(3.0 s)*

lead to the values vy = 6.0 m/s and a = 2.0 m/s.
(b) From Table 2-1,
1 1
X —Xo=vt— Eaﬁ = 27m-0=43.05)- 5 (2.0 m/s?)(3.0 s)°
which leads to v =12 m/s.

(c) Assuming the wind continues during 3.0 < ¢ < 6.0, we apply x — xo = vot + %at2 to
this interval (where vy = 12.0 m/s from part (b)) to obtain

Ax=(12.0 m/s)(3.0s) + % (2.0 m/s?)(3.0s)*=45m.

96. (a) Let the height of the diving board be 4. We choose down as the +y direction
and set the coordinate origin at the point where it was dropped (which is when we
start the clock). Thus, y = & designates the location where the ball strikes the water.
Let the depth of the lake be D, and the total time for the ball to descend be 7. The

speed of the ball as it reaches the surface of the lake is then v = /2gh (from Eq.
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2-16), and the time for the ball to fall from the board to the lake surface is #; =
v2h/ g (from Eq. 2-15). Now, the time it spends descending in the lake (at constant
velocity v) is

2h D

— + =,
g \2gh

Thus, T=t +t6= which gives

D=T\2gh — 2h = (4.80 s)\/(Z)(9.80 m/s”)(5.20 m) -2(5.20 m)=38.1 m.

(b) Using Eq. 2-2, the magnitude of the average velocity is

~D+h 381m+520m

Vo =9.02 m/s
T 480

(c) In our coordinate choices, a positive sign for v,,, means that the ball is going
downward. If, however, upward had been chosen as the positive direction, then this
answer in (b) would turn out negative-valued.

(d) We find vy from Ay =v,¢ Jr%gt2 with £=Tand Ay =h + D. Thus,

_h+D gl _520m+38.1m (9.8 m/s”)(4.805)

v, =14.5 m/s
T 2 4.80s

(e) Here in our coordinate choices the negative sign means that the ball is being
thrown upward.

97. We choose down as the +y direction and use the equations of Table 2-1 (replacing

x with y) with a = +g, v = 0, and yo = 0. We use subscript 2 for the elevator reaching
the ground and 1 for the halfway point.

(a) Equation 2-16, v; =v; + 2a(y, — y,), leads to

v, =22y, = [2(9.8 m/s*)(120 m) =48.5 ms .

(b) The time at which it strikes the ground is (using Eq. 2-15)

2(120
= [P PU20m) g
g 9.8 m/s

(¢) Now Eq. 2-16, in the form v} =v; + 2a(y, — y,), leads to
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v, =227, =+/2(9.8 m/s?)(60 m) =34.3m/s.

(d) The time at which it reaches the halfway point is (using Eq. 2-15)

f= [P [2O0m) g5
g 9.8 m/s

98. Taking +y to be upward and placing the origin at the point from which the objects
are dropped, then the location of diamond 1 is given by y, =—1 g’ and the location

of diamond 2 is given by y, =—1g(r - 1)2. We are starting the clock when the first
object is dropped. We want the time for which y, —y; = 10 m. Therefore,

—%g(t— 1y’ +%gt2 =10 = ¢=(10/g)+05=15s.

99. With +y upward, we have yo = 36.6 m and y = 12.2 m. Therefore, using Eq. 2-18
(the last equation in Table 2-1), we find

y—y0=vt+%gt2 = v=-22.0m/s

at t = 2.00 s. The term speed refers to the magnitude of the velocity vector, so the
answer is |[v| = 22.0 m/s.

100. During free fall, we ignore the air resistance and set a = —g = —9.8 m/s* where we
are choosing down to be the —y direction. The initial velocity is zero so that Eq. 2-15

becomes Ay =-—1gt’ where Ay represents the negative of the distance d she has

fallen. Thus, we can write the equation as d =1 gt* for simplicity.

(a) The time ¢, during which the parachutist is in free fall is (using Eq. 2-15) given by
d=50m=1grt =1 )i
,=50m 2gt1 =3 (9.80m/s )z‘l

which yields #; = 3.2 s. The speed of the parachutist just before he opens the parachute
is given by the positive root v =2gd, , or

v, =\2gh = /(2)(980 m/5*)(50 m) =31m/s.

If the final speed is v, then the time interval #, between the opening of the parachute
and the arrival of the parachutist at the ground level is

_v—-v, 3lm/s-30m/s

2

=14s.

a 2m/s
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This is a result of Eq. 2-11 where speeds are used instead of the (negative-valued)
velocities (so that final-velocity minus initial-velocity turns out to equal initial-speed
minus final-speed); we also note that the acceleration vector for this part of the motion
is positive since it points upward (opposite to the direction of motion — which makes
it a deceleration). The total time of flight is therefore #;, + =17 s.

(b) The distance through which the parachutist falls after the parachute is opened is
given by
2 2
J— Vi —v3 _ (3lm/s) —(3.0 m/s) ~240m.
2a (2)(20m/s’)

In the computation, we have used Eq. 2-16 with both sides multiplied by —1 (which
changes the negative-valued Ay into the positive d on the left-hand side, and switches
the order of v; and v, on the right-hand side). Thus the fall begins at a height of # = 50
+d =290 m.

101. We neglect air resistance, which justifies setting a = —g = —9.8 m/s” (taking down
as the —y direction) for the duration of the motion. We are allowed to use Table 2-1

(with Ay replacing Ax) because this is constant acceleration motion. The ground level
is taken to correspond to y = 0.

(a) With yo = h and v, replaced with —vy, Eq. 2-16 leads to

v=\en) =280 - 3,) = + 2¢h.

The positive root is taken because the problem asks for the speed (the magnitude of
the velocity).

(b) We use the quadratic formula to solve Eq. 2-15 for 7, with v, replaced with —v,,

—Vo +4/(=vy)* —2gAy

g

Ay = —vOt—%gl‘2 = t=

where the positive root is chosen to yield > 0. With y = 0 and y, = 4, this becomes

Ve +2gh — v,

g

(c) If it were thrown upward with that speed from height % then (in the absence of air
friction) it would return to height # with that same downward speed and would
therefore yield the same final speed (before hitting the ground) as in part (a). An
important perspective related to this is treated later in the book (in the context of
energy conservation).

(d) Having to travel up before it starts its descent certainly requires more time than in
part (b). The calculation is quite similar, however, except for now having +vy in the
equation where we had put in —v in part (b). The details follow:
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vt 1/v§ —2gAy

1
Ay = vot——gt2 =
2 g

with the positive root again chosen to yield # > 0. With y = 0 and y, = &, we obtain

_ 1/v§ +2gh +v,

- g

102. We assume constant velocity motion and use Eq. 2-2 (with vge = v > 0).

Therefore,
Av=var =] 303 K0 [ 1000m/Am 160,102 ) —gam
h | 3600s/h



Chapter 3

1. The x and the y components of a vector a lying on the xy plane are given by
a,=acosf, a,=asind

where a =|a| is the magnitude and @1is the angle between a and the positive x axis.

(a) The x component of a is givenby a_ =acos@=(7.3 m)cos250°=-2.50 m.

(b) Similarly, the y component is given by

a,=asin@=(7.3 m)sin250°=-6.86 m~—6.9 m.

The results are depicted in the figure below:
Y (m)
A

(0]

250
(-25,0), / \ % (m)

<
a
X

—

a a

- - Y (0,-6.86)
(-2.5,-6.86)

In considering the variety of ways to compute these, we note that the vector is 70° below
the — x axis, so the components could also have been found from

a,=—(7.3m)cos70°=-2.50 m, a,=—(7.3 m)sin70°=-6.86 m.

Similarly, we note that the vector is 20° to the left from the — y axis, so one could also
achieve the same results by using

a,=—(7.3m)sin20°=-2.50 m, a,=—(7.3 m)cos20°=-6.86 m.

As a consistency check, we note that

Ja2 +a’ =(=2.50 m)’ +(~6.86 m)’ =7.3 m

73
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and
tan‘l (ay /ax) = tan_l[(—6.86 m)/(_250 m)] — 2500,

which are indeed the values given in the problem statement.
2. (a) With » =15 m and 8= 30°, the x component of 7 is given by
ry=rcos@ = (15 m) cos 30° =13 m.
(b) Similarly, the y component is given by r, = 7 sin€ = (15 m) sin 30°=7.5 m.

3. A vector a can be represented in the magnitude-angle notation (a, 6), where

_ 2 2
a=,la. +a,

a,
f=tan'| =
ax

is the angle a makes with the positive x axis.

is the magnitude and

(a) Given 4,=-25.0m and 4,=40.0 m, 4=+/(—25.0m)’> +(40.0m)* =47.2 m.
y

(b) Recalling that tan €= tan (6+ 180°),
tan"' [(40.0 m)/ (- 25.0 m)] = — 58° or 122°.

Noting that the vector is in the third quadrant (by the signs of its x and y components) we
see that 122° is the correct answer. The graphical calculator “shortcuts” mentioned above
are designed to correctly choose the right possibility. The results are depicted in the
figure below:

Y (m)
(-2540) —1(0,40)
A |4
Yy
—t_ 6
< \ > X (m)
(=25,0) 4y

We can check our answers by noting that the x- and the y- components of A can be
written as
A =Acosd, Ay=AsinH
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Substituting the results calculated above, we obtain

A4,=(47.2 m)cos122°=-25.0 m, A4,=(47.2 m)sinl22°=+40.0 m

which indeed are the values given in the problem statement.

4. The angle described by a full circle is 360° = 2n rad, which is the basis of our
conversion factor.

(a) 20.0°= (20.00)23”i0d =0.349 rad .
(b) 50.0°=(50.0°) Z;T rad _ 873 rad.

0°

(c) 100° =(100°)M= 1.75 rad .
360°
(d) 0.330rad = (0330 rad) =L =18.9°.
27 rad
(¢) 2.10rad = (2.10 rad) 360° _ 120°.
27 rad
360°
7.70rad = (7.70 rad =441°.
® ( )27r rad

5. The vector sum of the displacements d . and d_ must give the same result as its

storm
originally intended displacement 670 =(120 km)} where east is f, north is 3 Thus, we
write

—

d. =(100km)i, d

= Ai+B].

storm

(a) The equation d .+ d.. =d, readily yields 4 = —100 km and B = 120 km. The

storm

magnitude of d,, is therefore equal to |d_, |=+/4> + B> =156 km .

(b) The direction is
tan ' (B/A) =—50.2° or 180° + (—50.2°) = 129.8°.

We choose the latter value since it indicates a vector pointing in the second quadrant,
which is what we expect here. The answer can be phrased several equivalent ways:
129.8° counterclockwise from east, or 39.8° west from north, or 50.2° north from west.

6. (a) The height is 4 = d sinf, where d = 12.5 m and €= 20.0°. Therefore, # =4.28 m.

(b) The horizontal distance is d cosd=11.7 m.
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7. The displacement of the fly is illustrated in the figure below:

[N

A coordinate system such as the one shown (above right) allows us to express the
displacement as a three-dimensional vector.

(a) The magnitude of the displacement from one corner to the diagonally opposite corner
is
d=|d|=W +I+}’

Substituting the values given, we obtain

d=|d|=\w +*+1* =(3.70 m)* +(4.30 m)* +(3.00 m)* =6.42 m.

(b) The displacement vector is along the straight line from the beginning to the end point
of the trip. Since a straight line is the shortest distance between two points, the length of
the path cannot be less than the magnitude of the displacement.

(c) It can be greater, however. The fly might, for example, crawl along the edges of the
room. Its displacement would be the same but the path length would be

l+w+h=11.0 m.

(d) The path length is the same as the magnitude of the displacement if the fly flies along
the displacement vector.

(e) We take the x axis to be out of the page, the y axis to be to the right, and the z axis to

be upward. Then the x component of the displacement is w = 3.70 m, the y component of
the displacement is 4.30 m, and the z component is 3.00 m. Thus,

d =(3.70 m)i +(4.30 m) j+(3.00 m)k .

An equally correct answer is gotten by interchanging the length, width, and height.
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(f) Suppose the path of the fly is as shown by the dotted lines on the upper diagram.
Pretend there is a hinge where the front wall of the room joins the floor and lay the wall
down as shown on the lower diagram. The shortest walking distance between the lower
left back of the room and the upper right front corner is the dotted straight line shown on
the diagram. Its length is

min

Loy =J(w+ ) + £ = /(370 m+3.00 m)’ + (4.30 m)’ =7.96 m.

To show that the shortest path is indeed given by L . , we write the length of the path as

min

L=yy*+w +J(—y) +h .
The condition for minimum is given by
a _ y 1=y
dv [y +wt J-y) + R
A little algebra shows that the condition is satisfied when y =/w/(w+ h), which gives

me:\/wz(H & J+\/h2£1+ & 2j:«/(w+h)2+lz.

(w+h)? (w+h)

Any other path would be longer than 7.96 m.

8. We label the displacement vectors 4, B, and C (and denote the result of their vector
sum as 7 ). We choose east as the 1 direction (+x direction) and north as the j direction
(+y direction). All distances are understood to be in kilometers.

(a) The vector diagram representing the motion is shown next:
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north
O<TO
B west east ;1 :(3‘1 km)]
C A south B =(-2.4km)i
C =(-5.2 km)]j
Y

(b) The final point is represented by

F=A+B+C=(-24km)i+(-2.1 km)]
whose magnitude is

7= (~2.4 km)’ +(~2.1 km)’ ~3.2 km .

(c) There are two possibilities for the angle:

O=tan" [%J:410,0r 221°.
—4. m

We choose the latter possibility since 7 is in the third quadrant. It should be noted that
many graphical calculators have polar <> rectangular “shortcuts” that automatically
produce the correct answer for angle (measured counterclockwise from the +x axis). We
may phrase the angle, then, as 221° counterclockwise from East (a phrasing that sounds
peculiar, at best) or as 41° south from west or 49° west from south. The resultant 7 is

not Ehown in our sketch; it would be an arrow directed from the “tail” of A to the “head”
of C.

9. All distances in this solution are understood to be in meters.

(a) G+b=[4.0+(-1.0)]i+[(-3.0)+1.0]] +(1.0+4.0)k=(3.0i—2.0]+5.0k) m.

(b) G—b=[4.0—(-1.0)]i+[(-3.0)—1.0]j +(1.0—4.0)k =(5.01—4.0]—3.0 k) m.

(c) The requirement a —b+¢=0 leads to ¢ =b —a, which we note is the opposite of
what we found in part (b). Thus, ¢ =(=5.01 + 4.0 + 3.0k) m.

10. The x, y, and z components of 7 =¢ +d are, respectively,
@r=c+d =74 m+44 m=12m,

(b)r,=c,+d,=-3.8m-2.0 m=-5.8 m, and
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(c)rn=c+d. =—6.1m+3.3m=-2.8 m.

11. We write 7 =d +b . When not explicitly displayed, the units here are assumed to be
meters.

(a) The x and the y components of 7 are r,=a,+ b, =(4.0m)- (13 m)=-9.0mand r, =
ay,+b,=(3.0m)+ (7.0 m) =10 m, respectively. Thus 7 = (—9.0m)f+ (10m)3 .

(b) The magnitude of 7 is

r=lFleyfrl+r? =y(-9.0m)’ +(10 m)> =13 m.

(c) The angle between the resultant and the +x axis is given by

taanl(r—yj:tanl(lo'o mj:—48° or 132°.

-9.0 m

Since the x component of the resultant is negative and the y component is positive,
characteristic of the second quadrant, we find the angle is 132° (measured
counterclockwise from +x axis).

The addition of the two vectors is depicted in the figure below (not to scale). Indeed, we
expect 7 to be in the second quadrant.

12. We label the displacement vectors A, B, and C (and denote the result of their
vector sum as 7 ). We choose east as the i direction (+x direction) and north as the j

direction (+y direction). We note that the angle between C and the x axis is 60°. Thus,
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= (50 km)i
= (30 km) ]
= (25 km) cos(60°) i + (25 km)sin (60°) ]

=
&
(¢]
7
Il
o TR

o

(a) The total displacement of the car from its initial position is represented by
F=A+ B+ C=(62.5km)i+ (51.7 km) ]

which means that its magnitude is

7| = /(62.5km)* +(51.7km)? =81 km.

(b) The angle (counterclockwise from +x axis) is tan"' (51.7 km/62.5 km) = 40°, which is
to say that it points 40° north of east. Although the resultant 7 is shown in our sketch, it

would be a direct line from the “tail” of A4 to the “head” of C.

13. We find the components and then add them (as scalars, not vectors). With d = 3.40
km and &= 35.0° we find d cos 8+ d sin 8= 4.74 km.

14. (a) Summing the x components, we have
20m+5b,-20m—-60m=-140 m,

which gives . =—-80 m.

(b) Summing the y components, we have
60m-70m+c,—70 m=30m,
which implies ¢, =110 m.

(c) Using the Pythagorean theorem, the magnitude of the overall displacement is given by
J(=140 m)> +(30 m)> ~ 143 m.

(d) The angle is given by tan ' (30/(-140))=-12°, (which would be 12° measured
clockwise from the —x axis, or 168° measured counterclockwise from the +x axis).
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15. It should be mentioned that an efficient way to work this vector addition problem is

with the cosine law for general triangles (and since c_i,Z; , and 7 form an isosceles
triangle, the angles are easy to figure). However, in the interest of reinforcing the usual

systematic approach to vector addition, we note that the angle b makes with the +x axis
1s 30° +105° = 135° and apply Eq. 3-5 and Eq. 3-6 where appropriate.

(a) The x component of 7 is r, = (10.0 m) cos 30° + (10.0 m) cos 135°=1.59 m.

(b) The y component of 7 is r, = (10.0 m) sin 30° + (10.0 m) sin 135° = 12.1 m.

(c¢) The magnitude of 7 is r=|7|= \/(1.59 m)* +(12.1m)*> =12.2 m.
(d) The angle between 7 and the +x direction is tan '[(12.1 m)/(1.59 m)] = 82.5°.
16. (a) G+b=(3.01+4.0]) m+(5.01—2.0]) m= (8.0 m)i+(2.0 m)].

(b) The magnitude of d+5 is

|G+b |=+/(8.0 m)> +(2.0 m)* =8.2 m.
(c) The angle between this vector and the +x axis is
tan '[(2.0 m)/(8.0 m)] = 14°.
(d) b—a=(5.01-2.0) m—(3.0i+4.0)) m= (2.0 m)i—(6.0 m)].

(e) The magnitude of the difference vector b—ais

|b—d|=+/(2.0 m)* +(=6.0 m)> =6.3 m.

(f) The angle between this vector and the +x axis is tan”'[( 6.0 m)/(2.0 m)] = —72°. The
vector is 72° clockwise from the axis defined by i.

17. Many of the operations are done efficiently on most modern graphical calculators
using their built-in vector manipulation and rectangular <> polar “shortcuts.” In this
solution, we employ the “traditional” methods (such as Eq. 3-6). Where the length unit is
not displayed, the unit meter should be understood.

(a) Using unit-vector notation,
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= (50 m)co0s(30°)i + (50 m) sin(30°) j

a
b = (50 m)cos(195°) i+ (50 m)sin (195°)
¢ =(50 m)cos(315°) 1+ (50 m)sin (315°) ]

d+b+¢=(304m)i—(23.3m)].

The magnitude of this result is \/(30.4 m)’ +(-23.3 m)’ =38 m.

(b) The two possibilities presented by a simple calculation for the angle between the
vector described in part (a) and the +x direction are tan '[( —23.2 m)/(30.4 m)] = —37.5°,
and 180° + ( —37.5°) = 142.5°. The former possibility is the correct answer since the
vector is in the fourth quadrant (indicated by the signs of its components). Thus, the
angle is —37.5°, which is to say that it is 37.5° clockwise from the +x axis. This is
equivalent to 322.5° counterclockwise from +x.

(c) We find
G—b+¢=[43.3—(-48.3)+354]1—[25—(=12.9)+(-35.4)] j=(127 1+2.60 ) m

in unit-vector notation. The magnitude of this result is

|G—b+|=/(127 m)* +(2.6 m)*> ~1.30x10> m.

(d) The angle between the vector described in part (c) and the +x axis is
tan”' (2.6 m/127 m)~1.2°.

(e) Using unit-vector notation, d is given by d=d+b-¢= (—40.4 i+47.4 3’) m,
which has a magnitude of \/ (-40.4 m)’ +(47.4 m)* =62 m.

(f) The two possibilities presented by a simple calculation for the angle between the
vector described in part (e) and the +x axis are tan '(47.4/(-40.4))=-50.0°, and
180°+(—50.0°)=130° . We choose the latter possibility as the correct one since it

indicates that d is in the second quadrant (indicated by the signs of its components).

18. If we wish to use Eq. 3-5 in an unmodified fashion, we should note that the angle
between C and the +x axis is 180° + 20.0° = 200°,

(a) The x and y components of B are given by

B, =Cy—A4,=(15.0m) cos 200° — (12.0 m) cos 40° =-23.3 m,
B, =C,—A4,=(15.0 m) sin 200° — (12.0 m) sin 40° =—12.8 m.
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Consequently, its magnitude is | B |= \/(—23.3 m)’ +(-12.8 m)* =26.6 m.

(b) The two possibilities presented by a simple calculation for the angle between B and
the +x axis are tan '[( —12.8 m)/( —23.3 m)] = 28.9°, and 180° + 28.9° = 209°. We choose
the latter possibility as the correct one since it indicates that B is in the third quadrant
(indicated by the signs of its components). We note, too, that the answer can be
equivalently stated as —151°.

19. (a) With 1 directed forward and j directed leftward, the resultant is (5.00 1+ 2.00 ) m .
The magnitude is given by the Pythagorean theorem: \/ (5.00 m)*> +(2.00 m)> =5.385m
~5.39 m.

(b) The angle is tan"'(2.00/5.00) ~ 21.8° (left of forward).

20. The desired result is the displacement vector, in units of km, /T = (5.6 km), 90°
(measured counterclockwise from the +x axis), or A=(5.6 km)}, where 3 is the unit
vector along the positive y axis (north). This consists of the sum of two displacements:
during the whiteout, B = (7.8 km), 50°, or

B=(7.8 km)(c0s50°1+sin50° j)=(5.01 km)i+(5.98 km)]
and the unknown C. Thus, A=B+C.

(a) The desired displacement is given by C=A-B= (=5.01 km) f—(0.38 km) 3 The
magnitude is \/(—5.01 km)® +(~0.38 km)’ =5.0 km.

(b) The angle is tan '[(—0.38 km)/(~5.01 km)]=4.3°, south of due west.

21. Reading carefully, we see that the (x, y) specifications for each “dart” are to be
interpreted as (Ax, Ay) descriptions of the corresponding displacement vectors. We

combine the different parts of this problem into a single exposition.
(a) Along the x axis, we have (with the centimeter unit understood)

30.0 + b, —20.0 — 80.0 = —140,

which gives b, =—70.0 cm.

(b) Along the y axis we have



84 CHAPTER 3

40.0 -70.0 + ¢, = 70.0 = -20.0

which yields ¢, = 80.0 cm.

(c) The magnitude of the final location (-140 , -20.0) is \/(—140)2 +(-20.0)* =141 cm.

(d) Since the displacement is in the third quadrant, the angle of the overall displacement
is given by 7 +tan '[(=20.0)/(-=140)]or 188° counterclockwise from the +x axis (or
—172° counterclockwise from the +x axis).

22. Angles are given in ‘standard’ fashion, so Eq. 3-5 applies directly. We use this to
write the vectors in unit-vector notation before adding them. However, a very different-
looking approach using the special capabilities of most graphical calculators can be
imagined. Wherever the length unit is not displayed in the solution below, the unit meter
should be understood.

(a) Allowing for the different angle units used in the problem statement, we arrive at

E=3731+4.70]
F=1291-483]
G=1451+3.73]
H=-5201+3.00]
+G+H=1281 +6.60 .

ol

E+

(b) The magnitude of the vector sum found in part (a) is \/ (1.28 m)> +(6.60 m)> =6.72 m.

(c) Its angle measured counterclockwise from the +x axis is tan ' (6.60/1.28) = 79.0°.

(d) Using the conversion factor 7 rad = 180°, 79.0° = 1.38 rad.

23. The resultant (along the y axis, with the same magnitude as 5 ) forms (along with
5 ) a side of an isosceles triangle (with 5 forming the base). If the angle between 6
and the y axis is @ =tan"'(3/4)=36.87°, then it should be clear that (referring to the
magnitudes of the vectors) B =2Csin(€/2). Thus (since C =5.0) we find B =3.2.

24. As a vector addition problem, we express the situation (described in the problem

statement) as 4+ B-= (3A)j , where 4 =4 i and B=7.0m. Since i J_j we may
use the Pythagorean theorem to express B in terms of the magnitudes of the other two
vectors:
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B=~(@4y + 4 = A=—=p = 22m.

10

_)
25. The strategy is to find where the camel is ( C') by adding the two consecutive
displacements described in the problem, and then finding the difference between that

N
location and the oasis ( B ). Using the magnitude-angle notation

C =24 £ —15°) + (8.0 Z 90°) = (23.25 £ 4.41°)
SO
B—C = (25 £ 0°)—(23.25 £ 4.41°) = (2.5 £ —45°)

which is efficiently implemented using a vector-capable calculator in polar mode. The
distance is therefore 2.6 km.

26. The vector equation is R= A4 + B + C + D . Expressing B and D in unit-vector

notation, we have (1 691 + 3.633) m and (—2.87i + 4. 103) m, respectively. Where the
length unit is not displayed in the solution below, the unit meter should be understood.

(a) Adding corresponding components, we obtain R= (-3.18 m)f +(4.72 m)j .

(b) Using Eq. 3-6, the magnitude is

| RI=+/(-3.18 m)? +(4.72 m)’ =5.69 m.
(c) The angle is

0 =tan"' (ﬂj =-56.0° (with —x axis).

-3.18 m

If measured counterclockwise from +x-axis, the angle is then 180°—56.0°=124°. Thus,
converting the result to polar coordinates, we obtain

(-3.18,4.72) — (569 £ 124°)

27. Solving the simultaneous equations yields the answers:

(@) d, = 4d, =81+16],and
(b) & = dy =21+4].

28. Let 4 represent the first part of Beetle 1’s trip (0.50 m east or 0.5 i) and C
represent the first part of Beetle 2’s trip intended voyage (1.6 m at 50° north of east). For
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their respective second parts: B is 0.80 m at 30° north of east and D is the unknown.
The final position of Beetle 1 is

A+ B =(0.5m)i+ (0.8 m)(cos30° i+sin30° j) = (1.19 m) i+(0.40 m)].
The equation relating these is A+ B =C + D, where
C =(1.60 m)(c0s50.0° +sin50.0°]) = (1.03 m)i+(1.23 m)j
(a) We find D=A+B-C=(0.16 m)i+(—0.83 m)j , and the magnitude is D = 0.84 m.

(b) The angle is tan~'(-=0.83/0.16)=—-79°, which is interpreted to mean 79° south of
east (or 11° east of south).

29. Let [, =2.0 cm be the length of each segment. The nest is located at the endpoint of
segment w.

(a) Using unit-vector notation, the displacement vector for point 4 is

d,=W+v+7 +h=1(cos60° +sin60° j)+(z0 j)+zo(cos1200i+ sin120° j)+(z0 }')

=(2+\3)l, .
Therefore, the magnitude of d, is |d, | = (2+ J3)(2.0cm)=7.5cm.
(b) The angle of d, is @ =tan"'(d,  /d, )=tan" (c0) =90°.

(c) Similarly, the displacement for point B is

dy=W+V+]+p+0
= 1, (cos 60°] +sin 60° j) + (10 j) +1,(c0s 60° +sin60° ) + 1, (cos 30° +sin30° ) + (10 i)

= (2+3/2)1, i+ (B/2+3), ]

Therefore, the magnitude of d, is

dy | =1\ 2+3/2)" +(3/2+/3)> = (2.0 cm)(4.3) = 8.6 cm.

(d) The direction of d, is
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d
0, =tan"'| 22 |=tan"' M =tan'(1.13) = 48°.
d 2++/3/2

B,x

30. Many of the operations are done efficiently on most modern graphical calculators
using their built-in vector manipulation and rectangular <> polar “shortcuts.” In this
solution, we employ the “traditional” methods (such as Eq. 3-6).

(a) The magnitude of a isa =\/(4.0 m)’ +(-3.0 m)> =5.0 m.

(b) The angle between @ and the +x axis is tan"' [(=3.0 m)/(4.0 m)] = —37°. The vector is
37° clockwise from the axis defined by 1.

(¢) The magnitude of b is b:\/(6.0 m)’ +(8.0 m)*> =10 m.

(d) The angle between b and the +x axis is tan '[(8.0 m)/(6.0 m)] = 53°.

(e) d+b=(4.0 m+6.0m)i+[(-3.0 m)+8.0 m]j =(10 m)i +(5.0 m)j. The magnitude

of this vector is |a+b |= \/(10 m)>+(5.0 m)> =11 m; we round to two significant
figures in our results.

(f) The angle between the vector described in part (e) and the +x axis is tan '[(5.0 m)/(10
m)] =27°.

(g) b-d=(6.0m—4.0m)1+[8.0 m—(-3.0 m)] j=(2.0 m) i+ (11 m)j. The magnitude

of this vector is |5—d |= \/(2.0 m)’ +(11 m)’ =11 m, which is, interestingly, the same
result as in part (e) (exactly, not just to 2 significant figures) (this curious coincidence is
made possible by the fact that a L b ).

(h) The angle between the vector described in part (g) and the +x axis is tan '[(11 m)/(2.0
m)] = 80°.

(i) G—b=(4.0 m—6.0 m) i+[(—3.0 m)—8.0 m]j =(~2.0 m) i+(—11 m)j. The magnitude
of this vector is |d—5\= \/(—2.0 m)’+(-11m)> =11 m.

(j) The two possibilities presented by a simple calculation for the angle between the
vector described in part (i) and the +x direction are tan™' [(~11 m)/(-2.0 m)] = 80°, and
180° + 80° = 260°. The latter possibility is the correct answer (see part (k) for a further
observation related to this result).
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(k) Since a —b= (—1)(5 —a), they point in opposite (anti-parallel) directions; the angle
between them is 180°.

31. (a) As can be seen from Flgure 3-30, the point diametrically opposite the origin (0,0,0)
has position vector a i+a J + a k and this is the vector along the “body diagonal.”

(b) From the point (a, 0, 0), which corresponds to the position vector a 1, the
diametrically opposite point is (0, @, @) with the position vectora j + a k. Thus, the

vector along the line is the difference —ai+ a}' +ak.

(c) If the starting point is (0, @, 0) with the corresponding position vector a 3, the
diametrically opposite point is (a, 0, @) with the position vector a i+ak. Thus, the

vector along the line is the difference a i- a}' +ak.

(d) If the starting point is (a, a, 0) with the corresponding position vector a i+a 3, the
diametrically opposite point is (0, 0, @) with the position vector a k. Thus, the vector

along the line is the difference —a i- aj +ak .

(e) Consider the vector from the back lower left corner to the front upper right corner. It
is a 1+a j+a k. We may think of it as the sum of the vector a i parallel to the x axis and

the vector aj +ak perpendicular to the x axis. The tangent of the angle between the
vector and the x axis is the perpendicular component divided by the parallel component.

Since the magnitude of the perpendicular component is va’+a’ =a+2 and the
magnitude of the parallel component is a, tand = (a\/z )/ a=~/2. Thus 6 = 54.7°. The

angle between the vector and each of the other two adjacent sides (the y and z axes) is the
same as is the angle between any of the other diagonal vectors and any of the cube sides
adjacent to them.

e length ot any of the diagonals 1s given a +a +a =a .
(f) The length of any of the diagonals is given by va> +a* +a’ = a3
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32.(a) Witha=17.0 m and 8= 56.0° we find a, = a cos €= 9.51 m.
(b) Similarly, a, = a sin = 14.1 m.

(c) The angle relative to the new coordinate system is 8" = (56.0° — 18.0°) = 38.0°. Thus,
a.=acosf' =13.4 m.

(d) Similarly, a;, =asin 8" =10.5 m.

N

33. Examining the figure, we see that a+b+c =0, where d L b .

(a)| @ x b | = (3.0)(4.0) =12 since the angle between them is 90°.

(b) Using the Right-Hand Rule, the vector dx b points in the ixj =k, or the +z direction.
(©)|axcl|=| dx(-d - b)=|-(dxb)=12

(d) The vector —d x b points in the -1 xj = —k, or the — z direction.
@|bxc|=|bx(—d - b)=|~(bxa)|=|(dxb)|l=12.

(f) The vector points in the +z direction, as in part (a).

34. We apply Eq. 3-30 and Eq. 3-23.

(a) a xb = (ab,—a,b,) k since all other terms vanish, due to the fact that neither a nor

b have any z components. Consequently, we obtain [(3.0)(4.0) — (5.0)(2.0)]1A<: 2.0k.
(b)a-b = ab, +ab, yields (3.0)(2.0) + (5.0)(4.0) = 26.
(c) G+b= (3.0 + 2.0)1 + (5.0 + 4.0)j = (a+b)-b =(5.0) (2.0) + (9.0) (4.0) = 46.

(d) Several approaches are available. In this solution, we will construct a b unit-vector
and “dot” it (take the scalar product of it) with & . In this case, we make the desired unit-
vector by
- b 2.01+4.0]
b === .
bl (2.0 + (4.0)°

We therefore obtain
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2 _ (3.0)(2.0) + (5.00(4.0) _

y=d-b
e {(2.0)° + (4.0)°

35. (a) The scalar (dot) product is (4.50)(7.30)cos(320° — 85.0°) =— 18.8 .

5.8.

(b) The vector (cross) product is in the k direction (by the right-hand rule) with
magnitude [(4.50)(7.30) sin(320° — 85.0°)| =26.9 .

-

36. First, we rewrite the given expression as 4( d;lane “ deross ) Where d:lane = JI +
c?; and in the plane of JI and c?; , and dims = JI X c?; . Noting that d_c)rOSS is

perpendicular to the plane of d, and d, , we see that the answer must be 0 (the scalar
[dot] product of perpendicular vectors is zero).

37. We apply Eq. 3-30 and Eq.3-23. If a vector-capable calculator is used, this makes a
good exercise for getting familiar with those features. Here we briefly sketch the method.

(a) We note that 5 x& =—8.01+5.0j+6.0k. Thus,
G- (b x &)=(3.0)(-8.0)+ (3.0)(5.0)+(—2.0) (6.0)= —21.
(b) We note that b +¢ =1.01 — 2.0] + 3.0k. Thus,

a-(b+¢)=(3.0) (1.0)+(3.0) (—2.0)+(—2.0) (3.0) = —-9.0.
(c) Finally,

ax(b +7¢)=[(3.0)(3.0)— (= 2.0)( = 2.0)] 1 +[( - 2.0)(1.0)— (3.0)(3.0)] ]
+H(3.0)(—2.0)— (3.0)(1.0)] k
= 51— 11j - 9k

38. Using the fact that

ixj=k, jxk=1, kxi=]
we obtain
24 x E:z(2.001+3.00}—4.0012)x(—3.00i+4.ooj+2.0012):44.0i+16.oj+34.0f<.

Next, making use of

—_D =

>
.;..) ~>
Il

I
O -

P> o)
L’d-) D—.‘-)
Il

we have



35~(22xl§):3(7.00f—8.003’)-(44.0f+16.0} +34.012)

= 3[(7.00)(44.0)+(~8.00)(16.0) + (0)(34.0)] = 540.
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39. From the definition of the dot product between Aand B, A-B= ABcos6, we have

cos<9=£
A

With 4=6.00, B=7.00and ZI-Z}:M.O, cos@=0.333,0or 8=70.5°.

40. The displacement vectors can be written as (in meters)

d, = (4.50 m)(cos 63° j+sin 63°k) = (2.04 m) j+(4.01 m)k
d, = (1.40 m)(cos 30°1+sin 30°k) = (1.21 m)i+(0.70 m)k .

(a) The dot product of d, and d, is

d -d,=(2.04]+4.01k)-(1.21i+0.70k) = (4.01k)-(0.70k) = 2.81 m>.

(b) The cross product of d, and d, is

d xd,=(2.04j+4.01k)x(1.211+0.70k)

= (2.04)(1.21)(=K) + (2.04)(0.70)i + (4.01)(1.21)]

= (1.43 1+4.86j—2.48k)m’.

(c) The magnitudes of c?l and c?z are

d, =/(2.04 m)* +(4.01 m)* =4.50 m

d, =+/(1.21 m)* +(0.70 m)> =1.40 m.

Thus, the angle between the two vectors is

6 =cos™ M =cos™' 281 m’
dd, (4.50 m)(1.40 m)

41. Since ab cos ¢ = a.b; + a,b, + a.b.,

63.5°.
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ab, +ab, + ab,
ab

cos¢p =

The magnitudes of the vectors given in the problem are

a =d|=+(3.007 + (3.007 + (3.00)> =5.20

b :|ba\:\/(2.00)2 + (1.00)* + (3.00)’ =3.74.
The angle between them is found from

(3.00)(2.00) + (3.00)(1.00) + (3.00)(3.00)
(5.20)(3.74)

=0.926.

cosg =

The angle is ¢ = 22°.

As the name implies, the scalar product (or dot product) between two vectors is a scalar
quantity. It can be regarded as the product between the magnitude of one of the vectors
and the scalar component of the second vector along the direction of the first one, as
illustrated below (see also in Fig. 3-18 of the text):

—

d-b =abcos¢=(a)bcosgp)

42. The two vectors are written as, in unit of meters,
d =4.0i+5.0j=d,i+d,j, d,=-3.0i+4.0j=d,i+d, ]
(a) The vector (cross) product gives
d xd, =(d, d, —d, d, )k=[(4.00(4.0)-(5.0)(-3.0)]k=31 k
(b) The scalar (dot) product gives
d-d,=d d, +d d, =(4.0)(=3.0)+(5.0)(4.0)=38.0.

(©)
(d +d,)-dy=d,-d,+d?=8.0+(=3.0) +(4.0)* =33.
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(d) Note that the magnitude of the d; vector is1/16+25 = 6.4. Now, the dot product is
(6.4)(5.0)cos@ = 8. Dividing both sides by 32 and taking the inverse cosine yields 8 =
75.5°. Therefore the component of the d; vector along the direction of the d, vector is
6.4cosf= 1.6.

43. From the figure, we note that ¢ L b , which implies that the angle between ¢ and the
+x axis is @+ 90°. In unit-vector notation, the three vectors can be written as

A

1
i

a‘C
bi+b,j=(bcosO)i+(bsin)]
¢i+e,j=[ccos(9+90°)i +[csin(6+90°)]

SR
I

ol
I

The above expressions allow us to evaluate the components of the vectors.
(a) The x-component of d@ is a, = a cos 0° = a = 3.00 m.

(b) Similarly, the y-componnet of a is a, = a sin 0°=0.

(c) The x-component of b is by =b cos 30° = (4.00 m) cos 30° =3.46 m,
(d) and the y-component is b, = b sin 30° = (4.00 m) sin 30° = 2.00 m.

(e) The x-component of ¢ is ¢, = ¢ cos 120° = (10.0 m) cos 120° =-5.00 m,

(f) and the y-component is ¢, = ¢ sin 30° = (10.0 m) sin 120° = 8.66 m.
(g) The fact that ¢ = pa + ¢b implies

¢=ci+c,j=plai)+qbi+h])=(pa, +qb)i+qb,]
or
c,=pa_+qb,_, c, =qb

Substituting the values found above, we have

~5.00m = p (3.00 m)+q (3.46 m)
8.66 m = g (2.00 m).

Solving these equations, we find p =—-6.67.

(h) Similarly, g = 4.33 (note that it’s easiest to solve for g first). The numbers p and ¢
have no units.
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44. Applying Eq. 3-23, F = qv x B (where g is a scalar) becomes
Fhi+ij +Fle =q (vyBZ —VZBy)iJrq (VZBX —vaz)j+q (vay —vyBx) k

which — plugging in values — leads to three equalities:

4.0=2(4.0B. - 6.0B))
~20=2(6.0B, — 2.0B.)
12=2(2.0B, — 4.0B,)

Since we are told that B, = B,, the third equation leads to B, = —3.0. Inserting this value
into the first equation, we find B, = —4.0. Thus, our answer is

B=-3.0i-3.0]—4.0k.
45. The two vectors are given by

A=8.00(cos130°1 +5sin130°j) =—5.141+6.13 ]
B=Bi+Bj=-7.72i-9.20].

(a) The dot product of 54 - Bis

54-B=5(-5.141+6.13])-(=7.721-9.20 j) = 5[(-5.14)(—7.72) + (6.13)(—9.20)]
=—_83.4.

(b) In unit vector notation
44x3B=124x B =12(~5.141+6.13])x(~7.721-9.20 j) = 12(94.6 k) = 1.14x10° k

(c) We note that the azimuthal angle is undefined for a vector along the z axis. Thus, our
result is “1.14x10°, @not defined, and ¢= 0°."

(d) Since A s in the xy plane, and Ax B is perpendicular to that plane, then the answer is
90°.

(¢) Clearly, 4 +3.00k =-5.14}+6.13  + 3.00 k.

(f) The Pythagorean theorem yields magnitude 14:\/(5.14)2 +(6.13)* +(3.00)> =8.54.

The azimuthal angle is € = 130°, just as it was in the problem statement (/T is the
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projection onto the xy plane of the new vector created in part (¢)). The angle measured
from the +z axis is
¢=cos'(3.00/8.54) = 69.4°.

46. The vectors are shown on the diagram. The x axis runs from west to east and the y
axis runs from south to north. Then a, = 5.0 m, a, =0,

by=—(4.0m) sin 35°=-2.29m, b,= (4.0 m) cos 35°=3.28 m.

N

|
|
35°
l
|

50.4°

>» E

a

(a)Let ¢ =G + b . Then c,=a +b=500m -229m=2.71 m and
¢,=a,+b=0+328 m=3.28 m. The magnitude of c is

=\ + ¢ =\(271m)’ + (3.28m)’ =42 m.

(b) The angle Athat ¢ = a + b makes with the +x axis is

C, .
f=tan'| = |=tan" 3.28 =50.5°~ 50°.
c, 2.71

The second possibility (6= 50.4° + 180° = 230.4°) is rejected because it would point in a
direction opposite to ¢ .

(c) The vector b — a is found by adding —a to b. The result is shown on the diagram to

the right. Let ¢ = b — d. The components are

¢, =b —a,=-229m-500m=-7.29m

c, =by—ay =3.28 m.

The magnitude of ¢ is ¢ = /c’ +c§ =8.0m.
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S

(d) The tangent of the angle #that ¢ makes with the +x axis (east) is

C, .
tan@ =L = 328 m =—-4.50.
c -7.29 m

X

There are two solutions: —24.2° and 155.8°. As the diagram shows, the second solution is
correct. The vector ¢ =—a+b 1is 24° north of west.

47. Noting that the given 130° is measured counterclockwise from the +x axis, the two
vectors can be written as

A=8.00(cos130°1 +5sin130°j) = —5.141+6.13 ]
B=Bi+Bj=-7.72i-9.20].

(a) The angle between the negative direction of the y axis (—3 ) and the direction of 4 is

6 =cos™ ACD cos” 613 =cos™ (ﬂ) =140°.
A4 J(=5.14)> +(6.13)? 8.00

Alternatively, one may say that the —y direction corresponds to an angle of 270°, and the
answer is simply given by 270°-130° = 140°.

(b) Since the y axis is in the xy plane, and Ax B is perpendicular to that plane, then the
answer 1s 90.0°.

(c) The vector can be simplified as

Ax(B+3.00k) =(=5.141+6.13])x (=7.721—9.20 j+ 3.00k)
=18.391+15.42j+94.61k
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Its magnitude is | Ax (B+ 3.0012) |=97.6. The angle between the negative direction of the

y axis (—3’ ) and the direction of the above vector is

6 =cos™ (_15'42j =99.1°.
97.6

48. Where the length unit is not displayed, the unit meter is understood.

(a) We first note that the magnitudes of the vectors are a=|d|=+/(3.2)* +(1.6)° =3.58
and b=|b|=1/(0.50) +(4.5)* =4.53 . Now,

d-b=ab +ab,=abcos $
(3.2)(0.50)+(1.6) (4.5) = (3.58) (4.53) cos ¢

which leads to ¢ = 57° (the inverse cosine is double-valued as is the inverse tangent, but
we know this is the right solution since both vectors are in the same quadrant).

(b) Since the angle (measured from +x) for a is tan '(1.6/3.2) = 26.6°, we know the
angle for ¢ 1s 26.6° —90° = —63.4° (the other possibility, 26.6° + 90° would lead to a ¢, <
0). Therefore,
¢y =c cos (—63.4° )= (5.0)(0.45) =2.2 m.

(c) Also, ¢, = ¢ sin (—63.4°) = (5.0)( —0.89) =—4.5 m.
(d) And we know the angle for d to be 26.6° + 90° = 116.6°, which leads to

dy= d cos(116.6°) =(5.0)(-0.45)=-2.2 m.
(e) Finally, d, = d sin 116.6° = (5.0)(0.89) = 4.5 m.

49. The situation is depicted in the figure below.
north

(0, 90km)

7
L\ » cast
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Let ad represent the first part of his actual voyage (50.0 km east) and ¢ represent the
intended voyage (90.0 km north). We are looking for a vector bsuchthat ¢=ad+b .

(a) Using the Pythagorean theorem, the distance traveled by the sailboat is
b=14/(50.0 km)? +(90.0 km)* =103 km.

(b) The direction is
$=tan"' (M] =29.1°
90.0 km

west of north (which is equivalent to 60.9° north of due west).

Note that this problem could also be solved by first expressing the vectors in unit-vector
notation: @ =(50.0 km)i, & = (90.0 km)]. This gives

b=¢-ad=—(50.0km)i+(90.0 km)]

The angle between b and the +x-axis is

g =tan'[ 200km )1 o
—50.0 km

The angle f1is related to ¢ by € =90°+¢.
50. The two vectors d, and d,are given by d, = —d, jand d,=d, i

(a) The vector 6?2 /4=(d, /4){ points in the +x direction. The Y4 factor does not affect the

result.

(b) The vector ‘?1 (-4)=(d,/ 4)3' points in the +y direction. The minus sign (with the “-4")
does affect the direction: —(—y) =+ y.

(©) c?] -c?z =0 since 13 = 0. The two vectors are perpendicular to each other.
(d) d,-(d,/4)=(d,-d,)/4=0, as in part (c).
(e) d,xd, =—dd,(jxi)=dd, k, in the +z-direction.

(f) dyxd, =—d,d (ix j) =—d,d, k, in the —z-direction.



99

(g) The magnitude of the vector in (e) is d\d,.

(h) The magnitude of the vector in (f) is d,d, .

(i) Since d, x(d,/4)=(dd, /4)k , the magnitude is dd, /4.

(j) The direction of d, x(d,/4) = (d,d,/4)k is in the +z-direction.

51. Although we think of this as a three-dimensional movement, it is rendered effectively
two-dimensional by referring measurements to its well-defined plane of the fault.

(a) The magnitude of the net displacement is

| AB|=\| ADF +| ACF® =+[(17.0 m)* +(22.0 m)* =27.8m.

(b) The magnitude of the vertical component of A_)B is |AD| sin 52.0° = 13.4 m.

52. The three vectors are
d =4.01+5.0j-6.0k
d,=—1.01+2.0j+3.0k
d,=4.01+3.0j+2.0k

(a) F=d,—d,+d, = (9.0 m)i+(6.0 m)j+(=7.0 m)k .

(b) The magnitude of 7 is |7 |= \/(9.0 m)’+(6.0 m)’+(=7.0 m)> = 12.9 m. The
angle between 7 and the z-axis is given by

=2

Pk =7.0
cosf=——=
[7| 129 m

=-0.543
which implies § =123°.

(c) The component of CZ along the direction of 6?2 is given by d, = c?l -U=d cos@ where

@is the angle between d,and d,, and s the unit vector in the direction of d,. Using
the properties of the scalar (dot) product, we have

dlzdl(dl-dzJ:dl~d2 _ (4.0(-LO+(.0Q2.0+(6.03.0) _-12_ .
dd, ) d, J(=1.0) +(2.0) +(3.0) J14
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(d) Now we are looking for d, such that d; =(4.0)° +(5.0)* +(=6.0)’ =77 =d; +d; .

From (c), we have

d, =77 m*—(-3.2 m)> =8.2 m.

This gives the magnitude of the perpendicular component (and is consistent with what
one would get using Eq. 3-27), but if more information (such as the direction, or a full
specification in terms of unit vectors) is sought then more computation is needed.

53. We apply Eq. 3-20 and Eq. 3-27 to calculate the scalar and vector products between
two vectors:

(a) Given that a=|d|=10, b=|b|=6.0 and ¢=60°, the scalar (dot) product of @
and b is

da-b=abcos¢=(0)(6.0) cos 60°=30.
(b) Similarly, the magnitude of the vector (cross) product of the two vectors is
|axb |=absin ¢ = (10) (6.0) sin 60° = 52.

When two vectors are parallel (¢=0), a-b=ab cos ¢=ab, and | axb |=absin p=0.
On the other hand, when the vectors are perpendicular (¢ =90°), a -b =ab cos #=0 and
|axb|=absin¢=ab.

N

54. From the figure, it is clear that a+b+c= 0, where alb.

(a) a - b = 0 since the angle between them is 90°.

- - > 2

b)) d-c=da(-d-b)=-d| =-16.
(¢) Similarly, 5+ ¢ = —-9.0.

55. We choose +x east and +y north and measure all angles in the “standard” way
(positive ones are counterclockwise from +x). Thus, vector d, has magnitude d; = 4.00 m

(with the unit meter) and direction 6, = 225°. Also, 6?2 has magnitude d> = 5.00 m and

direction & = 0°, and vector 673 has magnitude ds = 6.00 m and direction & = 60°.
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(a) The x-component of c?l isdixy=d; cos 6, =-2.83 m.
(b) The y-component of d, is di, = d, sin 6, =—2.83 m.
(c) The x-component of c?z 1S dy,=d> cos & =5.00 m.
(d) The y-component of d, is da, = d, sin 6 = 0.
(e) The x-component of C_i3 18 dzx = d; cos &5 =3.00 m.
(f) The y-component of 6?3 is d3, = ds sin 65 =5.20 m.
(g) The sum of x-components is

de=dix+tdynt+dsy =-283m+5.00m+3.00m=5.17 m.
(h) The sum of y-components is

dy=di,+dy+d; =283m+0+520m=237m.

(1) The magnitude of the resultant displacement is

d=\Jd? +d? =\(5.17 m)* +(2.37 m)’ =5.69 m,

(j) And its angle is
0= tan ' (2.37/5.17) = 24.6°,

which (recalling our coordinate choices) means it points at about 25° north of east.

(k) and (1) This new displacement (the direct line home) when vectorially added to the
previous (net) displacement must give zero. Thus, the new displacement is the negative,
or opposite, of the previous (net) displacement. That is, it has the same magnitude (5.69
m) but points in the opposite direction (25° south of west).

56. If we wish to use Eq. 3-5 directly, we should note that the angles for Q,I_é, and S are

100°, 250°, and 310°, respectively, if they are measured counterclockwise from the +x
axis.

(a) Using unit-vector notation, with the unit meter understood, we have
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=10.0 cos(25.0°)i+10.0sin(25.0°) ]
=12. Ocos(IOOO)I 12. OSln(IOOO)_]
=8.00 cos(250°)i+ 8.00 sin(250°)j
§ =9.00c0s(310°)i+9.00sin (310°)]

P+O+R+5=(10.0m)i+(1.63 m)]

(b) The magnitude of the vector sum is \/(10.0 m)> + (1.63 m)* =10.2 m.

(c) The angle is tan' (1.63 m/10.0 m) ~ 9.24° measured counterclockwise from the +x
axis.

57. From the problem statement, we have

(6.0)i +(1.0)]

A+B=
A-B=—(4.0)i+(7.0)]

Adding the above equations and dividing by 2 leads to Z=(l.0)i+(4.0)j. Thus, the

magnitude of A is

A=A =42+ 42 ={(1.0) +(4.0) =4.1

Similarly, the vector Bis B= (5 .O)i +(-3 .0)3' , and its magnitude is

B=|B|=\|B2+B} =/(5.0) +(-3.0) =5.8.

The results are summarized in the figure below:

Yy

(-4.7) A
A\ a9
W\ ~.
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58. The vector can be written as d = (2.5 m)j’ , where we have taken jto be the unit
vector pointing north.

(a) The magnitude of the vector a =4.0 d is (4.0)(2.5m)=10m.

(b) The direction of the vector @ = 4.0d is the same as the direction of d (north).
(c) The magnitude of the vector ¢ =— 3.0d is 3.0)2.5m)=7.5m.

(d) The direction of the vector ¢ =—3.0d is the opposite of the direction of d . Thus, the
direction of ¢ is south.

59. Reference to Flgure 3-18 (and the accompanying material in that section) is helpful.
If we convert B to the magnitude-angle notation (as A already is) we have
B = (14.4 Z 33.7°) (appropriate notation especially if we are using a vector capable

calculator in polar mode). Where the length unit is not displayed in the solution, the unit
meter should be understood. In the magnitude-angle notation, rotating the axis by +20°
amounts to subtracting that angle from the angles previously specified. Thus,

A4 = (12.0 £ 40.00)' and B = (144 £ 13.7°)", where the ‘prime’ notation indicates that
the description is in terms of the new coordinates. Converting these results to (x, y)
representations, we obtain

(@) A=(9.19m)1'+(7.71 m) |

(b) Similarly, B = (14.0 m) V' +(3.41 m) .

60. The two vectors can be found be solving the simultaneous equations.

(a) If we add the equations, we obtain 2d@ = 6¢ , which leads to @ =3¢ =91+12].

(b) Plugging this result back in, we find b=¢=31+ 43 .

61. The three vectors given are
5.01+4.0j-6.0 k
—2.01+2.0j+3.0k
4.01+3.0j+2.0k

a
b
¢

S
+

(a) The vector equation 7 = a —
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7 =[5.0—(=2.0)+4.0]i+(4.0-2.0+3.0)j+(-6.0-3.0+2.0)k
=11i+5.0j—7.0k.

(b) We find the angle from +z by “dotting” (taking the scalar product) 7 with k. Noting
that r = |F| = \/(1 1.0)> +(5.0)* + (=7.0)* = 14, Eq. 3-20 with Eq. 3-23 leads to

F-k=-70=(14)(1)cosg = ¢=120°.

(c) To find the component of a vector in a certain direction, it is efficient to “dot” it (take
the scalar product of it) with a unit-vector in that direction. In this case, we make the
desired unit-vector by

i_ b ~2.0i+2.0j+3.0k
b1 J(-2.0)" + (2.0 + (3.0

| =

S

We therefore obtain

o =i (5.0)(-2.0) + (4.0)(2.0) + (-60)3.0) __,

J(22.0)" + (2.0 +(3.0

(d) One approach (if all we require is the magnitude) is to use the vector cross product, as
the problem suggests; another (which supplies more information) is to subtract the result

in part (¢) (multiplied by l;) from a . We briefly illustrate both methods. We note that if

a cos 6 (where @ is the angle between @ and b ) gives a, (the component along l;) then
we expect a sin #to yield the orthogonal component:

‘5xb‘

asin@ = =73

(alternatively, one might compute € form part (c) and proceed more directly). The second
method proceeds as follows:

G—ab=(50-235i+ (40 - (=2.35))] + ((-6.0) - (=353))k
yb=( )i + (4.0 - (-235)); + ((-6.0) - (-353))
=2.65i + 635] — 247k

This describes the perpendicular part of @ completely. To find the magnitude of this part,
we compute

J(2.65) + (6.35) + (—2.47) =73

which agrees with the first method.
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62. We choose +x east and +y north and measure all angles in the “standard” way
(positive ones counterclockwise from +x, negative ones clockwise). Thus, vector Jl has
magnitude d, = 3.66 (with the unit meter and three significant figures assumed) and
direction ¢, = 90°. Also, Jz has magnitude d, = 1.83 and direction & =—45°, and vector
C_i3 has magnitude ds = 0.91 and direction & = —135°. We add the x and y components,
respectively:

x: dcos@ +d,cos 0, +d,cos 0, =0.65m

y:d sin@ +d,sin @, +d,sin 6, =1.7 m.

— — —

(a) The magnitude of the direct displacement (the vector sum d, + d, + d;) is

J(0.65 m)* +(1.7m)> =1.8 m.

(b) The angle (understood in the sense described above) is tan™' (1.7/0.65) = 69°. That is,
the first putt must aim in the direction 69° north of east.

63. The three vectors are
d =-3.01+3.0j+2.0k

d,=—-2.0i—4.0j+2.0k
d,=2.01+3.0]+1.0k.

(a) Since 672 +c§3 :0i—1.03+3.0f<, we have

d -(dy+d,)=(-3.01+3.0j+2.0k)- (01 —1.0j+3.0k)
=0-3.0+6.0=3.0 m’.

(b) Using Eq. 3-30, we obtain 6?2 X c@ =—10i+ 6.03+ 2.0k. Thus,

d -(dyxd,)=(-3.01+3.0j+2.0k)- (101 +6.0 j+2.0k)
=30+18+4.0=52m’.

(c) We found d, + dy in part (a). Use of Eq. 3-30 then leads to

d x(d,+d;)=(-3.01+3.0j+2.0k)x (01 —1.0j+3.0k)
=(11i+9.0j+3.0k ) m’

64. (a) The vectors should be parallel to achieve a resultant 7 m long (the unprimed case
shown below),
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(b) anti-parallel (in opposite directions) to achieve a resultant 1 m long (primed case
shown),
(c) and perpendicular to achieve a resultant v/3° +4”> = 5m long (the double-primed case
shown).

In each sketch, the vectors are shown in a “head-to-tail” sketch but the resultant is not
shown. The resultant would be a straight line drawn from beginning to end; the beginning
is indicated by 4 (with or without primes, as the case may be) and the end is indicated by
B.

Y

Ao° > B

ABH

AH

(e, »0

65. (a) This is one example of an answer: (—40 1— 20j + 25 k) m, with 1 directed anti-
parallel to the first path, J directed anti-parallel to the second path, and k directed upward
(in order to have a right-handed coordinate system). Other examples include (40 1+ 20 ]
+25k) m and (401 — 20 ] — 25 k) m (with slightly different interpretations for the unit
vectors). Note that the product of the components is positive in each example.

(b) Using the Pythagorean theorem, we have \/ (40 m)’> +(20 m)* =44.7 m ~ 45 m.
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N

1. (a) The magnitude of 7 is

|7 |= /(5.0 m)* +(—3.0 m)> + (2.0 m)> =6.2 m. 5 b2
: y
(b) A sketch is shown. The coordinate values are in 7%
meters. x

2. (a) The position vector, according to Eq. 4-1,is 7 = (—5.0 m) i+ (8.0 m)} .

(b) The magnitude is |7 [= y/x* +y* +2> =/(=5.0 m)* +(8.0 m)> +(0 m)* = 9.4 m.

(c) Many calculators have polar <> rectangular conversion capabilities that make this
computation more efficient than what is shown below. Noting that the vector lies in the
xy plane and using Eq. 3-6, we obtain:

t9=tan"l( 8.0m )=—58° or 122°

-50m

direction) is chosen since the signs of the components imply the vector is
in the second quadrant.

(d) The sketch is shown to the right. The vector is 122° counterclockwise

where the latter possibility (122° measured counterclockwise from the +x y
i
|
|
|

from the +x direction. '

(e) The displacement is A7 =7 —7 where 7 is given in part (a) and
7= (3.0 m)i. Therefore, A7 = (8.0 m)i — (8.0 m)].

(f) The magnitude of the displacement is

| AF = /(8.0 m)> +(~8.0 m)> =11 m.
(-5.8)

(g) The angle for the displacement, using Eq. 3-6, is

tan™' ( 88.00m j = —45° or 135° -
-8.0m

107
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where we choose the former possibility (—45°, or 45° measured clockwise from +x) since
the signs of the components imply the vector is in the fourth quadrant. A sketch of A7 is
shown on the right.

3. The initial position vector 7, satisfies 7 —7, = A7, which results in
7 =F—AF=(3.0j— 4.0k)m — (2.0i — 3.0j + 6.0k)m = (2.0 m)i+ (6.0 m) j +(~10 m)k .

4. We choose a coordinate system with origin at the clock center and +x rightward
(toward the “3:00” position) and +y upward (toward “12:00”).

(a) In unit-vector notation, we have 7 = (10 cm)i and 7 = (-10 cm)j'. Thus, Eq. 4-2 gives

AF =7 —7 =(—=10 cm)i +(~10 cm)j].

The magnitude is given by | A7 |= \/(— 10 cm)® + (=10 cm)® =14 cm.
(b) Using Eq. 3-6, the angle is

—-10 cm

H:tanl( j:45°0r —135°,

—10 cm

We choose —135°since the desired angle is in the third quadrant. In terms of the
magnitude-angle notation, one may write

AF=F — F=(=10 cm)i +(—=10 cm)j — (14cmZ — 135°).

(c) In this case, we have 7 = (~10 cm)j and 7 = (10 cm)j, and A7 = (20 cm)j. Thus,
|A7|=20 cm.

(d) Using Eq. 3-6, the angle is given by

0 =tan"' (20 ij ~90°.

Ocm

(e) In a full-hour sweep, the hand returns to its starting position, and the displacement is
Zero.

(f) The corresponding angle for a full-hour sweep is also zero.
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5. The average velocity of the entire trip is given by Eq. 4-8: v, =Ar/At, where the
total displacement A7 = A7, + A7, + A7, is the sum of three displacements (each result of a

constant velocity during a given time), and Af=At, +At, + At, is the total amount of
time for the trip. We use a coordinate system with +x for East and +y for North.

(a) In unit-vector notation, the first displacement is given by

A7 = [ 60.0 X | (200min s 46 6 km)
h 60 min/h

The second displacement has a magnitude of (60.0 ¥2).(230mn)y —20.0km, and its

direction is 40° north of east. Therefore,
AF, =(20.0 km) cos(40.0°)1 +(20.0 km) sin(40.0°) j=(15.3 km)i +(12.9 km) .

Similarly, the third displacement is

AR = 60.0 K| [200min ) =5 6 1m)i
h 60 min/h

Thus, the total displacement is

AF = A + A, + AF, = (40.0 km)i +(15.3 km)i+(12.9 km) ] —(50.0 km) i
=(5.30 km) 1+(12.9 km) ].

The time for the trip is A7z =(40.0 + 20.0 + 50.0) min = 110 min, which is equivalent to
1.83 h. Equation 4-8 then yields

5 _(530km) 1+(12.9 km) ]

= (2.90 km/h)i+(7.01 km/h)].
ave [83h ( )i+ ( )]

The magnitude of v, is

7,0 |=4/(2.90 km/h)* +(7.01 kivh)* = 7.59 kmv/h,

(b) The angle is given by
N
O =tan'| &2 | =tan”' (Mj =67.5° (north of east),
Vres 2.90 km/h

or 22.5° east of due north.

The displacement of the train is depicted in the following figure:



110 CHAPTER 4

nort

A

(53.129) A7

< 3 (55.3,12.9)
A7 -
Ar.
N, 2, east
Ar, (40,0

1

Note that the net displacement A7 is found by adding A7, A7, and A7, vectorially.

6. To emphasize the fact that the velocity is a function of time, we adopt the notation v(¢)
for dx/dt.

(a) Equation 4-10 leads to

() = % (3.00¢1 —4.007°] +2.00k) = (3.00 m/s)i —(8.00¢ m/s) ]

(b) Evaluating this result at  =2.00 s produces v = (3.001 - 16.03) m/s.

(c) The speed at t=2.00 s is v =[ii|= \/(3.00 m/s)’ +(—16.0 m/s)* =16.3 m/s.
(d) The angle of v at that moment is

. [—16.0 m/s
an S E—

=-79.4° or 101°
3.00 m/s

where we choose the first possibility (79.4° measured clockwise from the +x direction, or
281° counterclockwise from +x) since the signs of the components imply the vector is in
the fourth quadrant.

7. Using Eq. 4-3 and Eq. 4-8, we have

—2.0i + 8.0j — 2.0k) m — (5.0i — 6.0j + 2.0k . . .
Vg = (=20i+80) =209 m = (.01 = 6.01+2.000m _ 707 11 465 — 0.40k) m/s.
10s
8. Our coordinate system has i pointed east and 3 pointed north. The first displacement
is 7,, = (483 km)i and the second is 7, =(—966 km)].
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(a) The net displacement is

Foo =Fp +Fpe = (483 km)i—(966 km)j

which yields | 7, . \=\/(483 km)* +(=966 km)* =1.08x10> km.

(b) The angle is given by

0 =tan-' [ 200KM)_ (340
483 km

We observe that the angle can be alternatively expressed as 63.4° south of east, or 26.6°
east of south.

(c) Dividing the magnitude of 7,. by the total time (2.25 h) gives

S _(483 km)i—(966 km)j
e 2.25h

= (215 km/h)i— (429 km/h)]

with a magnitude |V, \/(2 15 km/h)* +(=429 km/h)* =480 km/h.

avg‘:

(d) The direction of v, is 26.6° east of south, same as in part (b). In magnitude-angle
notation, we would have v, =(480 km/h £ —63.4°).

(e) Assuming the AB trip was a straight one, and similarly for the BC trip, then |7,,| is the
distance traveled during the 4B trip, and |7;,.| is the distance traveled during the BC trip.
Since the average speed is the total distance divided by the total time, it equals

483 km + 966 km
2.25h

= 644 km/h.

9. The (x,y) coordinates (in meters) of the points are 4 = (15, —15), B = (30, —45), C = (20,
—15), and D = (45, 45). The respective times are £, =0, 15 =300 s, tc =600s, and t, =
900 s. Average velocity is defined by Eq. 4-8. Each displacement Ar is understood to
originate at point A4.

(a) The average velocity having the least magnitude (5.0 m/600 s) is for the displacement
ending at point C: |v__|=0.0083 m/s.

avg

(b) The direction of v, , is 0° (measured counterclockwise from the +x axis).
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¢) The average velocity having the greatest magnitude 15 m)*+@3B0 m)*>/300s) is
g y g g g

for the displacement ending at point B: |v 0.11 m/s.

avg |:

(d) The direction of v, is 297° (counterclockwise from +x) or —63° (which is

equivalent to measuring 63° clockwise from the +x axis).

10. We differentiate 7 =5.00¢1+ (et + f1%)].

(a) The particle’s motion is indicated by the derivative of 7 :v = 5007 + (e + 2ﬁ)j .
The angle of its direction of motion is consequently

O=tan"'(v,/v;) = tan"'[(e + 2£1)/5.00].
The graph indicates 6, = 35.0°, which determines the parameter e:
e =(5.00 m/s) tan(35.0°) = 3.50 m/s.

(b) We note (from the graph) that &= 0 when ¢ = 14.0 s. Thus, e + 2ft = 0 at that time.
This determines the parameter f':

—e -3.5m/s

=—= =—0.125 m/s”.
2t 2(14.05)

f

11. In parts (b) and (c), we use Eq. 4-10 and Eq. 4-16. For part (d), we find the direction
of the velocity computed in part (b), since that represents the asked-for tangent line.

(a) Plugging into the given expression, we obtain
Floe= [2-00(8)—5.00(2)]i + [6.00—7.00(16)]] = (6.00i — 106j) m
(b) Taking the derivative of the given expression produces
(t) = (6.00£> — 5.00) 1 — 28.0¢° ]

where we have written v(¢) to emphasize its dependence on time. This becomes, at
t=2.00s, v =(19.01 — 224]) m/s.

(c) Differentiating the v(¢) found above, with respect to ¢ produces 12.0¢1—84.0¢> 3,
which yields @ =(24.01—336j) m/s*> at7=2.00s.

(d) The angle of v, measured from +x, is either
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. (—224 m/s
an _—

=—85.2° or 94.8°
19.0 m/s

where we settle on the first choice (—85.2°, which is equivalent to 275° measured
counterclockwise from the +x axis) since the signs of its components imply that it is in
the fourth quadrant.

12. We adopt a coordinate system with i pointed east and 3 pointed north; the

coordinate origin is the flagpole. We “translate” the given information into unit-vector
notation as follows:

7 =(40.0m)i and ¥,=(~10.0 m/s)]
7=(40.0m)] and ¥=(10.0 m/s)i.

(a) Using Eq. 4-2, the displacement A7 is

AF=F—F = (~40.0 m)i+(40.0 m)]

with a magnitude | A7 |= \/(—40.0 m)’ +(40.0 m)* =56.6 m.

(b) The direction of A7 1is

6=tan" & =tan’ M =—-45.0° or 135°.
Ax —-40.0 m

Since the desired angle is in the second quadrant, we pick 135°(45° north of due west).
Note that the displacement can be written as A7 =7 — 7, = (56.6 £135°) in terms of the

magnitude-angle notation.

(c) The magnitude of v, , is simply the magnitude of the displacement divided by the
time (Af = 30.0 s). Thus, the average velocity has magnitude (56.6 m)/(30.0 s) = 1.89 m/s.

(d) Equation 4-8 shows that v, points in the same direction as A7, that is, 135°(45°
north of due west).

(e) Using Eq. 4-15, we have

-~ V=V

Gy = =(0.333 m/s?)i +(0.333 m/s%);.

avg

The magnitude of the average acceleration vector is therefore equal to
|= \/(0.333 m/s*)* +(0.333 m/s*)> =0.471 m/s”.

la

avg
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() The direction of 4,,, is

9_tan1[0.333 m/s>

—0.333 m/s2]:450 or —135°.

Since the desired angle is now in the first quadrant, we choose 45°, and 4, , points

north of due east.

13. With position vector 7(¢) given, the velocity and acceleration of the particle can be
found by differentiating 7 (¢) with respect to time:

i . d&v dF
&gt

dt’ dt  dr’

=

(a) Taking the derivative of the position vector 7(¢) = i+ (4t )3 +7k with respect to time,
we have, in SI units (m/s),

v:%@Mtz}Hﬁ):szjn{.

(b) Taking another derivative with respect to time leads to, in SI units (m/s),

é:

d A oa n
2 @8i+Kk=87.
dl( JTtk)=8j

The particle undergoes constant acceleration in the +y-direction. This can be seen by
noting that 7(¢) is quadratic in .

14. We use Eq. 4-15 with v, designating the initial velocity and v, designating the later
one.

(a) The average acceleration during the Ar = 4 s interval is

. (=2.0i-2.0j+5.0k) m/s —(4.01—22j+3.0k) m/s
=8 45

= (1.5 m/s?)i+(0.5m/s*)k.

(b) The magnitude of 4, is \/(—1.5 m/s*)’ +(0.5m/s*)* =1.6m/s’.

(c) Its angle in the xz plane (measured from the +x axis) is one of these possibilities:

2
tan”! [0155—?/52] ——18° or 162°
—1. S
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where we settle on the second choice since the signs of its components imply that it is in
the second quadrant.

15. Since the acceleration, @ =a i+ ayj =(-1.0m/s*)i+(=0.50m/s?)], is constant in

both x and y directions, we may use Table 2-1 for the motion along each direction. This
can be handled individually (for x and y) or together with the unit-vector notation (for
AF).

The particle started at the origin, so the coordinates of the particle at any time ¢ are given
by 7 =Vt ++dt’. The velocity of the particle at any time ¢ is given by v =¥, + dt,
where v, is the initial velocity and a is the (constant) acceleration. Along the x-direction,
we have

1
x(t)=v, t+ ) axt2 , v.(t)=v, +at
Similarly, along the y-direction, we get

1,
y(t)zvoytJrant , v,() =y, +at

(a) Given that v, =3.0m/s,v, =0, a, =—1.0m/s’, a, =—0.5m/s’, the components

of the velocity are
v.(£)=v,, +at=(3.0m/s)—(1.0 m/s’)t
v,(0)=v,, +a,t=-(0.50 m/s>)t

When the particle reaches its maximum x coordinate at ¢ = ¢,, we must have v, = 0.
Therefore, 3.0 — 1.0¢,, = 0 or #,, = 3.0 s. The y component of the velocity at this time is

v,(t=3.05)=—(0.50m/s*)(3.0)=—1.5m/s
Thus, ¥, =(—1.5m/s);.

(b) Att=3.0 s, the components of the position are

x(t=3.05) :vat+%axt2 =(3.0m/s)(3.0 s)+%(—1 .0m/s*)(3.0s)>’=4.5m
y(t=3.05)= voyt+%ayt2 = 0+%(—0.5 m/s*)(3.0s)’ =-2.25m
Using unit-vector notation, the results can be written as 7 = (4.50 m)f -(2.25m) 3
16. We make use of Eq. 4-16.

(a) The acceleration as a function of time is
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- dv d ~ A ~
i- 7‘; == ((6.06=4.01°)i +8.0j) = (6.0~ 8.00);i

in SI units. Specifically, we find the acceleration vector at 7=3.0s to be
(6.0-8.0(3.0))i=(~18 m/s?)i.
(b) The equation is @ = (6.0 — 8.0¢)i =0; we find 1 =0.75 s.

(c) Since the y component of the velocity, v, = 8.0 m/s, is never zero, the velocity cannot
vanish.

(d) Since speed is the magnitude of the velocity, we have

v=|7| =\/(6.0t—4.0t2)2 +(8.0) =10

in SI units (m/s). To solve for ¢, we first square both sides of the above equation, followed
by some rearrangement:

(6.00~4.07) +64 =100 = (6.0t~ 4.0) =36
Taking the square root of the new expression and making further simplification lead to

6.0t— 4.0’ =+6.0 = 4.0£°-6.0t+6.0=0

Finally, using the quadratic formula, we obtain

6.0%/36-4(4.0)(+6.0)
) 2(8.0)

t

where the requirement of a real positive result leads to the unique answer: t = 2.2 s.
17. We find ¢ by applying Eq. 2-11 to motion along the y axis (with v, = 0 characterizing
Y = Ymax )
0=(12m/s)+ (2.0 m/s)t = ¢=6.0s.
Then, Eq. 2-11 applies to motion along the x axis to determine the answer:

Ve = (8.0 m/s) + (4.0 m/s?)(6.0 s) = 32 my/s.

Therefore, the velocity of the cart, when it reaches y = ymax , is (32 m/s)I.
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18. We find ¢ by solving Ax = x, +v,,t +%axt2 :

12.0 m=0+(4.00 m/s)t+%(5.00 m/s*)t?

where we have used Ax = 12.0 m, v, = 4.00 m/s, and a, = 5.00 m/s’ . We use the
quadratic formula and find # = 1.53 s. Then, Eq. 2-11 (actually, its analog in two
dimensions) applies with this value of z. Therefore, its velocity (when Ax = 12.00 m) is

V=7, +ar = (4.00 m/s)i +(5.00 m/s?)(1.53 )i + (7.00 m/s*)(1.53 s)]
=(11.7 m/s)i +(10.7 m/s) j.

Thus, the magnitude of vis |V |= \/(11.7 m/s)* +(10.7 m/s)* =15.8 m/s.

(b) The angle of v, measured from +x, is

an-! ( 10.7 m/s

———— [=42.6°.
11.7 m/sj

19. We make use of Eq. 4-16 and Eq. 4-10.

Using a = 311+ 4t3’ , we have (in m/s)

A

() =7, +jo’a dz=(5.00i+2.00}')+j;(3zi+4z3) dt=(5.00+32/2)1+(2.00+27)]
Integrating using Eq. 4-10 then yields (in meters)

F() =T, +j;vdz = (20.Oi+40.03)+I;[(5.00+3t2 /2)i+(2.00+2¢%)j]dt

=(20.01+40.0)+(5.00¢ + £ /2)i+(2.00z + 2£°/3)]
=(20.0+5.00¢+£ /2)i+(40.0+2.007 +2¢°/3)]

(a) At £ =4.00 s, we have 7(t=4.00s)=(72.0 m)i+(90.7 m)].

(b) ¥(t=4.005s)=(29.0 m/s)i+(34.0 m/s)j. Thus, the angle between the direction of

travel and +x, measured counterclockwise, is @ = tan '[(34.0 m/s)/(29.0 m/s)]=49.5°.

20. The acceleration is constant so that use of Table 2-1 (for both the x and y motions) is
permitted. Where units are not shown, SI units are to be understood. Collision between
particles 4 and B requires two things. First, the y motion of B must satisfy (using Eq. 2-15
and noting that #1is measured from the y axis)
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_ 1 2 _ 1 2 2
y=gal = 3Om—5[(0.40m/s )cosd | £,
Second, the x motions of 4 and B must coincide:
vi=lar = (3.0 m/s)t = 1 [(0.40 m/s”) sin 6] #*
5% . 5L .

We eliminate a factor of ¢ in the last relationship and formally solve for time:

2v_ 2(3.0m/s)
a, (0.40m/s*)sin @’

This is then plugged into the previous equation to produce

30 m=— [ (0.40 m/s’) cos 6] ( 2(3.0 m/s) j

1
2 (0.40 m/s?) sin @

which, with the use of sin® 8= 1 — cos” 6, simplifies to

0= 9.0 _ cos 62’ = 1-cos’ 0= _ 920 cos 0.
020 1- cos’ 0 (020)(30)

We use the quadratic formula (choosing the positive root) to solve for cos &:

—1.5+/1.5* = 4(1.0)(-1.0
cos 0= +\/ (10)( )=l

2 2

which yields @ = cos™ (%) =60°.

21. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v, =0 and

Vo, =V, =10 m/s.

(a) With the origin at the initial point (where the dart leaves the thrower’s hand), the y
coordinate of the dart is given by y=-1gt’, so that with y = —PQO we have

PO=1(9.8 m/s*)(0.195)" =0.18 m.

(b) From x = vyt we obtain x = (10 m/s)(0.19 s) = 1.9 m.



119

22. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable.

(a) With the origin at the initial point (edge of table), the y coordinate of the ball is given
by y=—-1gt?. If tis the time of flight and y = —1.20 m indicates the level at which the

ball hits the floor, then

2(~1.20 m)
t= |~ = 0.495s.
~9.80 m/s

A

(b) The initial (horizontal) velocity of the ball is v=v,1. Since x = 1.52 m is the
horizontal position of its impact point with the floor, we have x = vyt. Thus,

x 152m

V=== =3.07 mis.
t 04955

23. (a) From Eq. 4-22 (with & = 0), the time of flight is

[ /2(45.Om2):3'03 5
g V9.80 m/s

(b) The horizontal distance traveled is given by Eq. 4-21:
Ax = vt = (250 m/s)(3.03s) =758 m.
(c) And from Eq. 4-23, we find

v,|=gt=(9.80 m/s*)(3.03s) =29.7 m/s.

24. We use Eq. 4-26

2 2 (9.50m/s )’
R =| Y sin 26, :"—0=¥= 9.209 m~9.21m
g & 9.80m/s

to compare with Powell’s long jump; the difference from Rmax is only AR =(9.21m —
8.95m) =0.259 m.

25. Using Eq. (4-26), the take-off speed of the jumper is

L &R (9.80 m/s’)(77.0 m) _ 131 s
° \sin26, sin 2(12.0°) '
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26. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is the throwing point (the stone’s
initial position). The x component of its initial velocity is given by v, = v, cosé, and the

y component is given by v, =v,sin@,, where vy = 20 m/s is the initial speed and & =

40.0° is the launch angle.

(a) Att=1.10 s, its x coordinate is
x = vyt cos 6, =(20.0m/s)(1.10's) cos 40.0° =16.9 m

(b) Its y coordinate at that instant is

y=v,tsin 6, - %gtz = (20.0m/s)(1.10s) sin 40.0° - % (9.80m/s?)(1.10s)" =8.21m.

(c) At '=1.80 s, its x coordinate isx = (20.0 m/s)(180 s) cos 40.0° = 27.6 m.

(d) Its y coordinate at ¢’ is

(20.0m/s)(1.80s)sin 40.0° - % (9.80m/s”) (1.80s) = 7.26m.

y

(e) The stone hits the ground earlier than # = 5.0 s. To find the time when it hits the
ground solve y = vt sin 8, — 1 gt> =0 for . We find

2(20.0 m/
i sin @, = —( m/s)

08 m/ s sin 40° =2.62 s.
g Sm/s

=

Its x coordinate on landing is

x =v,t cos 6, =(20.0 m/s)(2.62 s) cos 40° = 40.2 m.

(f) Assuming it stays where it lands, its vertical component at = 5.00 s is y = 0.

27. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below
the release point. We write &) = —30.0° since the angle shown in the figure is measured
clockwise from horizontal. We note that the initial speed of the decoy is the plane’s speed
at the moment of release: vy = 290 km/h, which we convert to SI units: (290)(1000/3600)
= 80.6 m/s.

(a) We use Eq. 4-12 to solve for the time:
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700 m

= =10.0s.
(80.6 m/s) cos (—30.0°)

Ax=(v,cos6,)t = t

(b) And we use Eq. 4-22 to solve for the initial height yy:
Y=Y,=(v,sinb,) t—%gt2 = 0-y,=(-40.3 m/s)(10.0 s)—%(9.80 m/s*)(10.0's)*

which yields yp = 897 m.

28. (a) Using the same coordinate system assumed in Eq. 4-22, we solve for y = A:
. 1 2
h=y,+v,sinG,t — Egt

which yields 7 = 51.8 m for yp =0, vo = 42.0 m/s, & = 60.0°, and # = 5.50 s.

(b) The horizontal motion is steady, so v, = vy, = vy cos &), but the vertical component of
velocity varies according to Eq. 4-23. Thus, the speed at impact is

v:\/(vocosé?o)2 + (v,sind, — gt)” =27.4 m/s.
(c) We use Eq. 4-24 with v,=0 and y = H:

. 2
o bosing) oo
2g

29. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at its initial position (where it is
launched). At maximum height, we observe v, = 0 and denote v, = v (which is also equal
to voy). In this notation, we have v, = 5v. Next, we observe vy cos 6 = vo, = v, so that we

arrive at an equation (where v # 0 cancels) which can be solved for 6:
a1
(5v)cos, =v = 6, =cos [EJ =78.5°.

30. Although we could use Eq. 4-26 to find where it lands, we choose instead to work
with Eq. 4-21 and Eq. 4-22 (for the soccer ball) since these will give information about
where and when and these are also considered more fundamental than Eq. 4-26. With Ay
=0, we have

~ (19.5 m/s)sin45.0°

_ =2.81s.
(9.80 m/s”)/2

Ay =(v,sin6,) t—%gt2 = t
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Then Eq. 4-21 yields Ax = (v cos &)t = 38.7 m. Thus, using Eq. 4-8, the player must
have an average velocity of

o _AF_(38.7m) i—(55 m)i
M AL 2.81s

=(=5.8 m/s) i

which means his average speed (assuming he ran in only one direction) is 5.8 m/s.

31. We first find the time it takes for the volleyball to hit the ground. Using Eq. 4-22, we
have

Y=y, =(v,sinb,) t—%gt2 = 0-2.30 m=(-20.0 m/s) sin(18.0°)t—%(9.80 m/s*)¢?

which gives ¢ =0.30s. Thus, the range of the volleyball is
R =(v,cos6,)r=(20.0 m/s)cos18.0°(0.30s) =5.71 m

On the other hand, when the angle is changed to 6; =8.00°, using the same procedure as

shown above, we find
Y=Y, =,sin6,) t' —%gt'2 = 0-2.30 m=(-20.0 m/s)sin(8.00°)¢' —%(9.80 m/s*)t"”

which yields #'=0.46 s, and the range is
R'=(v, cos,)t' = (20.0 m/s)cos18.0°(0.46 5) = 9.06 m

Thus, the ball travels an extra distance of
AR=R' —-R=9.06 m-5.71m=3.35m

32. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at the release point (the initial
position for the ball as it begins projectile motion in the sense of §4-5), and we let &) be
the angle of throw (shown in the figure). Since the horizontal component of the velocity
of the ball is v, = vy cos 40.0°, the time it takes for the ball to hit the wall is

Ax 22.0 m
t=—= =1.15s.
v.  (25.0 m/s)cos40.0°

X

(a) The vertical distance is
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Ay = (v, sin eo)z—% gt® =(25.0 m/s)sin 40.0°(1.15 s)—%(9.80 m/s?)(1.155)> =12.0 m.

(b) The horizontal component of the velocity when it strikes the wall does not change
from its initial value: v, = vy cos 40.0° = 19.2 m/s.

(c) The vertical component becomes (using Eq. 4-23)

v, =V, sing, — gt =(25.0 m/s) sin40.0° - (9.80 m/s*)(1.15s)=4.80 m/s.

(d) Since v, > 0 when the ball hits the wall, it has not reached the highest point yet.

33. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below
the release point. We write & = —37.0° for the angle measured from +x, since the angle
@, =53.0°given in the problem is measured from the —y direction. The initial setup of

the problem is shown in the figure below.

(0.30)

(R,0)
(a) The initial speed of the projectile is the plane’s speed at the moment of release. Given
that y, =730 m andy =0 at £=5.00s, we use Eq. 4-22 to find vy:

Y=y, =(v,sin6,) t—% g’ = 0-730 m =y, sin(-37.0°)(5.00 s)—%(9.80 m/s*)(5.00 s)°

which yields vo =202 m/s.

(b) The horizontal distance traveled is
R=vt=(v,cos6,))t=[(202m/s)cos(=37.0°)](5.00s)=806 m

(c) The x component of the velocity (just before impact) is

v, =v,c0s6,=(202m/s)cos(-37.0°)=161m/s.
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(d) The y component of the velocity (just before impact) is
v, =v,8in6, — gt =(202 m/s)sin(-37.0°)—(9.80 m/s’)(5.00s)=—-171m/s.

Note that in this projectile problem we analyzed the kinematics in the vertical and
horizontal directions separately since they do not affect each other. The x-component of
the velocity, v, =v,cos6,, remains unchanged throughout since there’s no horizontal

acceleration.

34. (a) Since the y-component of the velocity of the stone at the top of its path is zero, its
speed is

v=vi+v =v, =v,cos6, =(28.0 m/s)cos40.0° = 21.4 m/s.

(b) Using the fact that v, =0 at the maximum height y, ., the amount of time it takes for
the stone to reach y__ 1s given by Eq. 4-23:

_ Yy sin 6,

O=v, =vsing,—gt = ¢ .

Substituting the above expression into Eq. 4-22, we find the maximum height to be

v, sineoj_lg(vo sin 6, T Wsin’ 4,

. 1, .
=(v,sind,) t——gt” =v,sin G
ymax (0 0) 2g 0 0( 2 g 2g

To find the time the stone descends to y =y, . /2, we solve the quadratic equation given
in Eq. 4-22:

y =%ymax :vés,é‘i—r(:% = (v, sin ) t—%gﬂ = 1= (2i\/§2);0 sin 6, .
Choosing ¢ =¢, (for descending), we have
v, =V, cos 8, =(28.0 m/s)cos40.0°=21.4 m/s
v, =v,sinf, —g 2+ ‘/52);0 sy, _ —%vo sin @, = —%(28.0 m/s)sin 40.0° = —12.7 m/s

Thus, the speed of the stone when y=y_ /2 is

v= V2 +v2 =(21.4 m/s)’ +(~12.7 m/s)’ =24.9 m's.
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(c) The percentage difference is

249 m/s—-21.4 m/s
21.4 m/s

=0.163=16.3%.

35. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at the end of the rifle (the initial
point for the bullet as it begins projectile motion in the sense of § 4-5), and we let &) be
the firing angle. If the target is a distance d away, then its coordinates are x = d, y = 0.
The projectile motion equations lead to

d =(v,cos0,))t

0=v,tsinf, —L gt*

The setup of the problem is shown in the figure.

X
(d, 0)
The time at which the bullet strikes the target is ¢ =d /(v, cos §,). Eliminating ¢ leads to
2v; sin @, cos O, —gd =0.

Using sin 6, cos§, = +sin(26, ), we obtain

. . d (9.80 m/s*)(45.7 m)
V2sin (20,)=gd = sin(26,)=2==
o5in {26) =2 (26) V2 (460 m/s)’

which yields sin(26,)=2.11x107, or & = 0.0606°. If the gun is aimed at a point a
distance ¢ above the target, then tan 6, = //d so that

¢ =dtan 6, = (45.7 m)tan(0.0606°) = 0.0484 m =4.84 cm.

Note that due to the downward gravitational acceleration, in order for the bullet to strike
the target, the gun must be aimed at a point slightly above the target.

36. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below
the point where the ball was hit by the racquet.
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(a) We want to know how high the ball is above the court when it is at x = 12.0 m. First,
Eq. 4-21 tells us the time it is over the fence:

. X 12.0 m

= = =0.508s.
v, cos 6, (23.6 m/s)cos 0°

At this moment, the ball is at a height (above the court) of
) 1 ,
y=yo+ (v sin 6,) 1=~ g’ =1.10m

which implies it does indeed clear the 0.90-m-high fence.
(b) At £=0.508 s, the center of the ball is (1.10 m — 0.90 m) = 0.20 m above the net.

(c) Repeating the computation in part (a) with 6 = —5.0° results in # = 0.510 s and
y =0.040 m, which clearly indicates that it cannot clear the net.

(d) In the situation discussed in part (c), the distance between the top of the net and the
center of the ball at #=0.510 s is 0.90 m — 0.040 m = 0.86 m.

37. The initial velocity has no vertical component (6, =0) — only an x component. Egs.
(4-21) and (4-22) can be simplified to

X=X, =Vt

1,
Y=Yy =Vl —5 8 :_Egt

where x, =0, v,, =v, =+2.0m/s, and yy = +10.0 m (taking the water surface to be at
y =0). The setup of the problem is shown in the figure below.
y

A Vo
(07 yO) !

water surface \
X

(R’ O)
(a) At t =0.80s, the horizontal distance of the diver from the edge is

x=x,+v,t=0+(2.0m/s)(0.80s)=1.60 m
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(b) Similarly, using the second equation for the vertical motion, we obtain
1 2 1 2 2
Y=y, —Egt =10.0 m—5(9.80 m/s”)(0.80s)" =6.86 m.

(c) At the instant the diver strikes the water surface, y = 0. Solving for ¢ using the
equation y = y, —1 g’ =0 leads to

(= |22 =\/2(10'0 mz ~1.43s.
g 9.80 m/s

During this time, the x-displacement of the diver is R = x = (2.00 m/s)(1.43 s) = 2.86 m.

Note: Using Eq. (4-25) with 6, =0, the trajectory of the diver can also be written as
s
2v§

Part (c) can also be solved by using this equation:

2 22 . ’@o.
y:yo—gxzzo = x=R= Voy(): 2(2011’1/8) (lgom)=286m
2v; g 9.8m/s

Y=W

38. In this projectile motion problem, we have vy = v, = constant, and what is plotted is
V=V + vi. We infer from the plot that at z = 2.5 s, the ball reaches its maximum height,

where v, = 0. Therefore, we infer from the graph that v, = 19 m/s.

(a) During ¢ = 5 s, the horizontal motion is x — xp = v, = 95 m.

(b) Since \/(19 m/s)* + v,> =31 m/s (the first point on the graph), we find v,, =24.5 m/s.
Thus, with 7 = 2.5 s, we can use y,,, =V, =Vl =387 0r v) = 0=, =2g(Vy. =¥, ), OF
Viax — Vo = %(vy +, )t to solve. Here we will use the latter:

1

1
Viax — Vo :E(Vy +V5,) 1= Vi =5(0+24.5m/s)(2.5 s)=31m

where we have taken y, = 0 as the ground level.

39. Following the hint, we have the time-reversed problem with the ball thrown from the
ground, toward the right, at 60° measured counterclockwise from a rightward axis. We
see in this time-reversed situation that it is convenient to use the familiar coordinate
system with +x as rightward and with positive angles measured counterclockwise.
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(a) The x-equation (with xo = 0 and x = 25.0 m) leads to
25.0 m = (vp cos 60.0°)(1.50 s),

so that vop = 33.3 m/s. And with yo = 0, and y = & > 0 at ¢+ = 1.50 s, we have
Y= Yo =Vo,t — L gt* where vg, = vg sin 60.0°. This leads to 4 =32.3 m.

(b) We have
vy = vor = (33.3 m/s)cos 60.0° = 16.7 m/s
vy = Vo, — gt = (33.3 m/s)sin 60.0° — (9.80 m/sz)(l.SO s)=14.2 m/s.

The magnitude of v is given by

|7 = V2 +v: =J(16.7 m/s)* +(14.2m/s)* =21.9 m/s.

1%
0=tan| 22 | tan | L2V | 40 40
v, 16.7m/s

(d) We interpret this result (“undoing” the time reversal) as an initial velocity (from the
edge of the building) of magnitude 21.9 m/s with angle (down from leftward) of 40.4°.

(c) The angle is

40. (a) Solving the quadratic equation Eq. 4-22:
Y=y, =(v,sinf,) t—% gt’ = 0-2.160 m=(15.00 m/s)sin(45.00°)¢ —%(9.800 m/s*)t>

the total travel time of the shot in the air is found to be ¢t =2.352s . Therefore, the
horizontal distance traveled is

R =(v,cos6,)t=(15.00 m/s)cos45.00°(2.352s) = 24.95 m.

(b) Using the procedure outlined in (a) but for §, =42.00°, we have
Y=y, =(v,sinf)) t—% gt’ = 0-2.160 m = (15.00 m/s)sin(42.00°) —%(9.800 m/s*)t>

and the total travel time is ¢ =2.245s. This gives

R= (vo cos 6’0)t =(15.00 m/s)cos42.00°(2.2455s) =25.02 m.
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41. With the Archer fish set to be at the origin, the position of the insect is given by (x, y)
where x=R/2=v]sin26,/2g , and y corresponds to the maximum height of the
parabolic trajectory: y=y__ =v;sin’ §,/2g . From the figure, we have

y_ vsin’6,/2g 1

tang=—=——2—=2=—tand
¢ x v;sin26,/2g 2 ’

Given that ¢ =36.0°, we find the launch angle to be
g, =tan™'(2tang)=tan ' (2tan36.0°)=tan"'(1.453)=55.46°~55.5°.
Note that 6, depends only on ¢ and is independent of d.
42. (a) Using the fact that the person (as the projectile) reaches the maximum height over

the middle wheel located at x =23 m+(23/2) m=34.5 m, we can deduce the initial
launch speed from Eq. 4-26:

2 2
R _v;sin26), 2gx \/2(9.8 msH(345m) oo o

X=—="T"-7" = YV, = |— = :
2 2g sin 26, sin(2-53°)
Upon substituting the value to Eq. 4-25, we obtain

(9.8 m/s*)(23 m)>
2(26.5 m/s)*(cos53°)°

2
Y=y, +xtan , ——>———=3.0 m+(23 m)tan 53°—
2v, cos” 6,

Since the height of the wheel is A, =18 m, the clearance over the first wheel is
Ay=y—-h,=233m-18m=53m.

(b) The height of the person when he is directly above the second wheel can be found by
solving Eq. 4-24. With the second wheel located at x =23 m+(23/2) m=34.5 m, we

have
(9.8 m/s*)(34.5 m)’

2

gx
=y +xtand, —-—=——=3.0 m+(34.5 m)tan53°—
Y=o 0 ( ) 2(26.52 m/s)*(cos 53°)

2 2
2v, cos” 6,

=259 m.
Therefore, the clearance over the second wheel is Ay=y—-h =259 m—-18 m=7.9 m.

(c) The location of the center of the net is given by

ax’ e v, sin26, (26.52 m/s)’sin(2-53°)

—— = > 69 m
2v; cos” 6, g 9.8 m/s

0O=y-y,=xtan g, -
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43. We designate the given velocity v = (7.6 m/s)i+(6.l m/s)} as v, as opposed to the
velocity when it reaches the max height v, or the velocity when it returns to the ground
v,, and take v, as the launch velocity, as usual. The origin is at its launch point on the
ground.

(a) Different approaches are available, but since it will be useful (for the rest of the
problem) to first find the initial y velocity, that is how we will proceed. Using Eq. 2-16,
we have

vlzy :vgy -2gAy = (6.1m/s)’= vgy —2(9.8 m/s*)(9.1 m)

which yields vy, = 14.7 m/s. Knowing that v, , must equal 0, we use Eq. 2-16 again but
now with Ay = A for the maximum height:

v;y :vgy -2gh = 0=(14.7 m/s)* —2(9.8 m/s’)h

which yields 2= 11 m.

(b) Recalling the derivation of Eq. 4-26, but using vy, for vy sin & and vy, for vy cos 6,
we have

1
Ozvoyt—agf, R=v,.t

which leads to R = 2v0xv0y / g. Noting that vo, = vi, = 7.6 m/s, we plug in values and

obtain
R =2(7.6 m/s)(14.7 m/s)/(9.8 m/s*) = 23 m.

(c) Since v3, = vi, = 7.6 m/s and v3, = — v, = —14.7 m/s, we have

vy = V2, +vE, =(7.6 m/s)’ +(<14.7 m/s) =17 mis.

(d) The angle (measured from horizontal) for v, is one of these possibilities:

tan™' (jézﬁj:—@‘” or 117°
.6m

where we settle on the first choice (—63°, which is equivalent to 297°) since the signs of
its components imply that it is in the fourth quadrant.

44. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v,, = 0 and

Vo, =V, =161 km/h . Converting to SI units, this is vo = 44.7 m/s.



131

(a) With the origin at the initial point (where the ball leaves the pitcher’s hand), the y
coordinate of the ball is given by y = —1g¢*, and the x coordinate is given by x = vt.

From the latter equation, we have a simple proportionality between horizontal distance
and time, which means the time to travel half the total distance is half the total time.
Specifically, if x = 18.3/2 m, then ¢ = (18.3/2 m)/(44.7 m/s) = 0.205 s.

(b) And the time to travel the next 18.3/2 m must also be 0.205 s. It can be useful to write
the horizontal equation as Ax = vpAt in order that this result can be seen more clearly.

(c) Using the equation y=-1gs’, we see that the ball has reached the height of
\ —%(9.80 m/s’ )(0.205 5)2 | =0.205 m at the moment the ball is halfway to the batter.

(d) The ball’s height when it reaches the batter is —%(9.80 m/sz)(O.409 s)2 =-0.820m,

which, when subtracted from the previous result, implies it has fallen another 0.615 m.
Since the value of y is not simply proportional to ¢, we do not expect equal time-intervals
to correspond to equal height-changes; in a physical sense, this is due to the fact that the
initial y-velocity for the first half of the motion is not the same as the “initial” y-velocity
for the second half of the motion.

45. (a) Letm =%~
1

coordinate origin at the point of launch and use Eq. 4-25. Thus,

0.600 be the slope of the ramp, so y = mx there. We choose our

(9.80 m/s*)x’

=0.600x
2(10.0 m/s)*(cos 50.0°)

y =tan(50.0°)x —

which yields x =4.99 m. This is less than d, so the ball does land on the ramp.

(b) Using the value of x found in part (a), we obtain y = mx =2.99 m. Thus, the
Pythagorean theorem yields a displacement magnitude of \/x* + »* =5.82 m.

(c) The angle is, of course, the angle of the ramp: tan”'(m) = 31.0°.

46. Using the fact that v, =0 when the player is at the maximum height y, . , the amount
of time it takes to reach y_, can be solved by using Eq. 4-23:
_ v, 8in 6,

O=v, =vsinf,-gt = ¢, = .

Substituting the above expression into Eq. 4-22, we find the maximum height to be
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2
. . 2 . 2
v, sin 6, j 1 (vo sin 6, ] _ Vo sin” 6,

. 1 .
ymax :(VO Sm@o) tmax __gttiax =Vo SlnHO[ __g
2 g g 2g

2

To find the time when the playeris at y=y__ /2, we solve the quadratic equation given
in Eq. 4-22:
1 _ vy sin® 6,

y:_ymax -

+ .
2 = (V() sin 90) t—lgtz = ti — (2—\/5)‘)0 Sin 90 .

4g 2 2g

With ¢t =¢ (for ascending), the amount of time the player spends at a height y>y /2
is
Nieg g _nSinG Q-V2vsing _vsing ., _ AL _ 1 _ oo

g 2g V2g 2 b V2

Therefore, the player spends about 70.7% of the time in the upper half of the jump. Note
that the ratio At/t_, is independent of v, and 6, even though Az and ¢, depend on

these quantities.

X

47. We adopt the positive direction choices used in the textbook so that equations such as
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below
impact point between bat and ball. In the absence of a fence, with 6, =45° the

horizontal range (same launch level) is R =107 m. We want to know how high the ball
is from the ground when it is at x’=97.5 m, which requires knowing the initial velocity.
The trajectory of the baseball can be described by Eq. (4-25):

gx’

—y =(tanf )x——="
y=y=( ) 2(v,cos6,)’

The setup of the problem is shown in the figure below (not to scale).

y(m)

A

(R, ¥p)

fence > x(m)

(a) We first solve for the initial speed vy. Using the range information ( y =y, when
x=R)and 6 =45°, Eq. (4-25) gives



L [eR (9.8m/s2)(107m)_324m/s
* " ysin26, sin(2-45°)

Thus, the time at which the ball flies over the fence is:

X 97.5m
v, cos @, (32.4m/s) cos 45°

xX'=(,cos0)t' = t'= =4.26s.

At this moment, the ball is at a height (above the ground) of

Y=y, + (Vo sin Ho)t' —%gt’2

=1.22 m+[(32.4m/s)sin45°](4.26 s)—%(9.8 m/s’)(4.26's)’
=9.88m

which implies it does indeed clear the 7.32-m-high fence.

(b) At t'=4.265s, the center of the ball is 9.88 m — 7.32 m = 2.56 m above the fence.
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48. Following the hint, we have the time-reversed problem with the ball thrown from the
roof, toward the left, at 60° measured clockwise from a leftward axis. We see in this
time-reversed situation that it is convenient to take +x as leftward with positive angles

measured clockwise. Lengths are in meters and time is in seconds.

(a) With yo = 20.0 m, and y = 0 at 7 = 4.00 s, we have y—y, =v, t—+gt® where

Vo, =V, sin60°. This leads to vo = 16.9 m/s. This plugs into the x-equation x—x, =v,

(with xo = 0 and x = d) to produce

d=(16.9 m/s)cos 60°(4.00 s) = 33.7 m.
(b) We have

v, =v,, =(16.9m/s)cos60.0°=8.43 m/s
v, =v,, — gt =(16.9 m/s)sin 60.0°— (9.80m/s”)(4.00 s) = —24.6 m/s.

The magnitude of vis |V |= \/vf+vj =\/(8.43 m/s)’ +(-24.6m/s)’ =26.0 m/s.

(c) The angle relative to horizontal is

6 =tan' 43 =tan' —24.6m/s =-71.1°.
% 8.43m/s
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We may convert the result from rectangular components to magnitude-angle
representation:
v =(8.43,-24.6) — (26.0 £ -71.1°)

and we now interpret our result (“undoing” the time reversal) as an initial velocity of
magnitude 26.0 m/s with angle (up from rightward) of 71.1°.

49. In this problem a football is given an initial speed and it undergoes projectile motion.
We’d like to know the smallest and greatest angles at which a field goal can be scored.

We adopt the positive direction choices used in the textbook so that equations such as Eq.
4-22 are directly applicable. The coordinate origin is at the point where the ball is kicked.
We use x and y to denote the coordinates of ball at the goalpost, and try to find the
kicking angle(s) &) so that y = 3.44 m when x = 50 m. Writing the kinematic equations for
projectile motion:

x=v,c086,, y=vtsin 6, — Lgt’,

we see the first equation gives ¢ = x/vy cos €, and when this is substituted into the second

the result is

2
ax
y=xtanf, - —=———.
* 212 cos’ 6,

One may solve the above equation by trial and error: systematically trying values of &
until you find the two that satisfy the equation. A little manipulation, however, will give
an algebraic solution: Using the trigonometric identity 1 / cos® 6y =1 + tan” &, we obtain

1 gx’ 1 gx’
—%tan2 (90—xtan00+y+—g)§ =0
Vo 2 v

which is a second-order equation for tan &). To simplify writing the solution, we denote
c=1gx’/v; = 1(9.80 m/s’)(50 m)’ /(25 m/s)” =19.6m.

Then the second-order equation becomes ¢ tan® 6y — x tan € + y + ¢ = 0. Using the
quadratic formula, we obtain its solution(s).

xE\x'=4(y+c)e 50 mE (50 m) —4(3.44 m+19.6 m)(19.6 m)

tan 6, =
% 2¢ 2(19.6 m)

The two solutions are given by tané, = 1.95 and tané, = 0.605. The corresponding (first-
quadrant) angles are &) = 63° and & = 31°. Thus,
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(a) The smallest elevation angle is &) = 31°, and
(b) the greatest elevation angle is &) = 63°.
50. We apply Eq. 4-21, Eq. 4-22, and Eq. 4-23.

(a) From Ax=v, t, we find v, =40 m/2s =20 m/s.
(b) From Ay =v, t—%gt*, we find v,, =(53 m+1(9.8 m/s*)(25)’)/2 =36 m/s.

(c) From v =v, —gt’ with v, = 0 as the condition for maximum height, we obtain

t'=(36 m/s) /(9.8 m/s’)=3.7s. During that time the x-motion is constant, so
x'—x,=(20m/s)(3.7s) =74 m.

51. (a) The skier jumps up at an angle of §, =9.0° up from the horizontal and thus

returns to the launch level with his velocity vector 9.0° below the horizontal. With the
snow surface making an angle of  =11.3° (downward) with the horizontal, the angle
between the slope and the velocity vectoris ¢ =a -6, =11.3°-9.0°=2.3°.

(b) Suppose the skier lands at a distance d down the slope. Using Eq. 4-25 with
x=dcosa and y=-dsina (the edge of the track being the origin), we have

2
g, - g(dcosa)

—dsina =d cosa tan > —.
2v; cos” 6,

Solving for d, we obtain

_ 2v; cos’ 6, ( 2v; cos 6, (

d —(cosa tan 6, +sina) = —(cosa sin G, +cos b, sina )
gcos’ a gcos’a
2v; cos), .
=—L—Lsin(f, +a).
gcos’ a

Substituting the values given, we find

g 2(10 m/s)’ cos(9.0°)
(9.8 m/s*)cos?(11.3°)

sin(9.0°+11.3°)=7.27 m.

which gives
y=-dsina =—(7.27 m)sin(11.3°) =-1.42 m.

Therefore, at landing the skier is approximately 1.4 m below the launch level.
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(c) The time it takes for the skier to land is

A dcosa  (7.27 m)cos(11.3°)

= =0.72s.
v. v,cos6, (10m/s)cos(9.0°)

Using Eq. 4-23, the x-and y-components of the velocity at landing are

v. =v,c0s86, =(10m/s)c0s(9.0°)=9.9m/s
v, =v,sin6, — gt =(10m/s)sin(9.0°)—(9.8 m/s*)(0.72s)=-5.5m/s

Thus, the direction of travel at landing is

6=tan"' 3 =tan' Lrn/s =-29.1°.
\% 9.9m/s

X

or 29.1° below the horizontal. The result implies that the angle between the skier’s path
and the slope is ¢ =29.1°—11.3°=17.8°, or approximately 18° to two significant figures.

52. From Eq. 4-21, we find ¢ = x/v,,. Then Eq. 4-23 leads to

_ _ gx
v, =V, — 8=V, ——.

Ox

Since the slope of the graph is —0.500, we conclude

& 196 ms.
v, 2

And from the “y intercept” of the graph, we find v,, = 5.00 m/s. Consequently,
G = tan " (voy /voy) = 14.3° = 14°.

53. Let yo= ho= 1.00 m at xo = 0 when the ball is hit. Let y; = & (the height of the wall)
and x; describe the point where it first rises above the wall one second after being hit;
similarly, y, = & and x, describe the point where it passes back down behind the wall four
seconds later. And y,= 1.00 m at x,= R is where it is caught. Lengths are in meters and
time 1s in seconds.

(a) Keeping in mind that v, is constant, we have x, — x; = 50.0 m = v, (4.00 s), which
leads to vi, = 12.5 m/s. Thus, applied to the full six seconds of motion:

Xr—xo=R=v(6.00s)=75.0 m.
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(b) We apply y —y, =v, t —3 gt* to the motion above the wall,
1 2
yv,=y=0= Vi, (4.00 s) - 5g(4.00 s)

and obtain v;, = 19.6 m/s. One second earlier, using vy, = vo, — g(1.00 s), we find
vy, =29.4 m/s . Therefore, the velocity of the ball just after being hit is

=, d+v,,]=(12.5m/s) i+ (29.4 m/s) ]

Its magnitude is | V |= \/(12.5 m/s)*+(29.4m/s)* =31.9 m/s.

6=tan' 43 =tan"' m =67.0°.
% 12.5m/s

X

(c) The angle is

We interpret this result as a velocity of magnitude 31.9 m/s, with angle (up from
rightward) of 67.0°.

(d) During the first 1.00 s of motion, y =y, + v,/ -7 gt’ yields

h=1.0 m+(29.4m/s)(1.00s) - 1(9.8 m/s*)(1.00s)" =25.5m.

54. For Ay = 0, Eq. 4-22 leads to ¢t = 2v,siné,/g, which immediately implies fmax = 2vo/g
(which occurs for the “straight up” case: 6, = 90°). Thus,

1 1 )
5 bmax = volg = 5= sind,.

Therefore, the half-maximum-time flight is at angle 6, = 30.0°. Since the least speed
occurs at the top of the trajectory, which is where the velocity is simply the x-component
of the initial velocity (vocosé, = v,c0s830° for the half-maximum-time flight), then we
need to refer to the graph in order to find v, — in order that we may complete the solution.
In the graph, we note that the range is 240 m when 6, = 45.0°. Equation 4-26 then leads
to v, = 48.5 m/s. The answer is thus (48.5 m/s)c0s30.0° = 42.0 m/s.

55. We denote 4 as the height of a step and w as the width. To hit step n, the ball must fall
a distance nh and travel horizontally a distance between (n — 1)w and nw. We take the
origin of a coordinate system to be at the point where the ball leaves the top of the
stairway, and we choose the y axis to be positive in the upward direction, as shown in the
figure.
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>» X

The coordinates of the ball at time ¢ are given by x = vo,¢ and y = — 1 gt’ (since vo, = 0).

We equate y to —nh and solve for the time to reach the level of step n:

2nh
T ey
g
The x coordinate then is
w=vo |2~ (152 mys) /M —(0.309 m) V7.
g 9.8 m/s

The method is to try values of # until we find one for which x/w is less than » but greater
than n — 1. For n =1, x = 0.309 m and x/w = 1.52, which is greater than n. Forn =2, x =
0.437 m and x/w = 2.15, which is also greater than n. For n = 3, x = 0.535 m and x/w =
2.64. Now, this is less than n and greater than n — 1, so the ball hits the third step.

Note: To check the consistency of our calculation, we can substitute » = 3 into the above
equations. The results are ¢ = 0.353 s, y = 0.609 m, and x = 0.535 m. This indeed
corresponds to the third step.

56. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find acceleration a.

(a) Since the radius of Earth is 6.37 x 10° m, the radius of the satellite orbit is

r=(6.37x10° + 640 x 10> ym = 7.01 x 10° m.

Therefore, the speed of the satellite is

27(7.01 x 10°
p=2" ﬂ(- - m? —749 x10° m/s.
T (98.0min)(60s/min)

(b) The magnitude of the acceleration is
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2
2 (749 x10°m/s
v . ) —s00m/s,
7 701 x10° m

57. The magnitude of centripetal acceleration (¢ = v*/r) and its direction (toward the
center of the circle) form the basis of this problem.

(a) If a passenger at this location experiences d@ =183 m/s” east, then the center of the
circle is east of this location. The distance is 7 = v¥/a = (3.66 m/s)*/(1.83 m/s*) = 7.32 m.

(b) Thus, relative to the center, the passenger at that moment is located 7.32 m toward the
west.

(c) If the direction of a experienced by the passenger is now south—indicating that the

center of the merry-go-round is south of him, then relative to the center, the passenger at
that moment is located 7.32 m toward the north.

58. (a) The circumference is ¢ =27 = 22(0.15 m) = 0.94 m.

(b) With 7= (60 s)/1200 = 0.050 s, the speed is v = ¢/T = (0.94 m)/(0.050 s) = 19 m/s.
This is equivalent to using Eq. 4-35.

(¢) The magnitude of the acceleration is a = v*/r = (19 m/s)*/(0.15 m) = 2.4 x 10° m/s*.

(d) The period of revolution is (1200 rev/min) ' = 8.3 x 10" min, which becomes, in SI
units, 7= 0.050 s = 50 ms.

59. (a) Since the wheel completes 5 turns each minute, its period is one-fifth of a minute,
or 12s.

(b) The magnitude of the centripetal acceleration is given by a = v¥/R, where R is the
radius of the wheel, and v is the speed of the passenger. Since the passenger goes a
distance 2 7zR for each revolution, his speed is

2

% :—7[(15 m) =785m/s
12s
(7.85 m/s)2

and his centripetal acceleration is a = =41m/s’.

5m

(c) When the passenger is at the highest point, his centripetal acceleration is downward,
toward the center of the orbit.

(d) At the lowest point, the centripetal acceleration isa =4.1 m/s*, same as part (b).
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(e) The direction is up, toward the center of the orbit.

60. (a) During constant-speed circular motion, the velocity vector is perpendicular to the
acceleration vector at every instant. Thus, v d =0.

(b) The acceleration in this vector, at every instant, points toward the center of the circle,
whereas the position vector points from the center of the circle to the object in motion.

Thus, the angle between ¥ and 4 is 180° at every instant, so ¥ xd=0.
61. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find centripetal acceleration a.
(@) v=2m/T =220 km)/1.0 s = 126 km/s = 1.3 x 10° m/s.

(b) The magnitude of the acceleration is

2 (126km/s)
a:v_:—( m/s) =79x10’ m/s*,
r 20 km

(c) Clearly, both v and a will increase if 7 is reduced.

62. The magnitude of the acceleration is

2 (10m/s)’
a=v—=—( o S) =40m/s’.
r 25m

63. We first note that 31 (the acceleration at ¢, = 2.00 s) is perpendicular to ;2 (the
acceleration at £,=5.00 s), by taking their scalar (dot) product:

G, -d, =[(6.00 m/s*)i+(4.00 m/s?)j]-[(4.00 m/s*)i+(—6.00 m/s>)j]=0.

Since the acceleration vectors are in the (negative) radial directions, then the two
positions (at #, and #,) are a quarter-circle apart (or three-quarters of a circle, depending
on whether one measures clockwise or counterclockwise). A quick sketch leads to the
conclusion that if the particle is moving counterclockwise (as the problem states) then it
travels three-quarters of a circumference in moving from the position at time ¢, to the
position at time #, . Letting 7 stand for the period, then #, — #, =3.00 s = 37/4. This gives
T=4.00s. The magnitude of the acceleration is

a=\a}+a’ =/(6.00m/s*)* +(4.00 m/s)’ =7.21 m/s’.

Using Eqs. 4-34 and 4-35, we have a = 472°r/T?, which yields
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=2.92 m.

=

aT? (7.21 m/s*)(4.00 s)’
4r’ 4’

64. When traveling in circular motion with constant speed, the instantaneous acceleration
vector necessarily points toward the center. Thus, the center is “straight up” from the

cited point.

(a) Since the center is “straight up” from (4.00 m, 4.00 m), the x coordinate of the center
is 4.00 m.

(b) To find out “how far up” we need to know the radius. Using Eq. 4-34 we find

v (5.00m/s)’
a 125 m/s?

=2.00 m.

Thus, the y coordinate of the center is 2.00 m + 4.00 m = 6.00 m. Thus, the center may
be written as (x, y) = (4.00 m, 6.00 m).

65. Since the period of a uniform circular motion is 7 = 2zr /v, where r is the radius and
v is the speed, the centripetal acceleration can be written as

T

Vo1 (2zrY  Anir
==
Based on this expression, we compare the (magnitudes) of the wallet and purse

accelerations, and find their ratio is the ratio of » values. Therefore, awaiiet = 1.50 @purse -
Thus, the wallet acceleration vector is

a=1.50[(2.00 m/s*)i +(4.00 m/s*)j]=(3.00 m/s*)i +(6.00 m/s>)].

66. The fact that the velocity is in the +y direction and the acceleration is in the +x
direction at #; = 4.00 s implies that the motion is clockwise. The position corresponds to
the “9:00 position.” On the other hand, the position at £, = 10.0 s is in the “6:00 position”
since the velocity points in the —x direction and the acceleration is in the +y direction.
The time interval Az =10.0s—-4.00s=6.00 s is equal to 3/4 of a period:

6.00S=%T = T =8.00s.

Equation 4-35 then yields

- _ vl _(3.00m/s)(8.005)
27 27

=3.82 m.



142 CHAPTER 4

(a) The x coordinate of the center of the circular pathis x=5.00 m+3.82 m=8.82 m.
(b) The y coordinate of the center of the circular pathis y =6.00 m.

In other words, the center of the circle is at (x,y) = (8.82 m, 6.00 m).

67. The stone moves in a circular path (top view shown below left) initially, but
undergoes projectile motion after the string breaks (side view shown below right).

after

released y
e "
\ 0.0) == £
~
\ ~N
| N
\ I AN
/
\ N / (}_
. ~ “ 24
(top view) = = (side view)

Since a =v* /R, to calculate the centripetal acceleration of the stone, we need to know its
speed during its circular motion (this is also its initial speed when it flies off). We use the
kinematic equations of projectile motion (discussed in §4-6) to find that speed. Taking
the +y direction to be upward and placing the origin at the point where the stone leaves its
circular orbit, then the coordinates of the stone during its motion as a projectile are given
by x = vt and y = —1 gt (since vg, = 0). It hits the ground at x = 10 m and y = -2.0 m.

Formally solving the y-component equation for the time, we obtain ¢ = /-2y /g, which
we substitute into the first equation:

2
vy=x -5 = (10m) |- BMS _ys7mys
2y 2(~2.0 m)

Therefore, the magnitude of the centripetal acceleration is

2 (15.7m/s)’
a:v—oz—( ms) =16OI‘1'1/S2
R 1.5m

2

gx

Note: The above equations can be combined to give a = . The equation implies

that the greater the centripetal acceleration, the greater the initial speed of the projectile,
and the greater the distance traveled by the stone. This is precisely what we expect.
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68. We note that after three seconds have elapsed (#, — #; = 3.00 s) the velocity (for this
object in circular motion of period 7") is reversed; we infer that it takes three seconds to
reach the opposite side of the circle. Thus, 77=2(3.00 s) = 6.00 s.

(a) Using Eq. 4-35, » = vT/2n, where v= \/(3.00 m/s)’ +(4.00 m/s)> =5.00 m/s, we obtain

r=4.77 m. The magnitude of the object’s centripetal acceleration is therefore a = v*/r =
5.24 m/s”.

(b) The average acceleration is given by Eq. 4-15:

. _¥,-V,_ (=3.00i-4.00j) m/s—(3.00i +4.00j) m/s

= (=2.00 m/s2)i+(=2.67 m/s?)]
Y- 5.00s-2.00s ( i )

which implies |4,,, [= \/(—2.00 m/s’)’ +(-2.67m/s*)* =3.33 m/s’.

69. We use Eq. 4-15 first using velocities relative to the truck (subscript t) and then using
velocities relative to the ground (subscript g). We work with SI units, so
20km/h—>5.6m/s, 30km/h —-83m/s, and 45km/h—12.5 m/s. We choose

east as the + 1 direction.

(a) The velocity of the cheetah (subscript ¢) at the end of the 2.0 s interval is (from Eq.
4-44)
¥, =V, ¥, =(12.5m/s) i—(-5.6 m/s) i=(18.1 m/s) i
relative to the truck. Since the velocity of the cheetah relative to the truck at the
beginning of the 2.0 s interval is (—8.3 m/s)i , the (average) acceleration vector relative to
the cameraman (in the truck) is
. _(asl m/s)i—(-8.3 m/s)i

, =13 m/s?)i,
ave 20s ( )

or |d,,|=13 m/s’.

avg
(b) The direction of a,,, is +1, or eastward.

(c) The velocity of the cheetah at the start of the 2.0 s interval is (from Eq. 4-44)
Vg = Vo + Vo = (-8.3 m/8)1 + (= 5.6 m/s)i = (~13.9 m/s)i

relative to the ground. The (average) acceleration vector relative to the crew member (on
the ground) is
a’avg — (125 m/S)IZ_O(_139 l’Il/S)l — (13 m/SZ)I’ |67an | — 13 m/SZ
0Os
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identical to the result of part (a).

(d) The direction of a,,, 1s +1, or eastward.

70. We use Eq. 4-44, noting that the upstream corresponds to the +1 direction.

(a) The subscript b is for the boat, w is for the water, and g is for the ground.
Tog = Vyy +7,, = (14 km/h) i+ (=9 knv/h) i = (5 kmv/h) i,

Thus, the magnitude is |v,, [=5 km/h.

(b) The direction of v, is +x, or upstream.

(c) We use the subscript ¢ for the child, and obtain

V., =V, +¥,, = (6 km/h) i+(5km/h)i=(-1km/h)i.

cg

The magnitude is v, [=1 km/h.

(d) The direction of v, is —x, or downstream.

71. While moving in the same direction as the sidewalk’s motion (covering a distance d
relative to the ground in time #, = 2.50 s), Eq. 4-44 leads to
d

Vsidewalk T Vman running — 4

While he runs back (taking time = 10.0 s) we have

d
b

Vsidewalk — Vman running — —

g : : . . 125 _ 5 _
Dividing these equations and solving for the desired ratio, we get —% = 3 = 1.67.

72. We denote the velocity of the player with v,. and

the relative velocity between the player and the ball be Vsp
Vy». Then the velocity vy, of the ball relative to the Vpp Omin
field is given by v, =V,. +V,,. The smallest angle o goal

Omin corresponds to the case when v, L v,.. Hence, Vg
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0. =180°—cos™ @ =180°—cos ™' (4'0 m/sj =130°.
Vp | 6.0 m/s

73. We denote the police and the motorist with subscripts p and m, respectively. The
coordinate system is indicated in Fig. 4-46.

(a) The velocity of the motorist with respect to the police car is

¥, =v,-V, =(-60 km/h)j—(~80 km/h)i = (80 km/h)i—(60 km/h)].

mp

(b) v,,, does happen to be along the line of sight. Referring to Fig. 4-46, we find the

vector pointing from one car to another is 7 = (800 m)i —(600 m)} (from M to P). Since
the ratio of components in 7 is the same as in v, ,, they must point the same direction.

(c) No, they remain unchanged.

74. Velocities are taken to be constant; thus, the velocity of the plane relative to the
ground is ¥, = (55 km)/(1/4 hour) j= (220 km/h)j. In addition,

V,; = (42 km/h)(c0s20°1 —sin20°j) = (39 km/h)i—(14 km/h);.
Using V,; =V,, +V,;, we have
V) = Vg —V,0 = —(39 km/h)i+(234 km/h);.
which implies |v,, =237 km/h, or 240 km/h (to two significant figures.)

75. Since the raindrops fall vertically relative to the train, the horizontal component of the
velocity of a raindrop, v; = 30 m/s, must be the same as the speed of the train, that is,
V, =V,.., (see the figure below).

_~ N
On the other hand, if v, is the vertical 0 > v
component of the velocity and & is the 12Y, N
angle between the direction of motion S
and the vertical, then tan & = v,/v,. ~
. Vi ~
Knowing v, and v, allows us to N » south
determine the speed of the raindrops. > Virain
train

With 8 =70°, we find the vertical component of the velocity to be

vy, = wp/tan 8= (30 m/s)/tan 70° = 10.9 m/s.
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Therefore, the speed of a raindrop is

v=yv2+v =30 m/s)’* +(109 m/s)’ =32 m/s.

Note: As long as the horizontal component of the velocity of the raindrops coincides with
the speed of the train, the passenger on board will see the rain falling perfectly vertically.

—> A
76. The destination is D = 800 km j where we orient axes so that +y points north and +x
points east. This takes two hours, so the (constant) velocity of the plane (relative to the

ground) is v, = (400 km/h) j . This must be the vector sum of the plane’s velocity with

respect to the air which has (x,y) components (500cos70°, 500sin70°), and the velocity of
the air (wind) relative to the ground v,,. Thus,

(400 kmv/h) | = (500 km/h) cos70° i + (500 knvh) sin70° j + ¥,

which yields
V,, =(=171 km/h)i —( 70.0 km/h)j .

(a) The magnitude of v,, is [V,, |= \/(—171 km/h)* +(=70.0 km/h)* =185 km/h.
(b) The direction of v,, is

e_tanl(—m.o km/h

=22.3° (south of west).
—171 km/h

77. This problem deals with relative motion in two dimensions. Snowflakes falling
vertically downward are seen to fall at an angle by a moving observer. Relative to the car
the velocity of the snowflakes has a vertical component of v, =8.0 m/s and a horizontal

component of v, =50 km/h =13.9m/s. The angle € from the vertical is found from

v, 13.9m/s

tanf=—"—=——=1.74
v, 80m/s
which yields 8= 60°.
Note: The problem can also be solved f
by expressing the velocity relation in ;rel
vector notation: V=V, +V, .. , a8 _
shown in the figure. Vsnow
Vcar
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78. We make use of Eq. 4-44 and Eq. 4-45.

The velocity of Jeep P relative to 4 at the instant is

¥, = (40.0 m/s)(cos 60°1 +sin 60°]) = (20.0 m/s)i + (34.6 m/s)].
Similarly, the velocity of Jeep B relative to 4 at the instant is

¥, = (20.0 m/s)(cos 301 +sin 30°]) = (17.3 m/s)i + (10.0 m/s)].
Thus, the velocity of P relative to B is

Vg =V, — Vg, = (20.01+34.6)) m/s— (17.31+10.0j) m/s = (2.68 m/s)i + (24.6 m/s);.

(a) The magnitude of v, is |V, |= \/(2.68 m/s)’ +(24.6 m/s)’ =24.8 m/s.

(b) The direction of v,, is € = tan"'[(24.6 m/s)/(2.68 m/s)] = 83.8° north of east (or 6.2°
east of north).

(c) The acceleration of P is
d,, = (0.400 m/s?)(cos 60.0°1 +sin 60.0°j) = (0.200 m/s>)i +(0.346 m/s?)],
and G,, =d,, . Thus, we have | d,, |=0.400 m/s’.

(d) The direction is 60.0° north of east (or 30.0° east of north).

79. Given that 8, =45°, and 6, =40°, as defined in the figure, the velocity vectors
(relative to the shore) for ships 4 and B are given by

y (north)

¥, =— (v,c0845% i+ (v, sin45°) .
A R V4 6,
Vy =— (v;8in40°) i—(v, cos 40°) j,
> x (east)

with v, = 24 knots and vz = 28 knots. We take /?B
eastas + i and north as 3 v

B

The velocity of ship 4 relative to ship B is simply givenby v, , =V, —v,.
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(a) The relative velocity is

V, 3=V, —Vy= (v,51n40°—v, cos45°)§+(vB cos40°+v, sin45°)3'

= (1.03 knots)i + (38.4 knots)

the magnitude of which is |V, ,|= \/(1.03 knots)® +(38.4 knots)* ~38.4 knots , or 38
knots in 2 significant figures.

(b) The angle 6,, that v, , makes with north is given by

0,, =tan™' Tanx | tan™! (Mj =1.5°
Vs 38.4 knots
which is to say that v, , points 1.5° east of north.

(c) Since the two ships started at the same time, their relative velocity describes at what
rate the distance between them is increasing. Because the rate is steady, we have

. | Ar,; | 160 nautical miles
Vs | 38.4 knots

=42 h.

(d) The velocity v, , does not change with time in this problem, and 7, ; is in the same

direction as v, , since they started at the same time. Reversing the points of view, we

have v, , =—V,, so that 7, , = -7, , (i.e., they are 180° opposite to each other). Hence,
AB BA AB B4 y pp

we conclude that B stays at a bearing of 1.5° west of south relative to 4 during the
journey (neglecting the curvature of Earth).

Note: The relative velocity is depicted in the figure below. When analyzing relative
motion in two dimensions, a vector diagram such as the one shown can be very helpful.

Y (north)
_ A —
VAB VA
\
AN
- O3 \4 —
Y4 /S "V
/
0’4 /
> x (east)
6
C
v
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80. This is a classic problem involving two-dimensional relative motion. We align our
coordinates so that east corresponds to +x and north corresponds to +y. We write the
vector addition equation as Vg, = V., +V,;. We have v, =(2.0£0°) in the magnitude-

angle notation (with the unit m/s understood), or v, = 2.0 in unit-vector notation. We
also have v,, =(8.0£120°) where we have been careful to phrase the angle in the

‘standard’ way (measured counterclockwise from the +x axis), or v,, = (—4.0i+6.93) m/s.
(a) We can solve the vector addition equation for v, :

Vo = Ve + Ve = (2.0m/s)i+(~4.0i+6.9)) m/s = (2.0 m/s)i+ (6.9 m/s)].
Thus, we find |V, |=7.2 m/s.

(b) The direction of ¥,, is @=tan '[(6.9m/s)/(-2.0m/s)]=106° (measured
counterclockwise from the +x axis), or 16° west of north.

(c) The velocity is constant, and we apply y — yo = vt in a reference frame. Thus, in the
ground reference frame, we have (200 m) = (7.2 m/s)sin(106°)t - t =29 s. Note: If a

student obtains “28 s,” then the student has probably neglected to take the y component
properly (a common mistake).

81. Here, the subscript W refers to the water. Our coordinates are chosen with +x being
east and +y being north. In these terms, the angle specifying east would be 0° and the
angle specifying south would be —90° or 270°. Where the length unit is not displayed, km
is to be understood.

(a) Wehave v, , =V, , +V,,, so that

V,p =22 £ -90°)—(40 £ 37°)=(56 £ —125°)

in the magnitude-angle notation (conveniently done with a vector-capable calculator in
polar mode). Converting to rectangular components, we obtain

¥, =(=32km/h) i— (46 km/h) ] .
Of course, this could have been done in unit-vector notation from the outset.

(b) Since the velocity-components are constant, integrating them to obtain the position is
straightforward (¥ —7, = [ v dp)
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F=(2.5-32)1 +(4.0-46¢)]

with lengths in kilometers and time in hours.

(c) The magnitude of this 7 is r=+/(2.5—32)> +(4.0—46¢)> . We minimize this by
taking a derivative and requiring it to equal zero — which leaves us with an equation for ¢

dr 1 6286t — 528 0
dt 2 \)(25-321)* + (4.0—461)°

which yields # = 0.084 h.

(d) Plugging this value of ¢ back into the expression for the distance between the ships (7),
we obtain 7 = 0.2 km. Of course, the calculator offers more digits (» = 0.225...), but they
are not significant; in fact, the uncertainties implicit in the given data, here, should make
the ship captains worry.

82. We construct a right triangle starting from the clearing on the
south bank, drawing a line (200 m long) due north (upward in our north
sketch) across the river, and then a line due west (upstream, leftward
in our sketch) along the north bank for a distance (82 m)+ (1.1 m/s)t,

where the #-dependent contribution is the distance that the river will
carry the boat downstream during time ¢.

The hypotenuse of this right triangle (the arrow in our sketch) also 6
depends on ¢ and on the boat’s speed (relative to the water), and we
set it equal to the Pythagorean “sum” of the triangle’s sides: south

(40)¢ = 2007 + (82 + L1¢)’
which leads to a quadratic equation for ¢
46724 + 1804t —14.8t* = 0.

(b) We solve for ¢ first and find a positive value: 1 = 62.6 s.

(a) The angle between the northward (200 m) leg of the triangle and the hypotenuse
(which is measured “west of north”) is then given by

0= tan" 82 + 1l = tan™' (ﬂ) =37°
200 200 '
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83. We establish coordinates with i pointing to the far side of the river (perpendicular to
the current) and 3 pointing in the direction of the current. We are told that the magnitude
(presumed constant) of the velocity of the boat relative to the water is | v, | = 6.4 km/h.
Its angle, relative to the x axis is €. With km and h as the understood units, the velocity
of the water (relative to the ground) is v, = (3.2 km/h)j.

(a) To reach a point “directly opposite” means that the velocity of her boat relative to
ground must be v, = v, 1 where vy > 0 is unknown. Thus, all j components must cancel

in the vector sum v, + v, = v, , which means the y;, ~sin 6= (-3.2 km/h) j, s0

0=sin"' [(=3.2 km/h)/(6.4 km/h)] = —30°.

(b) Using the result from part (a), we find vy, = v3,, cos@ = 5.5 km/h. Thus, traveling a
distance of ¢/ = 6.4 km requires a time of (6.4 km)/(5.5 km/h) = 1.15 h or 69 min.

(c) If her motion is completely along the y axis (as the problem implies) then with v,,, =
3.2 km/h (the water speed) we have

__ b D 33y

wa + ng wa - vwg

ttotal

where D = 3.2 km. This is equivalent to 80 min.

(d) Since
D D D D
+ = +
wa +vwg wa -V Vb -V wa + vwg

w wg

wg

the answer is the same as in the previous part, that is, ¢, = 80 min.

total

(e) The shortest-time path should have 8 =0°. This can also be shown by noting that the
case of general fleads to

Vig = Vpy Vg = v,,c080 1 + (v, sin @ + ng) ]
where the x component of v,, must equal //z. Thus,

/

t = —_ -
v,,cosd

which can be minimized using dt/d9= 0.
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(f) The above expression leads to = (6.4 km)/(6.4 km/h) = 1.0 h, or 60 min.

84. Relative to the sled, the launch velocity is V., = vox1 + Vo, j . Since the sled’s

motion is in the negative direction with speed vs (note that we are treating v as a positive
number, so the sled’s velocity is actually —vs1 ), then the launch velocity relative to the
ground is V, = (Vox— vs) 1 + Vo, j . The horizontal and vertical displacement (relative to

the ground) are therefore
Xland — Xlaunch = A-xbg = (Vox_ Vs) tﬂight
1 2
Yiand — Viaunch = 0 = Vo Iaight + 5 (=) (Znight)” -

Combining these equations leads to
2v,.v 2v,
Ang: 0x "0y _[ Oijs.

g 4

(13

The first term corresponds to the *“y intercept” on the graph, and the second term (in
parentheses) corresponds to the magnitude of the “slope.” From the figure, we have

Ax,, =40—4v,.

This implies vy, = (4.0 5)(9.8 m/ s%)/2 = 19.6 m/s, and that furnishes enough information to
determine vy,.

(a) vor = 40g/2v,, = (40 m)(9.8 m/s%)/(39.2 m/s) = 10 m/s.
(b) As noted above, voy = 19.6 m/s.

(c) Relative to the sled, the displacement Axps does not depend on the sled’s speed, so
Axbs = v()x tﬂ]ght = 40 m.

(d) As in (c), relative to the sled, the displacement Axys does not depend on the sled’s
speed, and Axps = Vo fiight = 40 m.

85. Using displacement = velocity x time (for each constant-velocity part of the trip),

along with the fact that 1 hour = 60 minutes, we have the following vector addition
exercise (using notation appropriate to many vector-capable calculators):

(1667 m £ 0° + (1333 m £ —90°) + (333 m £ 180°) + (833 m £ —90°) + (667 m £ 180°)
+ (417 m £ —90°) = (2668 m £ —76°).

(a) Thus, the magnitude of the net displacement is 2.7 km.
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(b) Its direction is 76° clockwise (relative to the initial direction of motion).
86. We use a coordinate system with +x eastward and +y upward.
(a) We note that 123° is the angle between the initial position and later position vectors,

so that the angle from +x to the later position vector is 40° + 123° = 163°. In unit-vector
notation, the position vectors are

7 = (360 m)cos(40°) 1 + (360 m)sin(40°) j = (276 m)i+(231 m)
7, = (790 m) cos(163°)1 +(790 m) sin(163°) j = (=755 m)i+(231 m)]
respectively. Consequently, we plug into Eq. 4-3
AF =[(-755m) - (276 m)]i+(231 m — 231 m)j =—(1031 m) i.

The magnitude of the displacement A7 is |A7 |=1031 m.

(b) The direction of A7 is —i , or westward.

87. This problem deals with the projectile motion of a baseball. Given the information on
the position of the ball at two instants, we are asked to analyze its trajectory.

The trajectory of the baseball is shown in the figure below. According to the problem
statement, at ¢ =3.0s, the ball reaches it maximum height y ., and at

t,=t +2.5s=5.5s, it barely clears a fence at x, =97.5 m.

Y (m) (xl ’ ymax)
A

(XZ’ Yy fence)

fence |

97.5

Eq. 2-15 can be applied to the vertical (y axis) motion related to reaching the maximum
height (when #; = 3.0 s and v, = 0):

» X (m)

1,
Ymax — Yo = Wil — Egt .
(a) With ground level chosen so yy = 0, this equation gives the result

Ymax =%gtlz :%(98 m/Sz)(3O S)2 =44.1m
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(b) After the moment it reached maximum height, it is falling; at ¢, =7, +2.55s=5.55, it

will have fallen an amount given by Eq. 2-18: y, .=y, .. =0 —% g(t,—1)".
Thus, the height of the fence is
Vience = Vorax —%g(tz —1,)’ =44.1 m—%(9.8 m/s*)(2.55)° =13.48 m~13 m.

(c) Since the horizontal component of velocity in a projectile-motion problem is constant
(neglecting air friction), we find from 97.5 m = v((5.5 s) that vo, = 17.7 m/s. The total
flight time of the ball is 7' =2f, =2(3.05s) =6.0s . Thus, the range of the baseball 1s

R=v, T=(17.7m/s)(6.0s)=106.4 m

which means that the ball travels an additional distance

Ax=R-x,=106.4 m-97.5m=8.86 m~8.9 m

beyond the fence before striking the ground.

Note: Part (c) can also be solved by noting that after passing the fence, the ball will strike
the ground in 0.5 s (so that the total "fall-time" equals the "rise-time"). With vy, = 17.7
m/s, we have Ax = (17.7 m/s)(0.5 s) = 8.86 m.

88. When moving in the same direction as the jet stream (of speed vy), the time is

d

b
VitV

[ =

where d = 4000 km is the distance and vj, 1s the speed of the jet relative to the air (1000
km/h). When moving against the jet stream, the time is

70
where t,—t, = 0 h . Combining these equations and using the quadratic formula to solve

gives vy = 143 km/h.

89. We have a particle moving in a two-dimensional plane with a constant acceleration.
Since the x and y components of the acceleration are constants, we can use Table 2-1 for
the motion along both axes.
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Using vector notation with 7 = 0, the position and velocity of the particle as a function
. . — — 1 — — — — . .
of time are given by 7 (¢) =Vt + Eat2 and v(¢) =V, + at, respectively. Where units are

not shown, SI units are to be understood.

(@) Given the initial velocity V,=(8.0m/ s)j and the acceleration

d=(4.0m/s’)i+(2.0m/s>)], the position vector of the particle is

A

ar = (8.0}')t +%(4.oi + 2.oj)t2 = (2.0)i +(8.0c +1.01%)].

r =Vt +

N | —

Therefore, we find when x = 29 m, by solving 2.0# = 29, which leads to = 3.8 s. The y
coordinate at that time is

y=(8.0m/s)(3.8 s) + (1.0 m/s*)(3.8 5)* =45 m.

(b) The velocity of the particle is given by v =v, + at. Thus, at ¢ = 3.8 s, the velocity is
¥ =(8.0m/s) ]+ ((4.0 m/s?)i+ (2.0 nﬂsz)j‘)(s.s s)=(15.2m/s)i+(15.6 m/s) ]

which has a magnitude of

v=\? +v2 =152 m/s)> + (15.6 m/s)’ =22 m/s.

90. Using the same coordinate system assumed in Eq. 4-25, we rearrange that equation to
solve for the initial speed:

Vv, = al g
‘ cosd, (2 (xtan 6, — y)

which yields vy = 23 ft/s for g =32 ft/s*, x = 13 ft, y = 3 ft and &, = 55°.
91. We make use of Eq. 4-25.

(a) By rearranging Eq. 4-25, we obtain the initial speed:

X g
Vo =
cosf, \| 2(xtan@, — y)

which yields v = 255.5 = 2.6 x 10? m/s for x = 9400 m, y =-3300 m, and &, = 35°.

(b) From Eq. 4-21, we obtain the time of flight:
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. X 9400 m

= = = 45 S.
v,cos6, (255.5m/s)cos35°

(c) We expect the air to provide resistance but no appreciable lift to the rock, so we
would need a greater launching speed to reach the same target.

92. We apply Eq. 4-34 to solve for speed v and Eq. 4-35 to find the period 7.

(a) We obtain

v=ra = [(50m)(7.0)(98 m/s*) =19 m/s.

(b) The time to go around once (the period) is 7= 2m/v = 1.7 s. Therefore, in one minute
(t =60 s), the astronaut executes

t_60s 4
T 1.7s

revolutions. Thus, 35 rev/min is needed to produce a centripetal acceleration of 7g when
the radius is 5.0 m.

(c) As noted above, T=1.7 s.

93. This problem deals with the two-dimensional kinematics of a desert camel moving
from oasis A to oasis B.

The journey of the camel is illustrated in the  y (morth)
figure on the right. We use a ‘standard’ A
coordinate system with +x East and +y North.
Lengths are in kilometers and times are in
hours. Using vector notation, we write the
displacements for the first two segments of the
trip as:

A
AV, = (75 km)cos(37°) 1+ (75 km) sin(37°) ] ATy

/o—> X (east)
AT
AF, = (—65 km) ]

The net displacement is A7, = A7, + A7, . As can be seen from the figure, to reach oasis B

requires an additional displacement AF,.

(a) We perform the vector addition of individual displacements to find the net
displacement of the camel:

AP, = AF + AF, = (60 km)i—(20 km)] .
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Its corresponding magnitude is | A7, | = \/ (60 km)* +(—20 km)* =63 km.
(b) The direction of A7, is 6, =tan '[(=20 km)/(60 km)]=—18°, or 18° south of east.

(c) To calculate the average velocity for the first two segments of the journey (including
rest), we use the result from part (a) in Eq. 4-8 along with the fact that

At, =At, +At, + At =50h+35h+5.0h=90h.

rest

In unit vector notation, we obtain
_(60i-20j)km

Vidavg = son— (0:67i-022)) kmvh.

This leads to |v,, ., [=0.70 km/h.

(d) The direction of v, is given by 6, = tan '[(=0.22 km/h)/(0.67 km/h)]=-18°,
or 18°south of east.

(e) The average speed is distinguished from the magnitude of average velocity in that it
depends on the total distance as opposed to the net displacement. Since the camel travels

140 km, we obtain (140 km)/(90 h) = 1.56 km/h =1.6 km/h .

(f) The net displacement is required to be the 90 km East from A to B. The displacement
from the resting place to B is denoted A7,. Thus, we must have

AP+ AF, + AF = (90 km) i

which produces A7 =(30 km)i+(20 km)} in unit-vector notation, or (36 £33°) in
magnitude-angle notation. Therefore, using Eq. 4-8 we obtain

DL Sy
’ (120-90) h
(g) The direction of Vi, is the same as A7, (that is, 33° north of east).

Note: With a vector-capable calculator in polar mode, we could perform the vector
addition of the displacements as (75 £ 37°)+ (65 £ — 90°)=(63 £ — 18°).

94. We compute the coordinate pairs (x, y) from x = (vy cos@)t and y =v, sin 0t — 1 g’
for t =20 s and the speeds and angles given in the problem.
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(a) We obtain
(x,,v,)=(10.1km, 0.556 km) (x5, ) =(12.1km,1.51 km)
(xc, ye)=(14.3 km, 2.68 km) (x5, ¥5)=(16.4 km, 3.99 km)

and (xg, vg) = (18.5 km, 5.53 km) which we plot in the next part.

(b) The vertical (y) and horizontal (x) axes are in kilometers. The graph does not start at
the origin. The curve to “fit” the data is not shown, but is easily imagined (forming the
“curtain of death”).

A~ W

(98]
vl b b bv o by

—
o

[\

—_

12 14 16 18
95. (a) With Ax =8.0 m, = At}, a = a,, and v, = 0, Eq. 2-15 gives
8.0 m =3 a,(An),
and the corresponding expression for motion along the y axis leads to
Ay=12m=2a,(An).
Dividing the second expression by the first leads to a,/a, =3/2=1.5.

(b) Letting ¢ = 2At,, then Eq. 2-15 leads to Ax = (8.0 m)(2)> = 32 m, which implies that its
x coordinate is now (4.0 + 32) m = 36 m. Similarly, Ay = (12 m)(2)* = 48 m, which
means its y coordinate has become (6.0 + 48) m = 54 m.

96. We assume the ball’s initial velocity is perpendicular to the plane of the net. We
choose coordinates so that (xo, yo) = (0, 3.0) m, and v, > 0 (note that vy, = 0).

(a) To (barely) clear the net, we have
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Y=Yy =voyt—%gt2 — 224 m—3.0m=0—%(9.8 m/s? )

which gives ¢ = 0.39 s for the time it is passing over the net. This is plugged into the x-
equation to yield the (minimum) initial velocity v, = (8.0 m)/(0.39 s) = 20.3 m/s.

(b) We require y = 0 and find time ¢ from the equation y — y, =v, ¢ —1gr’. This value

(t = \/2(3.0 m)/(9.8 m/s’) =0.78 s) is plugged into the x-equation to yield the
(maximum) initial velocity
ve=(17.0 m)/(0.78 s) = 21.7 mJs.

97. The trajectory of the bullet is shown in the figure below (not to scale). Note that the
origin is chosen to be at the firing point. With this convention, the y coordinate of the

bullet is given by y=—1gr’. Knowing the coordinates (x, y) at the target allows us to
calculate the total flight time and speed of the bullet.

Y
.
(0,0) $—>———— 5 x
h 4(x,y)=(3om,-o.019m)

(a) If ¢ is the time of flight and y = — 0.019 m indicates where the bullet hits the target,

then
- -2(-0.019
(o P2r [E00Om) e
g 9.8 m/s

(b) The muzzle velocity is the initial (horizontal) velocity of the bullet. Since x = 30 m is
the horizontal position of the target, we have x = vot. Thus,

vy = 2= 0 48510 ms.
[ 63x107s

Alternatively, we may use Eq. (4-25) to solve for the initial velocity. With , =0 and
2

ax
2 b
)

b= |- & | O8m/SHBOmM” e e
‘ 2y 2(-0.019 m)

¥, =0, the equation simplifies to y = — leading to
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which is precisely what we calculated in part (b).

98. For circular motion, we must have v with direction perpendicular to r and (since

the speed is constant) magnitude v=27zr/T where r = \/ (2.00 m)* +(-3.00 m)* and

T=700s. The r (given in the problem statement) specifies a point in the fourth

quadrant, and since the motion is clockwise then the velocity must have both components
negative. Our result, satisfying these three conditions, (using unit-vector notation which
makes it easy to double-check that 7-¥ =0) for ¥ = (-2.69 m/s)i + (~1.80 m/s)].

99. Let v, = 21(0.200 m)/(0.00500 s) = 251 m/s (using Eq. 4-35) be the speed it had in
circular motion and &, = (1 hr)(360°/12 hr [for full rotation]) = 30.0°. Then Eq. 4-25 leads
to

(9.8 m/s’)(2.50 m)*
2(251 m/s)*(c0s30.0°)*

¥ =(2.50 m)tan30.0°—
which means its height above the floor is 1.44 m + 1.20 m = 2.64 m.
100. Noting that v, =0, then, using Eq. 4-15, the average acceleration is

A 0—(6.300-842])ms
a = —=
" A 3s

- (—2.1i + 2.8}) m/s?

101. Using Eq. 2-16, we obtain v =v; —2gh, or h=(v; =v*)/2g.

(a) Since v=0at the maximum height of an upward motion, with v, =7.00 m/s, we

have
h=(7.00m/s)*/2(9.80m/s*)=2.50 m.

(b) The relative speed is v, =v, —v, =7.00 m/s —3.00 m/s = 4.00 m/s with respect to the
floor. Using the above equation we obtain / = (4.00 m/s)*/2(9.80 m/s*) = 0.82 m.

(c) The acceleration, or the rate of change of speed of the ball with respect to the ground
is 9.80 m/s* (downward).

(d) Since the elevator cab moves at constant velocity, the rate of change of speed of the
ball with respect to the cab floor is also 9.80 m/s* (downward).

102. (a) With »=0.15 m and a = 3.0 x 10" m/s?, Eq. 4-34 gives

v=\/r_=6.7><106 m/s.



161

(b) The period is given by Eq. 4-35:

=27 _14x107s.
A%

103. (a) The magnitude of the displacement vector A7 is given by

|AF | = \/(21.5 km)® + (9.7 km)® + (2.88 km)* =23.8 km.

Thus,
5, = B3KM_ o i,
¢ At 3.50h
(b) The angle #1in question is given by
0 =tan" 288 km = 6.96°.

J(21.5 km) +(9.7 km)?

104. The initial velocity has magnitude vy and because it is horizontal, it is equal to v, the
horizontal component of velocity at impact. Thus, the speed at impact is

2 2
(Vs +v] =3v,

where v, =./2gh and we have used Eq. 2-16 with Ax replaced with 4 =20 m. Squaring

both sides of the first equality and substituting from the second, we find

ve +2gh= (3\/0)2

which leads to gh = 4v; and therefore to v, = \/(9.8 m/s*)(20 m) /2 =7.0 m/s.

105. We choose horizontal x and vertical y axes such that both components of v, are

positive. Positive angles are counterclockwise from +x and negative angles are clockwise
from it. In unit-vector notation, the velocity at each instant during the projectile motion is

A

¥ =v,cos 6, i +(v,sin §, — gt) j.

(a) With vo = 30 m/s and & = 60°, we obtain ¥ = (151+6.4]) m/s, for t = 2.0 s. The
magnitude of ¥ is | ¥ = /(15 m/s)’ + (6.4 m/s)* =16 m/s.

(b) The direction of v is
0 =tan '[(6.4m/s)/(15m/s)]=23°,
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measured counterclockwise from +x.

(c) Since the angle is positive, it is above the horizontal.

(d) With 7= 5.0 s, we find ¥ = (151 —23]) m/s, which yields

| = (15 m/s)? + (=23 m/s)* =27 m/s.

(e) The direction of v is @=tan '[(=23m/s)/(15m/s)]=-57°, or 57° measured
clockwise from +x.

(f) Since the angle is negative, it is below the horizontal.
106. We use Eq. 4-2 and Eq. 4-3.

(a) With the initial position vector as 7 and the later vector as 7,, Eq. 4-3 yields
Ar=[(=2.0 m)— 5.0 m]i +[(6.0m)—(—6.0 m)]j+ (2.0 m— 2.0 m)k = (=7.0 m)i+(12 m)
for the displacement vector in unit-vector notation.

(b) Since there is no z component (that is, the coefficient of k is zero), the displacement
vector is in the xy plane.

107. We write our magnitude-angle results in the form (R £ 9) with SI units for the

magnitude understood (m for distances, m/s for speeds, m/s” for accelerations). All angles
0 are measured counterclockwise from +x, but we will occasionally refer to angles ¢,
which are measured counterclockwise from the vertical line between the circle-center and
the coordinate origin and the line drawn from the circle-center to the particle location (see
r in the figure). We note that the speed of the particle is v = 2z/T where r =3.00 m and T
=20.0 s; thus, v = 0.942 m/s. The particle is moving counterclockwise in Fig. 4-56.

(a) At t=15.0 s, the particle has traveled a fraction of

5.00s 1

200s 4

i
T

of a full revolution around the circle (starting at the origin). Thus, relative to the circle-
center, the particle is at

b= %(360") = 90°
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measured from vertical (as explained above). Referring to Fig. 4-56, we see that this
position (which is the “3 o’clock™ position on the circle) corresponds to x = 3.0 m and y =
3.0 m relative to the coordinate origin. In our magnitude-angle notation, this is expressed

as (RLQ) = (4.24450). Although this position is easy to analyze without resorting to

trigonometric relations, it is useful (for the computations below) to note that these values
of x and y relative to coordinate origin can be gotten from the angle ¢ from the relations

x=rsing, y=r—rcosg.
Of course, R =+/x"+)”> and & comes from choosing the appropriate possibility from
tan"' (y/x) (or by using particular functions of vector-capable calculators).

(b) At t=17.5 s, the particle has traveled a fraction of 7.5/20 = 3/8 of a revolution around
the circle (starting at the origin). Relative to the circle-center, the particle is therefore at ¢
= 3/8 (360°) = 135° measured from vertical in the manner discussed above. Referring to
Fig. 4-56, we compute that this position corresponds to

x=(3.00 m)sin 135°=2.1 m
y=(3.0m)—- (3.0 m)cos 135°=5.1m

relative to the coordinate origin. In our magnitude-angle notation, this is expressed as (R
Z 0)=(5.5 £ 68°).

(c) Att=10.0 s, the particle has traveled a fraction of 10/20 = 1/2 of a revolution around
the circle. Relative to the circle-center, the particle is at ¢ = 180° measured from vertical

(see explanation above). Referring to Fig. 4-56, we see that this position corresponds to x
=0 and y = 6.0 m relative to the coordinate origin. In our magnitude-angle notation, this

is expressed as (RZ£60)=(6.0.£90°).

(d) We subtract the position vector in part (a) from the position vector in part (c):

(6.0£90°)—(4.2.£45°)=(4.2£135°)

using magnitude-angle notation (convenient when using vector-capable calculators). If
we wish instead to use unit-vector notation, we write

AR =(0-3.0m) 1+ (6.0 m—3.0 m)j=(-3.0 m)i+(3.0 m)]
which leads to | AR |=4.2 m and 6= 135°.

(¢) From Eq. 4-8, we have v, , = AR/At. WithAt =5.0' s, we have
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¥, = (<0.60 m/s) i +(0.60 m/s) ]

in unit-vector notation or (0.85 £ 135°) in magnitude-angle notation.

(f) The speed has already been noted (v = 0.94 m/s), but its direction is best seen by
referring again to Fig. 4-56. The velocity vector is tangent to the circle at its “3 o’clock

position” (see part (a)), which means v is vertical. Thus, our result is (0.94 i 90°) .

(g) Again, the speed has been noted above (v = 0.94 m/s), but its direction is best seen by
referring to Fig. 4-56. The velocity vector is tangent to the circle at its “12 o’clock

position” (see part (c)), which means v is horizontal. Thus, our result is (0.94 £ 1800) .

(h) The acceleration has magnitude a = v*/r = 0.30 m/s”, and at this instant (see part (a)) it
is horizontal (toward the center of the circle). Thus, our result is (0.30 £ 1800) .

(i) Again, a = v*/r = 0.30 m/s*, but at this instant (see part (c)) it is vertical (toward the
center of the circle). Thus, our result is (0.30 £ 270°).

108. Equation 4-34 describes an inverse proportionality between  and a, so that a large
acceleration results from a small radius. Thus, an upper limit for a corresponds to a lower
limit for 7.

(a) The minimum turning radius of the train is given by

V> (216km/h)’ .
roo= = =73x10" m.
(0.050)(98 m/s?)

a max

(b) The speed of the train must be reduced to no more than

v =\fa,,r =,/0.050(9.8 m/s)(1.00 x 10° m) =22 m/s

which is roughly 80 km/h.

109. (a) Using the same coordinate system assumed in Eq. 4-25, we find

2 2
y=xtand, - —> =8 ifg =0

2(v, cos,)’ 202

Thus, with vy = 3.0 x 10° m/s and x = 1.0 m, we obtain y = —5.4 x 10" m, which is not
practical to measure (and suggests why gravitational processes play such a small role in
the fields of atomic and subatomic physics).
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(b) It is clear from the above expression that |y| decreases as vy is increased.

110. When the escalator is stalled the speed of the person isv, =//t, where [ is the

length of the escalator and ¢ is the time the person takes to walk up it. This is v, = (15
m)/(90 s) = 0.167 m/s. The escalator moves at v, = (15 m)/(60 s) = 0.250 m/s. The speed
of the person walking up the moving escalator is

v=v,+v,=0.167m/s + 0.250 m/s = 0.417 m/s
and the time taken to move the length of the escalator is
t=//v=(15m)/(0.417m/s)=36s.
If the various times given are independent of the escalator length, then the answer does

not depend on that length either. In terms of / (in meters) the speed (in meters per
second) of the person walking on the stalled escalator is ¢/90, the speed of the moving

escalator is //60, and the speed of the person walking on the moving escalator is
v=(£/90)+(//60)=0.0278¢ . The time taken is 7=/{/v=1,/00278/=36s and is
independent of /.

111. The radius of Earth may be found in Appendix C.

(a) The speed of an object at Earth’s equator is v = 27R/T, where R is the radius of Earth
(6.37 x 10° m) and T'is the length of a day (8.64 x 10% s):

v=27(6.37 x 10° m)/(8.64 x 10* s) = 463 m/s.

The magnitude of the acceleration is given by

> (463m/s)’
oo UBMIY) s
R 637x10°m

(b) If T'is the period, then v =27zR/T is the speed and the magnitude of the acceleration is

ﬁ B (2zR/T) B 47°R

R R T
Thus,
6
T=27Z'\/E=27Z' O3T>AUM _ 51 10° s=84 min.
a 98 m/s

112. With gz =9.8128 m/s* and gy, = 9.7999 m/s*, we apply Eq. 4-26:
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RM _RB

v sin26, B v, sin26, v, sin26, (& _1]

Sy g5 85 gu
which becomes

9.8128 m/s’
R, —R,=R, | ———- -1
e B(9.7999m/52 J

and yields (upon substituting Rz = 8.09 m) Ry, — Rp=0.0l m=1 cm.
113. From the figure, the three displacements can be written as
d =d (cos6,i+sin6,j) = (5.00 m)(cos 30°i +sin 30°j) = (4.33 m)i +(2.50 m)]

d, = d,[cos(180°+ 6, — 6,)i +sin(180°+ 6, — 6, )j] = (8.00 m)(cos 160°1 +sin 160°))
=(=7.52 m)i+(2.74 m)]

d, = d,[cos(360°— 0, — 6, +6,)i +sin(360°— 6, — 6, + 6,)j] = (12.0 m)(cos 260°i + sin 260°])
=(-2.08 m)i—(11.8 m)]

where the angles are measured from the +x axis. The net displacement is
d=d +d,+d,=(~5.27 m)i—(6.58 m)].

(a) The magnitude of the net displacement is

|d |=4/(=5.27 m)* +(~6.58 m)* =8.43 m.

- d
(b) The direction of d is # =tan™' [j] =tan

X

_1(—6.58m

-5.27 m

j=51.3° or 231°.

We choose 231° (measured counterclockwise from +x) since the desired angle is in the
third quadrant. An equivalent answer is —129° (measured clockwise from +x).

114. Taking derivatives of 7 = 21+ 2sin(xt/ 4)3’ (with lengths in meters, time in seconds,
and angles in radians) provides expressions for velocity and acceleration:

dt
_dv ’ [7[ jA
d=—=——sin| — |]
dt 8 4

Thus, we obtain:
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time ¢ (s) 0.0 1.0 2.0 3.0 4.0
¢ x (m) 0.0 2.0 4.0 6.0 8.0
(a) position y (m) 0.0 1.4 2.0 1.4 0.0
= v(m/s) 2.0 2.0 2.0
(b) | wvelocity |, (mys) 1.1 00 | -1.1
2 a. (m/s?) 0.0 0.0 0.0
(©) | acceleration | g, (m/s?) -0.87 | -1.2 | —-0.87

115. Since this problem involves constant downward acceleration of magnitude a, similar
to the projectile motion situation, we use the equations of §4-6 as long as we substitute a
for g. We adopt the positive direction choices used in the textbook so that equations such
as Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v, =0 and

vy, =V, =1.00x10” cm/s.

(a) If ¢is the length of a plate and ¢ is the time an electron is between the plates, then
¢ =v,t, where v is the initial speed. Thus

L 2.00em 5 h0x107s.

vy T 1.00x10°cm/s

(b) The vertical displacement of the electron is

y :—%atz =—% (1.00x10' cm/s*)(2.00x 10”° s)2 =-0.20cm =-2.00 mm,

or | y| =2.00 mm.
(c) The x component of velocity does not change:

vy =vp = 1.00 x 10° cm/s = 1.00 x 10" m/s.
(d) The y component of the velocity is

v, =apt= (l.OOx 1017cm/s2)(2.00>< 107° s) =2.00x10*cm/s
=2.00x10°m/s.

116. We neglect air resistance, which justifies setting @ = —g = —9.8 m/s” (taking down as
the —y direction) for the duration of the motion of the shot ball. We are allowed to use
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Table 2-1 (with Ay replacing Ax) because the ball has constant acceleration motion. We
use primed variables (except #) with the constant-velocity elevator (so v'=10 m/s), and
unprimed variables with the ball (with initial velocity v, =v'+20 =30 m/s, relative to the

ground). SI units are used throughout.

(a) Taking the time to be zero at the instant the ball is shot, we compute its maximum
height y (relative to the ground) with v =v; —2g(y—y,), where the highest point is

characterized by v = 0. Thus,
2

y= yo+v—°=76m
2g

where y, =y, +2=30m (where y/ =28 m is given in the problem) and vy = 30 m/s
relative to the ground as noted above.

(b) There are a variety of approaches to this question. One is to continue working in the
frame of reference adopted in part (a) (which treats the ground as motionless and “fixes”
the coordinate origin to it); in this case, one describes the elevator motion with
y' =y, +V't and the ball motion with Eq. 2-15, and solves them for the case where they

reach the same point at the same time. Another is to work in the frame of reference of the
elevator (the boy in the elevator might be oblivious to the fact the elevator is moving
since it isn’t accelerating), which is what we show here in detail:

1 v, v, — 280,

Ay, =v,t——gt® = t
e 2 g

where vo. = 20 m/s is the initial velocity of the ball relative to the elevator and Ay, =
—2.0 m is the ball’s displacement relative to the floor of the elevator. The positive root is
chosen to yield a positive value for #; the resultis t =4.2 s.

117. We adopt the positive direction choices used in the textbook so that equations such
as Eq. 4-22 are directly applicable. The coordinate origin is at the initial position for the
football as it begins projectile motion in the sense of §4-5), and we let & be the angle of
its initial velocity measured from the +x axis.

(a) x =46 m and y = —1.5 m are the coordinates for the landing point; it lands at time ¢ =
4.5 s. Since x = vy,

=10.2 m/s.

x 46 m
t

vV, = =
‘ 4.5 s

X

Since y =v, - Lot?,

y +;gt2 (=15 m) +;(9.8 m/s*)(45s)’

Vo, = =217 m/s.
g t 45s
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The magnitude of the initial velocity is

—\/vo +v0 = (102m/s) +(21.7 m/s)* =24 m/s.

(b) The initial angle satisfies tan € = vo,/vo.. Thus,
G = tan' [(21.7 m/s)/(10.2 m/s) ] = 65°.

118. The velocity of Larry is v; and that of Curly is v,. Also, we denote the length of the
corridor by L. Now, Larry’s time of passage is #; = 150 s (which must equal L/v;), and
Curly’s time of passage is ©, = 70 s (which must equal L/v;). The time Moe takes is
therefore

L 1 3 1
v+v, v/ L+v,/L -+ 5

[ =

119. The (box)car has velocity v, :vlf relative to the ground, and the bullet has

velocity

Vopg = V> €080 1+v,sinb]

relative to the ground before entering the car (we are neglecting the effects of gravity on
the bullet). While in the car, its velocity relative to the outside ground is

\7bg =0.8v, cosfi+ 0.8v, sin (93

(due to the 20% reduction mentioned in the problem). The problem indicates that the
velocity of the bullet in the car relative to the car is (with v; unspecified) v,, = v, j. Now,
Eq. 4-44 provides the condition

Vb —VbC+V

0.8v, cos @ i+0. 8v251n<93 —V3J+V1 i

so that equating x components allows us to find €. If one wished to find v one could also
equate the y components, and from this, if the car width were given, one could find the
time spent by the bullet in the car, but this information is not asked for (which is why the
width is irrelevant). Therefore, examining the x components in SI units leads to

ezcos—l( Y jz (85 anh(lzzm,m)J

0.8, 0.8 (650 m/s)

which yields 87¢ for the direction of v,, (measured from f, which is the direction of

motion of the car). The problem asks, “from what direction was it fired?” — which
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means the answer is not 87° but rather its supplement 93° (measured from the direction of
motion). Stating this more carefully, in the coordinate system we have adopted in our
solution, the bullet velocity vector is in the first quadrant, at 87° measured
counterclockwise from the +x direction (the direction of train motion), which means that
the direction from which the bullet came (where the sniper is) is in the third quadrant, at
—93° (that is, 93° measured clockwise from +x).



Chapter 5

1. We are only concerned with horizontal forces in this problem (gravity plays no direct
role). We take East as the +x direction and North as +y. This calculation is efficiently
implemented on a vector-capable calculator, using magnitude-angle notation (with SI
units understood).

= =(29 £ 53°
30 ( )

p _F_(90£0°)+ (80 £118°)
m

Therefore, the acceleration has a magnitude of 2.9 m/s”.

2. We apply Newton’s second law (Eq. 5-1 or, equivalently, Eq. 5-2). The net force
applied on the chopping block is F“n = 1’7“1 + F’z , where the vector addition is done using

et

unit-vector notation. The acceleration of the block is given by a = (}7“1 + }7“2) / m.

(a) In the first case

~ A

F+F, = [(30N)i+ (40N)j |+ [ (-3.0N)i+ (-4.0N)j| =0

soa=0.

(b) In the second case, the acceleration @ equals

LF, ((3.0N)i+ (4.0N)j) + ((-3.0N)i+ (4.0N)j) oms)
m 2.0kg

(c) In this final situation, a is

A A

F+F, ((3.0N)i+ (4.0N)]) + ((3.0N)i+ (—4.0N)])

il — (3.0m/s)i.
m 2.0kg

3. We apply Newton’s second law (specifically, Eq. 5-2).

(a) We find the x component of the force is

F, =ma, =ma cos 20.0°=(1.00kg) (2.00m/s" ) cos 20.0°=1.88N.

171
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(b) The y component of the force is
F,=ma,=masin 20.0°=(1.0kg) (2.00m/s" ) sin 20.0°=0.684N.
(¢) In unit-vector notation, the force vector is
F=Fi+ Fj=(188N)i +(0.684 N)j.

4. Since v = constant, we have a = 0, which implies

|
|

Fog=H+

=ma=0.

LS}

Thus, the other force must be
F,=-F=(2N)i+(6N)].

5. The net force applied on the chopping block is F, = F, + F, + F,, where the vector
addition is done using unit-vector notation. The acceleration of the block is given by
i=(F +F +F)/m.

(a) The forces exerted by the three astronauts can be expressed in unit-vector notation as
follows:

A

F =(32 N)(cos 30°i + sin 30°J) =(27.7N)i +(16 N)]
F, =(55 N)(cos 0° + sin 003) = (55 N)i
F,=(41 N)(cos(—600)i + sin(—éoo)j) = (20.5N)i - (35.5N)].

The resultant acceleration of the asteroid of mass m = 120 kg is therefore

(27.7i +163)N+(55i)N + (20.51 —35.53’)N
120 kg

=(0.86m/s>)i — (0.16m/s)].

a =

(b) The magnitude of the acceleration vector is

ja|=Ja> + a* = \/(0.86 m/s?)? + (-0.16 m/s* ) =0.88 m/s” .

(c) The vector @ makes an angle € with the +x axis, where




173

_ 2
6 =tan™ & =tan"' Lm/sz =-11°.
a 0.86 m/s

6. Since the tire remains stationary, by Newton’s second law, the net force must be zero:

F. =F,+F,+F.=mi=0.

From the free-body diagram shown on the right, we have

0:ZFmt,x =F.cos¢g—F, cos@
0=Y F,, =F,sin0+F.sing—F,

To solve for F,, we first compute ¢. With F, =220 N,
F.=170N, and 8=47°, we get

F,cosf (220 N)cos47.0°
F,. 170 N

cosg = =0.883 = ¢=28.0°

Substituting the value into the second force equation, we find
F,=F, sin@+F_sin¢=(220 N)sin47.0°+ (170 N)sin 28.0 =241 N.

7. In this problem we have two forces acting on a box to produce a given acceleration.
We apply Newton’s second law to solve for the unknown second force. We denote the

two forces as F, and F, . According to Newton’s second law, 17“1 + }7*2 =md, so the
second force is 17“2 =md — 17] Note that since the acceleration is in the third quadrant, we

expect F, to be in the third quadrant as well.
(a) In unit vector notation 13l = (20.0 N)I and
d=—(12.0sin 30.0°m/s” )i - (12.0 cos 30.0°m/s’ ) j = —(6.00 m/s” )i (10.4m/s’ ) .

Therefore, we find the second force to be

F,=ma - F,
=(2.00kg)(—-6.00m/s* )i+ (2.00 kg)(-10.4 m/s”)j - (20.0 N)i

A

(-32.0 N)i~ (20.8 N)j.

b) The magnitude of F, is | F, |= \/F2 + F? =+/(-32.0 N)> +(-20.8 N)* =38.2 N.
2 2 2x 2y
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(c) The angle that F‘z makes with the positive x-axis is found from

F —
tan¢=[ Z'VJ=M=O.656

F. -32.0N

2x

Consequently, the angle is either 33.0° or 33.0° + 180° = 213°. Since both the x and y

components are negative, the correct result is ¢ = 213° from the +x-axis. An alternative
answer is 213°-360°=-147°.

The result is depicted to the right. The calculation y
confirms our expectation that F, lies in the third I
quadrant (same as a ). The net force is

F+F,=(20.0N)i+[(-32.0N)i - (208 N)j |
(~12.0 N)i— (20.8 N)j

which points in the same direction as a .

E,,

8. We note that ma = (-16 N)f + (12 N)j . With the other forces as specified in the
problem, then Newton’s second law gives the third force as

Fy =ma—F, — F, =(-34N)i- (12N)].

9. To solve the problem, we note that acceleration is the second time derivative of the
position function; it is a vector and can be determined from its components. The net force
is related to the acceleration via Newton’s second law. Thus, differentiating

x(t) =—15.0+2.00¢ + 4.00¢° twice with respect to ¢, we get

2
& p00-1202, TE- 2400
di di

Similarly, differentiating y(¢) = 25.0+7.00¢ —9.00¢> twice with respect to ¢ yields

dzy

2

& =7.00-18.0¢,
dt dt

=-18.0

(a) The acceleration is
d2x 2 d2
i dzj—( 240t)1+( 180)].

d=ai+a,j=
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At t=0.700s, we have a = (—16.8)1 + (—18.0)3’ with a magnitude of

a=|d|=(~16.8) +(~18.0)* = 24.6 m/s’.
Thus, the magnitude of the force is F = ma = (0.34 kg)(24.6 m/s*) =8.37 N.

(b) The angle F or d = F /m makes with +x is

a _ 2
f=tan"'| =~ |=tan™ Lm/sz =47.0° or —133°.
a —-16.8 m/s

X

We choose the latter (—133°) since F is in the third quadrant.

(c) The direction of travel is the direction of a tangent to the path, which is the direction
of the velocity vector:

P(t)=vi+v] =%i+%j =(2.00—12.06*)i +(7.00—18.0¢)].

At t=0.700s, we have v(t =0.700s) =(-3.88 m/s)i +(-5.60 m/s)j. Therefore, the angle
v makes with +x is

0, =tan" %o tan”™' 5.60m/s =55.3%or —125°.
v -3.88 m/s

We choose the latter (—125°) since V is in the third quadrant.

10. To solve the problem, we note that acceleration is the second time derivative of the
position function, and the net force is related to the acceleration via Newton’s second
law. Thus, differentiating

x(¢) =—13.00+2.00¢ + 4.00¢” —3.00¢°

twice with respect to ¢, we get

dx ,  d’x
— =2.00+8.00¢ —9.00¢", —=8.00-18.0¢
dt dt

The net force acting on the particle at t=3.40s is
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2
fhf i=(0.150)[8.00-18.0(3.40)]i = (-7.98 N)i

F=m

11. The velocity is the derivative (with respect to time) of given function x, and the
acceleration is the derivative of the velocity. Thus, a = 2c¢ — 3(2.0)(2.0)¢, which we use in
Newton’s second law: F = (2.0 kg)a = 4.0c — 24t (with SI units understood). At7z=3.0s,
we are told that = —36 N. Thus, —36 = 4.0c — 24(3.0) can be used to solve for c¢. The
result is ¢ = +9.0 m/s”.

12. From the slope of the graph we find a, = 3.0 m/s>. Applying Newton’s second law to
the x axis (and taking 0 to be the angle between F; and F3), we have

F,+F,cos0 = ma, = 6=56°

13. (a) From the fact that 73 = 9.8 N, we conclude the mass of disk D is 1.0 kg. Both this
and that of disk C cause the tension 7> = 49 N, which allows us to conclude that disk C
has a mass of 4.0 kg. The weights of these two disks plus that of disk B determine the
tension 77 = 58.8 N, which leads to the conclusion that mz = 1.0 kg. The weights of all
the disks must add to the 98 N force described in the problem; therefore, disk 4 has mass
4.0 kg.

(b) mg = 1.0 kg, as found in part (a).
(c) mc=4.0 kg, as found in part (a).
(d) mp = 1.0 kg, as found in part (a).

14. Three vertical forces are acting on the block: the earth pulls down on the block with
gravitational force 3.0 N; a spring pulls up on the block with elastic force 1.0 N; and, the
surface pushes up on the block with normal force Fy. There is no acceleration, so

Y F,=0=F, + (1.ON) + (-3.0N)
yields Fiy=2.0 N.

(a) By Newton’s third law, the force exerted by the block on the surface has that same
magnitude but opposite direction: 2.0 N.

(b) The direction is down.

15. (a) — (c) In all three cases the scale is not accelerating, which means that the two
cords exert forces of equal magnitude on it. The scale reads the magnitude of either of
these forces. In each case the tension force of the cord attached to the salami must be the
same in magnitude as the weight of the salami because the salami is not accelerating.
Thus the scale reading is mg, where m is the mass of the salami. Its value is (11.0 kg) (9.8
m/s”) = 108 N.
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16. (a) There are six legs, and the vertical component of the tension force in each leg is
T'sin @ where € =40°. For vertical equilibrium (zero acceleration in the y direction) then
Newton’s second law leads to

mg

67sind =mg = T = —
6sin &

which (expressed as a multiple of the bug’s weight mg) gives roughly 7'/mg ~0.26 0.

(b) The angle @1is measured from horizontal, so as the insect “straightens out the legs” €
will increase (getting closer to 90°), which causes siné to increase (getting closer to 1)
and consequently (since siné1is in the denominator) causes 7 to decrease.

17. The free-body diagram of the problem is
shown to the right. Since the acceleration of the
block is zero, the components of the Newton’s
second law equation yield

T—mgsin @ =0
Fy—mgcos 6 =0,

where T is the tension in the cord, and F is the
normal force on the block.

(a) Solving the first equation for the tension in the string, we find
T =mgsin@ = (85 kg)(9.8 m/s’) sin30° =42 N .
(b) We solve the second equation in part (a) for the normal force Fy:
F,, =mgcosd=(8.5 kg)(9.8 m/s2) cos 30° =72 N .

(c) When the cord is cut, it no longer exerts a force on the block and the block
accelerates. The x-component equation of Newton’s second law becomes —mgsinf = ma,
so the acceleration becomes

a=-gsin@=—(9.8 m/s’)sin30° = —4.9 m/s’.

The negative sign indicates the acceleration is down the plane. The magnitude of the
acceleration is 4.9 m/s’,
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Note: The normal force F, on the block must be equal to mgcos@ so that the block is in

contact with the surface of the incline at all time. When the cord is cut, the block has an
acceleration @ =—gsin @, which in the limit & - 90° becomes —g .

18. The free-body diagram of the cars is shown on the right. The force exerted by John
Massis is

F =2.5mg =2.5(80 kg)(9.8 m/s>) =1960 N .

Since the motion is along the horizontal x-axis, using Newton’s
second law, we have Fx = F cos@ = Ma_, where M is the total

Y
|
|
I
|

mass of the railroad cars. Thus, the acceleration of the carsis @& —-—-=——— > F

_Fcosf (1960 N)cos30°

a, = g —=0.024 m/s>.
T M (7.0x10° N/9.8 m/s?)

Using Eq. 2-16, the speed of the car at the end of the pull is M g’

v, = [2a,Ax =+/2(0.024 m/s?)(1.0 m) = 0.22 mys.

F

net

19. In terms of magnitudes, Newton’s second law is F' = ma, where F =

,a=|al,
and m is the (always positive) mass. The magnitude of the acceleration can be found
using constant acceleration kinematics (Table 2-1). Solving v = vy + at for the case where

it starts from rest, we have a = v/t (which we interpret in terms of magnitudes, making
specification of coordinate directions unnecessary). The velocity is

v = (1600 km/h) (1000 m/km)/(3600 s/h) = 444 m/s,
SO
444 m/s

1.8s

F =ma=m>=(500kg) =12x10° N,
t

20. The stopping force F and the path of the passenger are horizontal. Our +x axis is in
the direction of the passenger’s motion, so that the passenger’s acceleration
(““deceleration” ) is negative-valued and the stopping force is in the —x direction:

F=-Fi. Using Eq. 2-16 with
vo = (53 km/h)(1000 m/km)/(3600 s/h) = 14.7 m/s
and v = 0, the acceleration is found to be

v, (147 m/s)’

_ =—167 m/s>.
2Ax 2(0.65 m)

V=) +2aA = a=-
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Assuming there are no significant horizontal forces other than the stopping force, Eq. 5-1
leads to

F=mi = -F=(41kg)(-167m/s’)

which results in F = 6.8 x 10° N.

21. (a) The slope of each graph gives the corresponding component of acceleration.
Thus, we find a, = 3.00 m/s? and a, = -5.00 m/s>. The magnitude of the acceleration
vector is therefore

a=+(3.00m/s*)> +(~5.00 m/s*)* =5.83 m/s,

and the force is obtained from this by multiplying with the mass (m = 2.00 kg). The result
is F=ma=11.7 N.

(b) The direction of the force is the same as that of the acceleration:

0= tan"' [(~5.00 m/s%)/(3.00 m/s*)] = —59.0°.
22. (a) The coin undergoes free fall. Therefore, with respect to ground, its acceleration is
=g =(-9.8m/s?)].

a

coin

(b) Since the customer is being pulled down with an acceleration of
stomer = 1.248 = (=12.15 m/sz)j, the acceleration of the coin with respect to the
customer is

=/

a

i, =d, —a.. . =(-9.8m/s%)j—(=12.15m/s?)j = (+2.35 m/s)].

re coin customer

(c) The time it takes for the coin to reach the ceiling is

a., 2.35m/s

(d) Since gravity is the only force acting on the coin, the actual force on the coin is

= ma,, =mg =(0.567x10" kg)(-9.8 m/s*)j=(~5.56x107 N)j.

coin

(e) In the customer’s frame, the coin travels upward at a constant acceleration. Therefore,
the apparent force on the coin is

E_ =ma, =(0.567x107 kg)(+2.35 m/s*)j = (+1.33x107° N)j.

app
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23. We note that the rope is 22.0° from vertical, and therefore 68.0° from horizontal.
(a) With 7= 760 N, then its components are

T = Tcos 68.0° i+ Tsin 68.0°j=(285N)i+(705N)].

(b) No longer in contact with the cliff, the only other force on Tarzan is due to earth’s
gravity (his weight). Thus,

E_ =T+W=(285N)i+(705N)j— (820 N) j = (285N)i—(115 N)]j.

(¢) In a manner that is efficiently implemented on a vector-capable calculator, we
convert from rectangular (x, y) components to magnitude-angle notation:

F, = (285, -115) - (307£-22.0°)
so that the net force has a magnitude of 307 N.

(d) The angle (see part (¢)) has been found to be —22.0°, or 22.0° below horizontal (away
from the cliff).

(e) Since a = F;m/m where m = W/g = 83.7 kg, we obtain d = 3.67 m/s’ .

(f) Eq. 5-1 requires that 4 || 17“n
(away from the clifY).

so that the angle is also —22.0°, or 22.0° below horizontal

ct

24. We take rightward as the +x direction. Thus, ﬁl = (20 N)i. In each case, we use

Newton’s second law F, + F, = md where m = 2.0 kg.

(@) If a=(+10 m/s*) i, then the equation above gives 132 = 0.
(b)If, = (+20m/s?) i, then that equation gives F, = (20N)i.
(¢)If @ =0, then the equation gives F, = (—20N)1i.

(d)If @ = (-10 m/s®) i, the equation gives F, = (—40N)i.

(e)If d@=(-20m/s*) 1, the equation gives F, = (~60N)1i.

25. (a) The acceleration is
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F_20N o2 m/s” .
m  900kg

(b) The distance traveled in 1 day (= 86400 s) is
5= %aﬁ :% (00222 m/s?) (86400s)” = 83 x 10" m .

(c) The speed it will be traveling is given by
v = at =(0.0222 m/s’)(86400 s) =1.9 x 10’ m/s .

26. Some assumptions (not so much for realism but rather in the interest of using the
given information efficiently) are needed in this calculation: we assume the fishing line
and the path of the salmon are horizontal. Thus, the weight of the fish contributes only
(via Eq. 5-12) to information about its mass (m = W/g = 8.7 kg). Our +x axis is in the
direction of the salmon’s velocity (away from the fisherman), so that its acceleration
(“‘deceleration”) is negative-valued and the force of tension is in the —x direction:

T = —T.Weuse Eq. 2-16 and SI units (noting that v = 0).

v (2.8ms)’
2Ax  2(0.11m)

V=1, +2aAx = a= =-36 m/s’.

Assuming there are no significant horizontal forces other than the tension, Eq. 5-1 leads
to

T=ma = —T=(8.7kg)(—36m/sz)

which results in 7= 3.1 x 10> N.

27. The setup is shown in the figure below. The acceleration of the electron is vertical
and for all practical purposes the only force acting on it is the electric force. The force of
gravity is negligible. We take the +x axis to be in the direction of the initial velocity vy
and the +y axis to be in the direction of the electrical force, and place the origin at the
initial position of the electron.

y (x.»)
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Since the force and acceleration are constant, we use the equations from Table 2-1:
x=v,t and

The time taken by the electron to travel a distance x (= 30 mm) horizontally is ¢ = x/vy and
its deflection in the direction of the force is

2 -16 -3 2
yzlE x =l 4.5><10_31N 3()><107 m 15%10° m.
2m \ v, 219.11x107 kg )\ 1.2 x 10" m/s

Note: Since the applied force is constant, the acceleration in the y-direction is also
constant and the path is parabolic with y oc x”.

28. The stopping force F and the path of the car are horizontal. Thus, the weight of the
car contributes only (via Eq. 5-12) to information about its mass (m = W/g = 1327 kg).
Our +x axis is in the direction of the car’s velocity, so that its acceleration
(‘“‘deceleration”) is negative-valued and the stopping force is in the —x direction:

F=-Fi.
(a) We use Eq. 2-16 and SI units (noting that v =0 and vy = 40(1000/3600) = 11.1 m/s).

Vi=v, +2aAx = a=-— % :_(ll.lm/s)2
’ 2 2(15m)

which yields a = — 4.12 m/s>. Assuming there are no significant horizontal forces other
than the stopping force, Eq. 5-1 leads to

F=mi = -F=(1327kg)(-412 m/s’)

which results in = 5.5 x 10° N.
(b) Equation 2-11 readily yields t = —vo/a = 2.7 s.

(c) Keeping F the same means keeping a the same, in which case (since v = 0) Eq. 2-16
expresses a direct proportionality between Ax and v; . Therefore, doubling vy means
quadrupling Ax . That is, the new over the old stopping distances is a factor of 4.0.

(d) Equation 2-11 illustrates a direct proportionality between ¢ and v, so that doubling one
means doubling the other. That is, the new time of stopping is a factor of 2.0 greater than
the one found in part (b).
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29. We choose up as the +y direction, so a = (=3.00 m/ 52)3 (which, without the unit-

vector, we denote as a since this is a 1-dimensional problem in which Table 2-1 applies).
From Eq. 5-12, we obtain the firefighter’s mass: m = W/g = 72.7 kg.

(a) We denote the force exerted by the pole on the firefighter Ffp = F;, J and apply Eq.

5-1. Since F,, =md , we have
F,—F,=ma = F,—712N=(72.7kg)(-3.00 nvs*)
which yields F, =494 N.

(b) The fact that the result is positive means Ffp points up.

(c) Newton’s third law indicates Ffp = —F ., which leads to the conclusion that

ﬁpf ,
|F.| =494 N.
(d) The direction of FPf is down.

30. The stopping force F and the path of the toothpick are horizontal. Our +x axis is in
the direction of the toothpick’s motion, so that the toothpick’s acceleration
(““deceleration”) is negative-valued and the stopping force is in the —x direction:

F=-Fi. Using Eq. 2-16 with vy = 220 m/s and v = 0, the acceleration is found to be

v (220 m/s)’
2Ax  2(0.015 m)

V=) +2aA = a=-— =-1.61x10° m/s’.

Thus, the magnitude of the force exerted by the branch on the toothpick is

F=m|a|=(1.3x10" kg)(1.61x10° m/s*)=2.1x10" N.

31. The free-body diagram is shown below. F“N is the normal force of the plane on the
block and mg is the force of gravity on the block. We take the +x direction to be up the
incline, and the +y direction to be in the direction of the normal force exerted by the
incline on the block. The x component of Newton’s second law is then mg sin 8 = —ma;
thus, the acceleration is @ = — g sin 6. Placing the origin at the bottom of the plane, the
kinematic equations (Table 2-1) for motion along the x axis that we will use are
v’ =v; +2ax and v =v, +at . The block momentarily stops at its highest point, where v
= 0; according to the second equation, this occurs at time ¢ =—v,/a .
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(a) The position at which the block stops is

2 2
—(9.8 m/sz) sin 32.0°

(b) The time it takes for the block to get there is
Vo _ v 3.50m/s

- = — ) - = 0674S
a —gsin ¢ —(9.8m/s”)sin 32.0°

t

(c) That the return-speed is identical to the initial speed is to be expected since there are
no dissipative forces in this problem. In order to prove this, one approach is to set x = 0

and solve x =v,t+1at® for the total time (up and back down) ¢. The result is

po P 2% 2(3.50 m/s)

= T =1.35s.
a —gsinf —(9.8 m/s”)sin 32.0°

The velocity when it returns is therefore
v =v,+at =v,—gtsin §=3.50 m/s — (9.8 m/s*)(1.355)sin32°=—3.50 m/s.
The negative sign indicates the direction is down the plane.

N
32. (a) Using notation suitable to a vector-capable calculator, the F,, = 0 condition
becomes

Fi+ F + Fy = (6.002150°) + (7.00 £ -60.0° + Fy =0.

Thus, F, = (1.70 N) i + (3.06 N)].

(b) A constant velocity condition requires zero acceleration, so the answer is the same.

(c) Now, the acceleration is @ = (13.0 m/s”) i— (14.0 m/s2)3 . Using FTx:et =mad (with m
=0.025 kg) we now obtain



185

Fy =(.02N)i+ (271 N);.

33. The free-body diagram is shown below. Let T be the tension of the cable and mg be

the force of gravity. If the upward direction is positive, then Newton’s second law is 7 —
mg = ma, where a is the acceleration.

Thus, the tension is 7= m(g + a). We use constant acceleration kinematics (Table 2-1) to
find the acceleration (where v = 0 is the final velocity, vo = — 12 m/s is the initial velocity,
and y=-42m is the coordinate at the stopping point). Consequently,

v: = v, + 2ay leads to

) B 2
a :_V_OZ_M: 1.71m/s>.
2y 2(-42m)

We now return to calculate the tension:

T
T=m(g + a)
= (1600 kg) (98 m/s* + 1.71 m/s’)
=18 x10* N .

mg
34. We resolve this horizontal force into appropriate components.

(a) Newton’s second law applied to the x-axis
produces

F cos@ — mg sin@ = ma.

For a =0, this yields F =566 N.

(b) Applying Newton’s second law to the y axis (where there is no acceleration), we have
F, —Fsin 0—mgcos 0= 0

which yields the normal force Fy=1.13 x 10° N.
35. The acceleration vector as a function of time is

i :i(s.om i 43.00 j) m/s = (8.00 i +6.00¢ j) m/s’.
dr dt
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(a) The magnitude of the force acting on the particle is

F=ma=m|d|= (3.00)\/(8.00)2 +(6.007)* =(3.00)/64.0+36.0¢> N.

Thus, ' =35.0 N corresponds to t =1.415 s, and the acceleration vector at this instant is
d =[8.001+6.00(1.415) j]m/s> = (8.00 m/s’) i+ (8.49 m/s?)].

The angle a makes with +x is

2
6 =tan™' 4 =tan"' 849 m/s- =46.7°.
‘ a. 8.00 m/s’

(b) The velocity vector at t =1.415s is
V= [8.00(1 415) 1 +3.00(1.415) ﬂm/s = (11.3m/s) i +(6.01 m/s)].

Therefore, the angle v makes with +x is

0, =tan"' U] tant | SO g e
v 11.3m/s

X

36. (a) Constant velocity implies zero acceleration, so the “uphill” force must equal (in
magnitude) the “downhill” force: 7= mg sin 6. Thus, with m = 50 kg and 8 =8.0°, the
tension in the rope equals 68 N.

(b) With an uphill acceleration of 0.10 m/s*, Newton’s second law (applied to the x axis)
yields

T-mgsin@=ma = T—(50 kg)(9.8 m/sz) sin8.0° = (50 kg)(O.lO m/sz)

which leads to 7= 73 N.

37. (a) Since friction is negligible the force of the girl is the only horizontal force on the
sled. The vertical forces (the force of gravity and the normal force of the ice) sum to zero.
The acceleration of the sled is

a, =£=5'2—N=0.62m/s2.
m_  8.4kg

(b) According to Newton’s third law, the force of the sled on the girl is also 5.2 N. Her
acceleration is
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F 2
a, :—:ﬂzo.wm/s2 :
¢ m, 40kg

g

(c) The accelerations of the sled and girl are in opposite directions. Assuming the girl
starts at the origin and moves in the +x direction, her coordinate is given by x, =3 a gtz.

The sled starts at xo = 15 m and moves in the —x direction. Its coordinate is given by
x, =X, —+a,t’ . They meet when x, = x_, or

1

2 _ - 2
Eagt =X, zast.

This occurs at time

= |2
a, +a,
By then, the girl has gone the distance
15 m)(0.13 m/s’
X :laﬁ: Dofe ( )( ) =2.6 m.

€2 g +a 0.13m/s’ +0.62m/s’

38. We label the 40 kg skier “m,” which is represented as a block in the figure shown.
The force of the wind is denoted F, and might be either “uphill” or “downhill” (it is

shown uphill in our sketch). The incline angle #is 10°. The —x direction is downhill.

(a) Constant velocity implies zero acceleration; thus, application of Newton’s second law
along the x axis leads to

mgsind—F =0.
This yields F,, = 68 N (uphill).
(b) Given our coordinate choice, we have a =| a |= 1.0 m/s”. Newton’s second law

mg sin @ — F = ma
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now leads to F), = 28 N (uphill).
(c) Continuing with the forces as shown in our figure, the equation
mg sin @ — F = ma

will lead to F,, = — 12 N when | a | = 2.0 m/s>. This simply tells us that the wind is
opposite to the direction shown in our sketch; in other words, Fw = 12N downhill.

39. The solutions to parts (a) and (b) have been combined here.
The free-body diagram is shown to the right, with the tension of y
|
|
|
|
|
|
|
|

the string T, the force of gravitymg , and the force of the air

F . Our coordinate system is shown. Since the sphere is
motionless the net force on it is zero, and the x and the y
components of the equations are:

Tsin -F=0
Tcos 0—mg=0,

where 6 = 37°. We answer the questions in the reverse order.
Solving T cos 8— mg = 0 for the tension, we obtain

T=mg/ cos 8= (3.0 x 10 kg) (9.8 m/s?) / cos 37°=3.7 x 10" N.
Solving T sin 8— F = 0 for the force of the air:
F=Tsin 0= (3.7 x 10° N)sin 37°=2.2 x 10° N.

40. The acceleration of an object (neither pushed nor pulled by any force other than
gravity) on a smooth inclined plane of angle @ is a = —g sinf. The slope of the graph
shown with the problem statement indicates ¢ = —2.50 m/s’. Therefore, we find
6 =14.8°. Examining the forces perpendicular to the incline (which must sum to zero
since there is no component of acceleration in this direction) we find Fy = mgcosd, where
m =5.00 kg. Thus, the normal (perpendicular) force exerted at the box/ramp interface is
47.4 N.

41. The mass of the bundle is m = (449 N)/(9.80 m/s*) = 45.8 kg and we choose +y
upward.

(a) Newton’s second law, applied to the bundle, leads to

387N - 449N
45.8 kg

T-mg=ma = a=

~i
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which yields a = —1.4 m/s” (or |a| = 1.4 m/s®) for the acceleration. The minus sign in the
result indicates the acceleration vector points down. Any downward acceleration of
magnitude greater than this is also acceptable (since that would lead to even smaller
values of tension).

(b) We use Eq. 2-16 (with Ax replaced by Ay =—6.1 m). We assume v = 0.

vl = \2ahy = [2(-1.35 m/s*)(~6.1 m) = 4.1 m/s.

For downward accelerations greater than 1.4 m/s%, the speeds at impact will be larger than
4.1 m/s.

42. The direction of motion (the direction of the barge’s acceleration) is +i, and +j is

chosen so that the pull ﬁh from the horse is in the first quadrant. The components of the
unknown force of the water are denoted simply £, and F).

(a) Newton’s second law applied to the barge, in the x and y directions, leads to

(7900N)cos 18° + F, = ma
(7900N)sin 18° + F, = 0

respectively. Plugging in a = 0.12 m/s> and m = 9500 kg, we obtain Fy = — 6.4 x 10° N
and F, = — 2.4 x 10’ N. The magnitude of the force of the water is therefore

Fow =F + F? =68 x10° N.

(b) Its angle measured from +i is either

F
tan ™' [F‘j = +21°0r201°.

The signs of the components indicate the latter is correct, so F.__ is at 201° measured

water

counterclockwise from the line of motion (+x axis).

43. The links are numbered from bottom to top. The forces on the first link are the force
of gravity mg, downward, and the force ﬁzom of link 2, upward, as shown in the free-

body diagram below (not drawn to scale). Take the positive direction to be upward. Then

Newton’s second law for the first link is F, , —m,g =ma. The equations for the other

links can be written in a similar manner (see below).
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F3on2 F4on3 F50n4 F
A A A A
F20nl
m, m2£ my my ms
F £ £
m]g mg Ion2 msg F20n3 mg F3 on 4 msg F40n5

(a) Given that @ =2.50 m/s’, from F,
11s

m,g =m,a, the force exerted by link 2 on link

onl

F,

2onl

=m,(a+g)=(0.100kg)(2.5m/s* +9.80 m/s’) =1.23 N.

(b) From the free-body diagram above, we see that the forces on the second link are the
force of gravity m,g , downward, the force F,,, of link 1, downward, and the force F;

on2

of link 3, upward. According to Newton’s third law F_, has the same magnitude as
F,

»ont - Newton’s second law for the second link is

F'30n2 _EOHZ - m2g = mZa

SO
Fsom> = ma(a + g) + Fionz = (0.100 kg) (2.50 m/s* + 9.80 m/s*) + 1.23 N =2.46 N.
(c) Newton’s second for link 3 is Fion3 — Faon3 — msg = msa, SO

Faons = ms(a + g) + Fagnz = (0.100 N) (2.50 m/s> + 9.80 m/s®) + 2.46 N=3.69 N,

where Newton’s third law implies Foons = Fion2 (since these are magnitudes of the force
vectors).

(d) Newton’s second law for link 4 is
Fsona — F3ong — mag = mya,
SO
Fsons = ma(a + g) + Fons = (0.100 kg) (2.50 m/s* + 9.80 m/s”) + 3.69 N=4.92 N,
where Newton’s third law implies F3ons = Faon3.

(e) Newton’s second law for the top link is F'— Fyons — msg = msa, so

F=ms(a+ g)+ Faons = (0.100 kg) (2.50 m/s* + 9.80 m/s*) + 4.92 N =6.15 N,
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where Fions = Fsona by Newton’s third law.

(f) Each link has the same mass (m, = m, =m, =m, = m; =m ) and the same acceleration,
so the same net force acts on each of them:

Foet=ma = (0.100 kg) (2.50 m/s®) = 0.250 N.

44. (a) The term “deceleration” means the acceleration vector is in the direction opposite
to the velocity vector (which the problem tells us is downward). Thus (with +y upward)
the acceleration is a = +2.4 m/s>. Newton’s second law leads to

T
g+ta

T-mg=ma = m=
which yields m = 7.3 kg for the mass.
(b) Repeating the above computation (now to solve for the tension) with a = +2.4 m/s’
will, of course, lead us right back to 7= 89 N. Since the direction of the velocity did not

enter our computation, this is to be expected.

45. (a) The mass of the elevator is m = (27800/9.80) = 2837 kg and (with +y upward) the
acceleration is @ = +1.22 m/s>. Newton’s second law leads to

T'-mg=ma = T:m(g+a)

which yields 7= 3.13 x 10* N for the tension.

(b) The term “deceleration” means the acceleration vector is in the direction opposite to
the velocity vector (which the problem tells us is upward). Thus (with +y upward) the
acceleration is now a =—1.22 m/ sz, so that the tension is

T=m(g+a)=243 x10*N.

46. With a.. meaning “the acceleration of the coin relative to the elevator” and a.,
meaning “the acceleration of the elevator relative to the ground,” we have

Qoo+ deg = g = —8.00 M/S” + Geg = —9.80 m/s”

which leads to a., = —1.80 m/s’. We have chosen upward as the positive y direction.
Then Newton’s second law (in the “ground” reference frame) yields 7'— m g = m a.g, or

T =mg+mae=m(g +ae) = (2000 kg)(8.00 m/s*) = 16.0 kN.

47. Using Eq. 4-26, the launch speed of the projectile is
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VvV, =

2
R JOBMS)O9M) o 55 s
sin 26 sin 2(53°)

The horizontal and vertical components of the speed are

v, =V, cosf =(26.52 m/s)cos53°=15.96 m/s
v, =V, sin@ =(26.52 m/s)sin53°=21.18 m/s.

Since the acceleration is constant, we can use Eq. 2-16 to analyze the motion. The
component of the acceleration in the horizontal direction is

_ Vi (1596 m/s)’

X

a, = =40.7 m/s’,
2x  2(5.2 m)cos53°

and the force component is
F.=ma_=(85kg)(40.7 m/s*)=3460 N.

Similarly, in the vertical direction, we have
. _ v _ (2L18m/s)
"2y 2(5.2 m)sin53°

and the force component is

=54.0 m/s’.

2 2
F,=ma, +mg = (85kg)(54.0 m/s” +9.80 m/s”) = 5424 N.

Thus, the magnitude of the force is

F=\JF}+F? =\/(3460 N)* +(5424 N)* = 6434 N = 6.4x10" N,
to two significant figures.
48. Applying Newton’s second law to cab B (of mass m) we have
a=1 - g=4.89m/s
Next, we apply it to the box (of mass m,) to find the normal force:
Fxy=mpg+a)=176 N.

49. The free-body diagram (not to scale) for the block is shown below. F“N is the normal
force exerted by the floor and mg is the force of gravity.
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y mg

(a) The x component of Newton’s second law is F' cos@ = ma, where m is the mass of the
block and a is the x component of its acceleration. We obtain

Fcos® (12.0N)cos25.0°
a = =
m 5.00kg

=218 m/s>.

This is its acceleration provided it remains in contact with the floor. Assuming it does, we
find the value of Fyy (and if Fy is positive, then the assumption is true but if Fy is negative
then the block leaves the floor). The y component of Newton’s second law becomes

Fy+ Fsin@—mg=0,
SO
Fy=mg— F sind=(5.00 kg)(9.80 m/sz) —(12.0 N)sin25.0°=43.9 N.

Hence the block remains on the floor and its acceleration is @ = 2.18 m/s>.

(b) If F is the minimum force for which the block leaves the floor, then Fy = 0 and the y
component of the acceleration vanishes. The y component of the second law becomes

5.00 kg)(9.80 m/s*
Fsind-mg=0 = F=_% ! g)( ) ~116 N.
sin @ sin 25.0°

(c) The acceleration is still in the x direction and is still given by the equation developed
in part (a):
g Fcos® (116 N) cos 25.0°
m 5.00 kg

50. (a) The net force on the system (of total mass M = 80.0 kg) is the force of gravity
acting on the total overhanging mass (mzc = 50.0 kg). The magnitude of the acceleration
is therefore a = (mzc g)/M = 6.125 m/s*. Next we apply Newton’s second law to block C
itself (choosing down as the +y direction) and obtain

=21.0m/s’.

mcg — Tpc = mca.
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This leads to T5c = 36.8 N.

(b) We use Eq. 2-15 (choosing rightward as the +x direction): Ax =0 + %atz =0.191 m.

51. The free-body diagrams for m, and m, are shown in the figures below. The only

forces on the blocks are the upward tension 7 and the downward gravitational forces
F =m,gand F, = m,g . Applying Newton’s second law, we obtain:

T'-mg=ma Y Y
m,g—1T =m,a A T AT
which can be solved to yield Tﬁ I m; m, @ l"
F
g=| MM g -
m, +m, YF,

Substituting the result back, we have
2mm
T — 1772
[ m, +m, j &

(a) With m, =1.3 kgand m, =2.8 kg, the acceleration becomes

. _(2.80 kg-1.30kg

(9.80m/s*)=3.59 m/s’ ~3.6 m/s’.
2.80kg+1.30kg

(b) Similarly, the tension in the cord is

- 2(1.30kg)(2.80kg)

(9.80m/s’)=17.4 N~17 N.
1.30kg+2.80 kg

52. Viewing the man-rope-sandbag as a system means that we should be careful to
choose a consistent positive direction of motion (though there are other ways to proceed,
say, starting with individual application of Newton’s law to each mass). We take down as
positive for the man’s motion and up as positive for the sandbag’s motion and, without
ambiguity, denote their acceleration as a. The net force on the system is the different
between the weight of the man and that of the sandbag. The system mass is mgs = 85 kg
+ 65 kg = 150 kg. Thus, Eq. 5-1 leads to

(85kg)(9.8 m/s*) —(65kg) (9.8 m/s*)= m a
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which yields ¢ = 1.3 m/s”. Since the system starts from rest, Eq. 2-16 determines the
speed (after traveling A y = 10 m) as follows:

v=12aAy = /2(1.3 m/s>)(10 m) = 5.1 my/s.

53. We apply Newton’s second law first to the three blocks as a single system and then to
the individual blocks. The +x direction is to the right in Fig. 5-48.

(a) With mgys = my + my + m3 = 67.0 kg, we apply Eq. 5-2 to the x motion of the system,
in which case, there is only one force T, = + T, i. Therefore,

I, =mya = 65.0N=(67.0kg)a
which yields @ = 0.970 m/s” for the system (and for each of the blocks individually).
(b) Applying Eq. 5-2 to block 1, we find

T, = ma = (12.0kg)(0.970m/s*) = 11.6N.

(c) In order to find 73, we can either analyze the forces on block 3 or we can treat blocks
1 and 2 as a system and examine its forces. We choose the latter.

T, =(m,+m,)a = (120 kg+24.0kg)(0.970 m/s’) = 349 N .

54. First, we consider all the penguins (1 through 4, counting left to right) as one system,
to which we apply Newton’s second law:

T,= (m +m,+m+m)a = 222N = (12kg + m, +15kg + 20kg)a.
Second, we consider penguins 3 and 4 as one system, for which we have

I,-T,= (m3+m4)a
111N = (15kg+ 20kg)a = a=3.2m/s’.

Substituting the value, we obtain m;, = 23 kg.

55. The free-body diagrams for the two blocks in (a) are shown below. F' is the applied
force and ﬁlonz is the force exerted by block 1 on block 2. We note that F is applied

—

directly to block 1 and that block 2 exerts a force }?'2 -F,,,, on block 1 (taking

Newton’s third law into account).

onl =
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s
FZonl F F10n2

g Y Vod

Newton’s second law for block 1 is F—F;

on1 =M,a , where a is the acceleration. The

second law for block 2 is F,

1oma = M,a . Since the blocks move together they have the same

acceleration and the same symbol is used in both equations.

(a) From the second equation we obtain the expression a = F;_, / m,, which we substitute

into the first equation to get F'—F, , =mF, ,/m,. Since F, F,,., (same magnitude

onl onl =

for the third-law force pair), we obtain

m_ 1.2 kg

F = =
m, + m, 23kg+1.2kg

lon2

F, (3.2N)=1.1N.

onl =

(b) If F is applied to block 2 instead of block 1 (and in the opposite direction), the free-
body diagrams would look like the following:

‘[;Dvl JF?AQ
A A
m, m, -,
> F’ Fl on2
FZ on 1
\/ \]
mg myg
The corresponding force of contact between the blocks would be
Fl,=F , =—"_F 23K8 30 N)=2.1N,

2onl lon2 m, +m, - 2.3kg+1.2kg

(c) We note that the acceleration of the blocks is the same in the two cases. In part (a), the
force F, ,, is the only horizontal force on the block of mass m, and in part (b) £, is the

only horizontal force on the block with m; > m». Since F| , =m,a in part (a) and

on2
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F!

2onl
force between the blocks must be larger in part (b).

=m,a in part (b), then for the accelerations to be the same, F, > F, ,, that is, the

onl

Note: This problem demonstrates that while being accelerated together under an external
force, the force between the two blocks is greater if the smaller mass is pushing against

the bigger one. In the special case where m, =m, =m, F, ,=F, ,=F/2.

56. Both situations involve the same applied force and the same total mass, so the
accelerations must be the same in both figures.

(a) The (direct) force causing B to have this acceleration in the first figure is twice as big
as the (direct) force causing 4 to have that acceleration. Therefore, B has the twice the
mass of 4. Since their total is given as 12.0 kg then B has a mass of mz = 8.00 kg and 4
has mass m4 = 4.00 kg. Considering the first figure, (20.0 N)/(8.00 kg) = 2.50 m/s>. Of
course, t%le same result comes from considering the second figure ((10.0 N)/(4.00 kg) =
2.50 m/s%).

(b) F, = (12.0 kg)(2.50 m/s*) =30.0 N

57. The free-body diagram for each block is shown below. 7' is the tension in the cord and
6 = 30° is the angle of the incline. For block 1, we take the +x direction to be up the

incline and the +y direction to be in the direction of the normal force F‘N that the plane

exerts on the block. For block 2, we take the +y direction to be down. In this way, the
accelerations of the two blocks can be represented by the same symbol a, without
ambiguity. Applying Newton’s second law to the x and y axes for block 1 and to the y
axis of block 2, we obtain
T'—mgsin @ = ma
F,—mgcos =0
m,g—1 = mya

respectively. The first and third of these equations provide a simultaneous set for
obtaining values of @ and 7. The second equation is not needed in this problem, since the
normal force is neither asked for nor is it needed as part of some further computation
(such as can occur in formulas for friction).
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(a) We add the first and third equations above:
myg — mg sin 0= ma + ma.
Consequently, we find

SN 2.30 kg —(3.70 kg)sin 30.0°1(9.80 m/s*
,_ (m—msin0)g  [2.30ke=(3.70ke) I ) _omsms
m, + m, 3.70 kg + 2.30 kg

(b) The result for a is positive, indicating that the acceleration of block 1 is indeed up the
incline and that the acceleration of block 2 is vertically down.

(c) The tension in the cord is
T=ma+mgsin 0=(3.70 kg)(0.735 m/s” ) +(3.70 kg)(9.80 m/s’ )sin 30.0° =20.8N.

58. The motion of the man-and-chair is positive if upward.
(a) When the man is grasping the rope, pulling with a force equal to the tension 7 in the
rope, the total upward force on the man-and-chair due its two contact points with the rope
1s 27. Thus, Newton’s second law leads to

2T — mg = ma

so that when a = 0, the tension is 7= 466 N.

(b) When a = +1.30 m/s* the equation in part (a) predicts that the tension will be
T =527 N.

(c) When the man is not holding the rope (instead, the co-worker attached to the ground
is pulling on the rope with a force equal to the tension 7 in it), there is only one contact
point between the rope and the man-and-chair, and Newton’s second law now leads to

T —mg=ma
so that when a = 0, the tension is 7= 931 N.
(d) When a = +1.30 m/s?, the equation in (c) yields 7= 1.05 x 10° N.
(e) The rope comes into contact (pulling down in each case) at the left edge and the right
edge of the pulley, producing a total downward force of magnitude 27 on the ceiling.

Thus, in part (a) this gives 27 =931 N.

(f) In part (b) the downward force on the ceiling has magnitude 27= 1.05 x 10° N.
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() In part (c) the downward force on the ceiling has magnitude 27'=1.86 x 10° N.
(h) In part (d) the downward force on the ceiling has magnitude 27=2.11 x 10° N.

59. We take +y to be up for both the monkey and the package. The force the monkey
pulls downward on the rope has magnitude F. According to Newton’s third law, the rope
pulls upward on the monkey with a force of the same magnitude, so Newton’s second law
for forces acting on the monkey leads to

F—myg=mpap,

where m,, is the mass of the monkey and a,, is its acceleration. Since the rope is massless
F = T s the tension in the rope.

The rope pulls upward on the package with a F
force of magnitude F, so Newton’s second law

for the package is

Fy

3
S, s |

F+ Fy—mg=myap, m,

where m,, is the mass of the package, a, is its
acceleration, and Fy is the normal force exerted
by the ground on it. The free-body diagrams
for the monkey and the package are shown to
the right (not to scale).

Now, if F' 1s the minimum force required to lift the package, then Fiy = 0 and a, = 0.
According to the second law equation for the package, this means F' = m,g.

mmg m Pg

(a) Substituting m,g for F'in the equation for the monkey, we solve for a,:

F-mg (m, —m,)g _(15kg-10 kg) (9.8 m/s”) e
" m m 10 kg

m m

a

(b) As discussed, Newton’s second law leads to F'—m,g=m a, for the package and
F—-m,g=m,a for the monkey. If the acceleration of the package is downward, then

the acceleration of the monkey is upward, so @, =—a;, . Solving the first equation for 7

F = mp(g + a;) = mp(g -a)
and substituting this result into the second equation:

' _ '
mp(g - am)_mmg - mmam H

we solve for a :



200 CHAPTER 5

- 15kg — 10 kg)(9.8 m/s®
a, = (mp mm)g = (15ke g)( i ) = 2.0 m/s’,
m, +m, 15kg +10kg

(c) The result is positive, indicating that the acceleration of the monkey is upward.

(d) Solving the second law equation for the package, the tension in the rope is
F=m,(g-a,)=(15kg)(9.8 m/s* - 2.0 m/s* )= 120N.

60. The horizontal component of the acceleration is determined by the net horizontal
force.

(a) If the rate of change of the angle is

%9 = (2.00x102)°/s = (2.00x10_2)°/s-(7[8rgf) ~3.49x10 rads,

then, using F. = F'cos@, we find the rate of change of acceleration to be

ﬂ_i(FcosHj__Fsin&’ﬁ__@0.0 N)sin25.0°
dt dt m dt 5.00 kg
=-5.90x10"" m/s’.

- (3.49x 10’4rad/s)

(b) If the rate of change of the angle is

do Vs radj

— =—(2.00x107)°/s = —(2.00x102)°/s-( =-3.49x10*rad/s,
dt 180

then the rate of change of acceleration would be

_Fsin@df _ (20.0 N)sin25.0°
m dt 5.00kg

X

dt  dt
=+5.90x107* m/s>.

da d (FCOSHJ (—3.49><10_4rad/s)

m

61. The forces on the balloon are the force of gravity mg (down) and the force of the air

Fa (up). We take the +y direction to be up, and use a to mean the magnitude of the

acceleration (which is not its usual use in this chapter). When the mass is M (before the
ballast is thrown out) the acceleration is downward and Newton’s second law is

F,—Mg=-Ma.
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After the ballast is thrown out, the mass is M — m (where m is the mass of the ballast) and
the acceleration is upward. Newton’s second law leads to

Fo—(M-m)g=(M-m)a.
The previous equation gives F,, = M(g — a), and this plugs into the new equation to give

2Ma

M(g-a)-(M-m)g=(M-m)a = m:g+a'

62. To solve the problem, we note that the acceleration along the slanted path depends on
only the force components along the path, not the components perpendicular to the path.

y

mg
(a) From the free-body diagram shown, we see that the net force on the putting shot along
the +x-axis is

F,,.=F—mgsind=380.0 N—-(7.260 kg)(9.80 m/s*)sin30° = 344.4 N,

which in turn gives
a,=F, . /m=(3444N)/(7.260 kg) = 47.44 m/s’.

Using Eq. 2-16 for constant-acceleration motion, the speed of the shot at the end of the
acceleration phase is

v= V2 +2a,Ax =J(2.500 m/s)* +2(47.44 m/s*)(1.650 m) =12.76 m/s.
(b) If 6 =42°, then

Fo. F-mgsing 380.0 N—(7.260 kg)(9.80 m/s’)sin 42.00°
oom m 7.260 kg

=45.78 m/s’,

and the final (launch) speed is

v =V +2a,Ax = /(2.500 m/s)* +2(45.78 m/s*)(1.650 m) =12.54 m/s.
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(c) The decrease in launch speed when changing the angle from 30.00° to 42.00° is

12.76 m/s —12.54 m/s
12.76 m/s

=0.0169 =1.69%.

63. (a) The acceleration (which equals F/m in this problem) is the derivative of the
velocity. Thus, the velocity is the integral of F/m, so we find the “area” in the graph (15
units) and divide by the mass (3) to obtain v — v, = 15/3 = 5. Since v, = 3.0 m/s, then
v =_8.0m/s.

(b) Our positive answer in part (a) implies vV points in the +x direction.

64. The +x direction for m; = 1.0 kg is “downhill” and the +x direction for m; = 3.0 kg is
rightward; thus, they accelerate with the same sign.

(a) We apply Newton’s second law to the x axis of each box:

myg sinf — T = m,a
F+T=ma

Adding the two equations allows us to solve for the acceleration:

ue m,gsin@+F

ml+m2
With F=2.3Nand 8 =30°, we have a = 1.8 m/s>. We plug back in and find 7= 3.1 N.

(b) We consider the “critical” case where the F has reached the max value, causing the
tension to vanish. The first of the equations in part (a) shows that a = gsin30° in this
case; thus, @ = 4.9 m/s”. This implies (along with 7= 0 in the second equation in part (a))
that

F=(3.0kg)(49m/s’)=147N ~15N
in the critical case.
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65. The free-body diagrams for m, and m, are shown in the figures below. The only

forces on the blocks are the upward tension 7 and the downward gravitational forces
17“1 =m,g and }7“2 =m,g . Applying Newton’s second law, we obtain:

~i
~

y
T'-mg=mua
m,g—T =m,a

which can be solved to give TZ{ l m, m, lﬁ
F,
m, —m, _
a= g F
m, +m,

(a) At t=0, m,, =1.30kg. With dm, /dt =-0.200 kg/s, we find the rate of change of

acceleration to be

da da dm  2mg dm _ 2(2.80kg)(9.80 m/s’)
dt  dm, dt  (my+my,)’ dt (2.80 kg +1.30 kg)?

(—=0.200 kg/s) = 0.653 m/s’.

(b) At t=3.00s, m, =m,+(dm,/dt)t=1.30kg+(-0.200 kg/s)(3.00s) =0.700 kg, and
the rate of change of acceleration is

2
da  da dm, _ 2m,g dm, =_2(2.80 kg)(9.80 m/s )(—0.200 kg/s)=0.896 /s

dt dm dt  (m,+m) dt  (2.80kg+0.700 kg)’

(c) The acceleration reaches its maximum value when

0=m, =m,, +(dm,/dt)t =1.30 kg +(-0.200 kg/s)z,
or t=6.50s.

66. The free-body diagram is shown below.

Newton’s second law for the mass m for the x direction leads to
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I, - T, — mgsin@= ma,
which gives the difference in the tension in the pull cable:

T, - T, = m(gsin@ + a) = (2800 kg)[ (9.8 m/s’)sin35° + 0.81m/s” |= 1.8 x 10" N.

67. First we analyze the entire system with “clockwise” motion considered positive (that
is, downward is positive for block C, rightward is positive for block B, and upward is
positive for block A): mcg—myg = Ma (where M = mass of the system = 24.0 kg). This
yields an acceleration of

a=g(me—my)/M=1.63 m/s’.

Next we analyze the forces just on block C: mcg — T =mc a. Thus the tension is
T=mcg(2my+ mp)/M=81.7 N.

68. We first use Eq. 4-26 to solve for the launch speed of the shot:

gx’

= (tan O)x——
Y=y = (tanf)x 2(v'cos 6)*

With 6=34.10° y,=2.11m, and (x,y)=(15.90 m,0), we find the launch speed to be
v'=11.85 m/s. During this phase, the acceleration is

e v vy (11.85m/s)” —(2.50 m/s)’
2L 2(1.65 m)

=40.63 m/s”.

Since the acceleration along the slanted path depends on only the force components along
the path, not the components perpendicular to the path, the average force on the shot
during the acceleration phase is

F =m(a+ gsin6) = (7.260 kg)[ 40.63 m/s’ +(9.80 m/s’)sin34.10° | = 334.8 N.

69. We begin by examining a slightly different problem: similar to this figure but without
the string. The motivation is that if (without the string) block 4 is found to accelerate
faster (or exactly as fast) as block B then (returning to the original problem) the tension in
the string is trivially zero. In the absence of the string,

ay =FA/mA =3.0 Il’l/S2
aBZFB/mB=4.O m/52
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so the trivial case does not occur. We now (with the string) consider the net force on the
system: Ma = F4+ Fp=36 N. Since M = 10 kg (the total mass of the system) we obtain a
=3.6 m/s>. The two forces on block 4 are F,; and T (in the same direction), so we have

mya=F,+T = T=24N.

70. (a) For the 0.50 meter drop in “free fall,” Eq. 2-16 yields a speed of 3.13 m/s. Using
this as the “initial speed” for the final motion (over 0.02 meter) during which his motion
slows at rate “a,” we find the magnitude of his average acceleration from when his feet
first touch the patio until the moment his body stops moving is a = 245 m/s.

(b) We apply Newton’s second law: Fgop — mg=ma = Fop=20.4 kN.

71. The +x axis is “uphill” for m; = 3.0 kg and “downhill” for m, = 2.0 kg (so they both
accelerate with the same sign). The x components of the two masses along the x axis are
given by m,gsinf,and m,gsin@,, respectively. The free-body diagram is shown below.

Applying Newton’s second law, we obtain

T-mgsinf, = ma

m,gsin 6, -T = m,a.

F_:Nl — —
y\/ * m, r T i, < g
m,gsiné, X
m,gsin@,

m,gcosp,  MgCosH,

Adding the two equations allows us to solve for the acceleration:

m,sin@, —m, sin 6,
a= g
m, +m,

With 6§ =30°and 6, =60°, we have a = 0.45 m/s>. This value is plugged back into
either of the two equations to yield the tension

7 =" (5ing, +sin@)=16N.
m2+m1
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Note: In this problem we find m,sin@, >m, sin6,, so that a >0, indicating that m,
slides down and m, slides up. The situation would reverse if m, sin@, < m, sin6,. When
m,siné, =m;sin@, , a=0, and the two masses hang in balance. Notice also the
symmetry between the two masses in the expression for 7.

72. Since the velocity of the particle does not change, it undergoes no acceleration and
must therefore be subject to zero net force. Therefore,

|
|
|

Fnet = +

+

o
w
Il
e

Thus, the third force 133 is given by

|

L= = F = B = —(2i + 3] - 2k)N— (=51 + 8j - 2k)N = (31 = 11] + 4k) N,
The specific value of the velocity is not used in the computation.

73. We have two masses connected together by a cord. A force is applied to the second
mass and the system accelerates together. We apply Newton’s second law to solve the
problem.

The free-body diagrams for the two masses are shown below (not to scale). We first

analyze the forces on m;=1.0 kg. The +x direction is “downhill” (parallel to 7). With the
acceleration @ = 5.5 m/s” in the positive x direction for m,, then Newton’s second law,
applied to the x-axis, becomes

T+mgsinf=ma.

On the other hand, for m,= 2.0 kg, we have
mg—-F—-T=mua,

where the tension comes in as an upward force (the cord can pull, not push). The two
equations can be combined to solve for 7"and f.

Fy F 5 .
T T
T m, ¢
Y
m,g

(b) We solve this part first. By combining the two equations above, we obtain
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(m +m)a+F-m,g (1.0kg+2.0kg)(5.5m/s’)+6.0 N—(2.0kg)(9.8 m/s*)

sin B = _ (1.0 kg)(9.8 m/s*)

=0.296

which gives f#=17°.
(a) Substituting the value for £ found in (a) into the first equation, we have
T=m(a—gsinB)=(1.0kg)[5.5m/s’ — (9.8 m/s’)sin17.2° | =2.60 N .

74. We are only concerned with horizontal forces in this problem (gravity plays no direct
role). Without loss of generality, we take one of the forces along the +x direction and the
other at 80° (measured counterclockwise from the x axis). This calculation is efficiently
implemented on a vector-capable calculator in polar mode, as follows (using magnitude-
angle notation, with angles understood to be in degrees):

g —
Froet = 20£0)+ (35 £80)=(43 £53) = | Fret| = 43N .
Therefore, the mass is m = (43 N)/(20 m/s?) = 2.2 kg.

75. The goal is to arrive at the least magnitude of Fn and as long as the magnitudes of

et 2

17“2 and }7} are (in total) less than or equal to ‘E‘ then we should orient them opposite to

the direction of 1:“1 (which is the +x direction).

(a) We orient both }7} and 17“3 in the —x direction. Then, the magnitude of the net force is
50 — 30 — 20 = 0, resulting in zero acceleration for the tire.

(b) We again orient 132 and 133 in the negative x direction. We obtain an acceleration
along the +x axis with magnitude

_F - F —F, 50N -30N - 10N
m 12kg

=083 m/s*.

a

(c) In this case, the forces ﬁz and 133 are collectively strong enough to have y components
(one positive and one negative) that cancel each other and still have enough x
, we see that the angle

contributions (in the —x direction) to cancel F,. Since ‘}7“2‘ = ‘F}

above the —x axis to one of them should equal the angle below the —x axis to the other one
(we denote this angle 6). We require

—50N =F, +F, =—(30N)cos&— (30N)cosd
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which leads to
6=cos™ SONY _ 34°
60N

76. (a) A small segment of the rope has mass and is pulled down by the gravitational
force of the Earth. Equilibrium is reached because neighboring portions of the rope pull
up sufficiently on it. Since tension is a force along the rope, at least one of the
neighboring portions must slope up away from the segment we are considering. Then, the
tension has an upward component, which means the rope sags.

(b) The only force acting with a horizontal component is the applied force F. Treating
the block and rope as a single object, we write Newton’s second law for it: F'= (M + m)a,
where a is the acceleration and the positive direction is taken to be to the right. The
acceleration is given by a = F/(M + m).

(c) The force of the rope F, is the only force with a horizontal component acting on the
block. Then Newton’s second law for the block gives

F = Ma - MF
M+ m

where the expression found above for a has been used.

(d) Treating the block and half the rope as a single object, with mass M +1m , where the

horizontal force on it is the tension 7, at the midpoint of the rope, we use Newton’s
second law:
(M + m/2)F (2M + m)F

(M+m) _2(M+m)'

T, :(M +lmja:
2

77. Although the full specification of F‘net = ma in this situation involves both x and y
axes, only the x-application is needed to find what this particular problem asks for. We
note that a, = 0 so that there is no ambiguity denoting a, simply as a. We choose +x to the
right and +y up. The free-body diagram (not to scale) is show below.

7 Fcos@

The x component of the rope’s tension (acting on the crate) is
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F,=Fcos@= (450 N) cos 38°=355N,
and the resistive force (pointing in the —x direction) has magnitude /= 125 N.
(a) Newton’s second law leads to

Fcos@—f 355N-125N
m 310kg

F —f=ma=a= = 0.74m/s”.

(b) In this case, we use Eq. 5-12 to find the mass: m'=W /g =31.6kg. Now, Newton’s

second law leads to

F.—f 355N-125N
m  3l.6kg

F—-f=md = d= =73 m/s .

78. We take +x uphill for the m, = 1.0 kg box and +x rightward for the m; = 3.0 kg box
(so the accelerations of the two boxes have the same magnitude and the same sign). The
uphill force on m; is F and the downhill forces on it are 7 and myg sin 6, where 8= 37°.
The only horizontal force on m; is the rightward-pointed tension. Applying Newton’s
second law to each box, we find

F—-T-m,g sin 0= m,a
T = ma
which can be added to obtain

F—myg sin 0= (m; + my)a.
This yields the acceleration

g 12 N — (1.0 kg)(9.8 m/s*)sin 37°
1.0kg+3.0kg

=1.53 m/s>.

Thus, the tension is 7= ma = (3.0 kg)(1.53 m/s*) = 4.6 N.
79. We apply Eq. 5-12.

(a) The mass is
m= Wig=(22 N)/(9.8 m/s*) = 2.2 k.

At a place where g = 4.9 m/s’, the mass is still 2.2 kg but the gravitational force is F, ¢ =
mg = (2.2kg) (4.0 m/s*) =11 N.

(b) As noted, m =2.2 kg.

(c) At a place where g = 0 the gravitational force is zero.
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(d) The mass is still 2.2 kg.
80. We take down to be the +y direction.

(a) The first diagram (shown below left) is the free-body diagram for the person and
parachute, considered as a single object with a mass of 80 kg + 5.0 kg = 85 kg.

F, 4 F T
L
mpgl
mg v F;,

Ij“a is the force of the air on the parachute and mg is the force of gravity. Application of

Newton’s second law produces mg — F, = ma, where a is the acceleration. Solving for F,
we find

a

F,=m(g - a)=(85kg)(9.8 m/s’ ~2.5 m/s”) = 620 N.

(b) The second diagram (above right) is the free-body dlagram for the parachute alone.
F is the force of the air, m,g is the force of gravity, and F is the force of the person.

Now, Newton’s second law leads to
mpg +F,—F,=mya.
Solving for F,, we obtain

F,=m,(a-g)+F, =(50kg)(2.5m/s’ 9.8 m/s’ )+ 620N = 580 N.

p

81. The mass of the pilot is m = 735/9.8 = 75 kg. Denoting the upward force exerted by
the spaceship (his seat, presumably) on the pilot as F and choosing upward as the +y
direction, then Newton’s second law leads to

F =g =ma = F=(75kg)(1.6 m/s’+ 1.0m/s”)=195 N.

82. With SI units understood, the net force on the box is

= (3.0 + 140 30° — 11) i + (14sin30° + 5.0~ 17)]

which yields £_ = (4.1 N)i — (5.0 N)j .
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(a) Newton’s second law applied to the m = 4.0 kg box leads to

i=tha _ (1.0m/s*)i —(1.3m/s%)].
m

(b) The magnitude of @ is a = \/(1.0 m/s’)’ +(-1.3 m/sz)z =1.6 m/s>.

(c) Its angle is tan ' [(~1.3 m/s%)/(1.0 m/s*)] = —50° (that is, 50° measured clockwise from
the rightward axis).

83. The “certain force” denoted F is assumed to be the net force on the object when it
gives m; an acceleration a; = 12 m/s’ and when it gives m; an acceleration a; = 3.3 m/s’.
Thus, we substitute m; = F/a; and m, = F/a, in appropriate places during the following
manipulations.

(a) Now we seek the acceleration a of an object of mass m, — m; when F is the net force
on it. Thus,

F F _aa,
m,—m  (Fla,)-(F/a)) a—a,

a =

which yields a = 4.6 m/s”.
(b) Similarly for an object of mass m, + m;:

g o F _aa,
my+m, (Fla,)+F/a) a +a,

which yields a = 2.6 m/s”.

84. We assume the direction of motion is +x and assume the refrigerator starts from rest
(so that the speed being discussed is the velocity v that results from the process). The

only force along the x axis is the x component of the applied force F .

(a) Since vp = 0, the combination of Eq. 2-11 and Eq. 5-2 leads simply to

F =m(zj = v =(Fcos<9ijt
t m

for i = 1 or 2 (where we denote 6, = 0 and & = @ for the two cases). Hence, we see that
the ratio v, over v; is equal to cos 6.

(b) Since vy = 0, the combination of Eq. 2-16 and Eq. 5-2 leads to
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2
F =m 4 = v = 2(FLSH")A)C
’ 2Ax m

for i =1 or 2 (again, 6, = 0 and & = @1is used for the two cases). In this scenario, we see
that the ratio v, over v is equal to +/cosé .

85. (a) Since the performer’s weight is (52 kg)(9.8 m/s?) = 510 N, the rope breaks.

(b) Setting 7= 425 N in Newton’s second law (with +y upward) leads to

T
I'-mg=ma = a=—-g
m

which yields |a| = 1.6 m/s%.

86. We use W, = mg,, where W), is the weight of an object of mass m on the surface of a
certain planet p, and g, is the acceleration of gravity on that planet.

(a) The weight of the space ranger on Earth is

W, =mg.= (75 kg) (9.8 m/s*) = 7.4 x 10° N.
(b) The weight of the space ranger on Mars is

W, = mgn= (75 kg) (3.7 m/s*) = 2.8 x 10> N.

(c) The weight of the space ranger in interplanetary space is zero, where the effects of
gravity are negligible.

(d) The mass of the space ranger remains the same, m = 75 kg, at all the locations.

87. From the reading when the elevator was at rest, we know the mass of the object is m
= (65 N)/(9.8 m/s®) = 6.6 kg. We choose +y upward and note there are two forces on the
object: mg downward and 7 upward (in the cord that connects it to the balance; T is the
reading on the scale by Newton’s third law).

(a) “Upward at constant speed” means constant velocity, which means no acceleration.
Thus, the situation is just as it was at rest: 7= 65 N.

(b) The term “deceleration” is used when the acceleration vector points in the direction

opposite to the velocity vector. We’re told the velocity is upward, so the acceleration
vector points downward (a = 2.4 m/s®). Newton’s second law gives

T-mg=ma = T=(6.6kg)9.8m/s>—2.4m/s’)=49 N.



213

88. We use the notation g as the acceleration due to gravity near the surface of Callisto, m
as the mass of the landing craft, @ as the acceleration of the landing craft, and F as the
rocket thrust. We take down to be the positive direction. Thus, Newton’s second law
takes the form mg — F' = ma. If the thrust is F (= 3260 N), then the acceleration is zero,
so mg — F; = 0. If the thrust is F, (= 2200 N), then the acceleration is a; (= 0.39 m/s?), so
mg — F> = ma,.

(a) The first equation gives the weight of the landing craft: mg = F, = 3260 N.
(b) The second equation gives the mass:

_mg—F, _3260N-2200N _

m 2
a, 039 m/s

2.7 x10° kg .

(c) The weight divided by the mass gives the acceleration due to gravity:
2= (3260 N)/(2.7 x 10° kg) = 1.2 m/s’.

89. (a) When F. . = 3F — mg = 0, we have
F = %mg = %(1400 kg) (98 m/s’) =46 x 10’ N

for the force exerted by each bolt on the engine.
(b) The force on each bolt now satisfies 3F — mg = ma, which yields

F= %m(g +a)= %(1400 kg)(9.8 m/s’ +2.6 m/s’)=5.8x 10’ N.

90. We write the length unit light-month, the distance traveled by light in one month, as
c'month in this solution.

(a) The magnitude of the required acceleration is given by

Av  (010)(3.0 x 10° m/s)
“ T At~ (3.0 days) (86400 s/ day)

=12 x 10> m/s>.

(b) The acceleration in terms of g is

(c) The force needed is
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F =ma =(1.20 x 10° kg)(1.2 x 10> m/s” )= 1.4 x 10° N.

(d) The spaceship will travel a distance d = 0.1 c'month during one month. The time it
takes for the spaceship to travel at constant speed for 5.0 light-months is

t = d = 30 c-months = 50 months ~ 4.2 years.
v 0.1c

91. The free-body diagram is shown below. Note that F, , and F, respectively, are

m,r, 2

thought of as the y and x components of the force 1:“: .. exerted by the motorcycle on the

r

rider.

—

F, m,ry

(a) Since the net force equals ma, then the magnitude of the net force on the rider is
(60.0 kg) (3.0 m/s*) = 1.8 x 10> N.

(b) We apply Newton’s second law to the x axis: F,,, —mgsin 6 = ma, where m = 60.0
kg, a = 3.0 m/s*, and 6= 10°. Thus, F, . =282 N Applying it to the y axis (where there
is no acceleration), we have

F —mgcosf@ =0

m,r,

which produces £, , =579 N. Using the Pythagorean theorem, we find

[F?, + F) =644 N.

Now, the magnitude of the force exerted on the rider by the motorcycle is the same
magnitude of force exerted by the rider on the motorcycle, so the answer is 6.4 x 10> N,
to two significant figures.

92. We denote the thrust as 7" and choose +y upward. Newton’s second law leads to

2.6x10° N

m—gg m/52 :10m/52.
O X g

T-Mg=Ma = a=
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93. The free-body diagrams for m; and m, for ]_-7

part (a) are shown to the right. The bottom cord 1 T’
. . _ . . 2
is only supporting m, = 4.5 kg against gravity, T

so its tension is 7, =m,g . On the other hand,

the top cord is supporting a total mass of m; + i m, >

my= (3.5 kg + 4.5 kg) = 8.0 kg against gravity.
Applying Newton’s second law gives

T,-T,-mg=0 l 7 a
so the tension there is m, g> 2 m,g
T=mg+T,=(m +m,)g.
(a) From the equations above, we find the tension in the bottom cord to be
Tr= mag = (4.5 kg)(9.8 m/s*) = 44 N.

(b) Similarly, the tension in the top cord is 7' = (m; + my)g = (8.0 kg)(9.8 m/s?) =78 N.

. T 3 T T4 T T5
(c) The free-body diagrams for ms, m4 and
ms for part (b) are shown to the right (not
to scale). From the diagram, we see that ; my ;
the lowest cord supports a mass of ms = 5.5
kg against gravity and consequently has a — ll_}
tension of m,g T, m,g Ts

2 mjg?
Ts=msg = (5.5 kg)(9.8 m/s’) = 54 N.

(d) The top cord, we are told, has tension 75 =199 N, which supports a total of (199
N)/(9.80 m/s*) = 20.3 kg, 10.3 kg of which is already accounted for in the figure. Thus,
the unknown mass in the middle must be m4 = 20.3 kg — 10.3 kg = 10.0 kg, and the
tension in the cord above it must be enough to support

ma+ms=(10.0 kg +5.50 kg) = 15.5 kg,
so Ty = (15.5 kg)(9.80 m/s*) = 152 N.

94. The coordinate choices are made in the problem statement.

(a) We write the velocity of the armadillo as v = vxi + vyj . Since there is no net force

exerted on it in the x direction, the x component of the velocity of the armadillo is a
constant: vy = 5.0 m/s. In the y direction at # = 3.0 s, we have (using Eq. 2-11 with
Vo, = 0)
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F
v, =V, tat= v0y+(;vjt = (1127—1(1\;](30 s) = 4.3 m/s.

Thus, ¥ = (5.0m/s)i+ (4.3m/s)].

(b) We write the position vector of the armadillo as 7 = r, i+ r, 3 . Att=3.0 s we have
ry= (5.0 m/s) (3.0 s) = 15 m and (using Eq. 2-15 with vy, = 0)

F
ro=vy thva = 2= TN a0 0r —6am.
P Talm ) 2\12ke

The position vector at = 3.0 s is therefore 7 = (15 m)i + (6.4 m)} .

95. (a) Intuition readily leads to the conclusion that the heavier block should be the
hanging one, for largest acceleration. The force that “drives” the system into motion is
the weight of the hanging block (gravity acting on the block on the table has no effect on
the dynamics, so long as we ignore friction). Thus, m = 4.0 kg.

The acceleration of the system and the tension in the cord can be readily obtained by
solving

mg—1T=ma, T=Ma.

(b) The acceleration is given by

(c) The tension is
Mm
m+ M

T:Ma:[ jgzl?)N.

96. According to Newton’s second law, the magnitude of the force is given by F = ma,
where a is the magnitude of the acceleration of the neutron. We use kinematics (Table 2-
1) to find the acceleration that brings the neutron to rest in a distance d. Assuming the

acceleration is constant, then v* = v; +2ad produces the value of a:

Po3)) —(14x107m/s)
=t 2dVO): 2E1.0z10“?1m;) Tl

The magnitude of the force is consequently

F=ma=(1.67x10""kg) (9.8 x 107 m/s’) =16 N.
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1. The greatest deceleration (of magnitude a) is provided by the maximum friction force
(Eq. 6-1, with Fy=mg in this case). Using Newton’s second law, we find

a = fsmax /M = 14sg.

Equation 2-16 then gives the shortest distance to stop: |Ax| = v*/2¢ = 36 m. In this
calculation, it is important to first convert v to 13 m/s.

2. Applying Newton’s second law to the horizontal motion, we have F' — x4 mg = ma,
where we have used Eq. 6-2, assuming that Fy = mg (which is equivalent to assuming
that the vertical force from the broom is negligible). Equation 2-16 relates the distance
traveled and the final speed to the acceleration: v* = 2aAx. This gives a = 1.4 m/s’.
Returning to the force equation, we find (with F' = 25 N and m = 3.5 kg) that z4= 0.58.

3. The free-body diagram for the bureau is A FN
shown to the right. We do not consider the
possibility that the bureau might tip, and treat
this as a purely horizontal motion problem (with

the person’s push F in the +x direction). — —
Applying Newton’s second law to the x and y fs,max F
axes, we obtain <« ® >
F —f, nax = Ma
F,—-mg=20

respectively. The second equation yields the
normal force Fy= mg, whereupon the maximum —
static friction is found to be (from Eq. 6-1) V mg

f?,max = Ius mg .
Thus, the first equation becomes

F - umg=ma=0

where we have set a = 0 to be consistent with the fact that the static friction is still (just
barely) able to prevent the bureau from moving.

(a) With z = 045 and m = 45 kg, the equation above leads to F'= 198 N.

To bring the bureau into a state of motion, the person should push with any force greater
than this value. Rounding to two significant figures, we can therefore say the minimum
required push is F=2.0 x 10> N.

217



218 CHAPTER 6

(b) Replacing m = 45 kg with m = 28 kg, the reasoning above leads to roughly
F=1.2x10" N.

Note: The values found above represent the minimum force required to overcome the
friction. Applying a force greater than x4 mg results in a net force in the +x-direction,

and hence, nonzero acceleration.

4. We first analyze the forces on the pig of mass m. The incline angle is 6.

The +x direction is “downhill.”” Application of Newton’s second law to the x- and y-axes
leads to
mgsin 6 — f, = ma

F,—mgcos 6 =0.
Solving these along with Eq. 6-2 (fy = wuFy) produces the following result for the pig’s
downhill acceleration:
a:g(sinﬁ—,uk cos&) .

To compute the time to slide from rest through a downhill distance 7, we use Eq. 2-15:

1 2
(=vyt+—at’ = t= 2t
2 a

We denote the frictionless (14 = 0) case with a prime and set up a ratio:

which leads us to conclude that if #/#' = 2 then a’ = 4a. Putting in what we found out
above about the accelerations, we have

gsinf@=4g (sin@—y, cosb).

Using 8= 35°, we obtain g4 = 0.53.



219

5. In addition to the forces already shown in Fig. 6-17, a free-body diagram would
include an upward normal force F, v exerted by the floor on the block, a downward mg

representing the gravitational pull exerted by Earth, and an assumed-leftward f for the

kinetic or static friction. We choose +x rightward and +y upward. We apply Newton’s
second law to these axes:
F—f=ma
P+F,—-mg=0

where F'= 6.0 N and m = 2.5 kg is the mass of the block.
(a) In this case, P = 8.0 N leads to
Fy=(2.5kg)(9.8 m/s*) —8.0N=16.5N.

Using Eq. 6-1, this implies f

omax = M4, F, =6.6 N, which is larger than the 6.0 N
rightward force. Thus, the block (which was initially at rest) does not move. Putting a = 0

into the first of our equations above yields a static friction force of f=P = 6.0 N.
(b) In this case, P =10 N, the normal force is
Fy=(2.5kg)(9.8 m/s’) — 10 N =14.5 N.

Using Eq. 6-1, this implies f, = u F, =5.8 N, which is less than the 6.0 N rightward

force — so the block does move. Hence, we are dealing not with static but with kinetic
friction, which Eq. 6-2 reveals tobe f, = u, F,, =3.6 N.

(c) In this last case, P = 12 N leads to Fy = 12.5 N and thus to f, . =uF, =5.0N,

which (as expected) is less than the 6.0 N rightward force. Thus, the block moves. The
kinetic friction force, then, is f, = ¢, F,, =3.1N.

—>

6. The free-body diagram for the player is shown to the Fy
right. F“N is the normal force of the ground on the player,

mg 1s the force of gravity, and ]7 is the force of friction.
The force of friction is related to the normal force by f= <—®

wFy. We use Newton’s second law applied to the vertical f
axis to find the normal force. The vertical component of
the acceleration is zero, so we obtain Fy — mg = 0; thus,
Fy=mg. Consequently, . m g’
470N
uo=2L - = 0.61.
F, (79kg) (9.8m/s )
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7. The free-body diagram for the crate is shown A Fy

to the right. We denote F as the horizontal force
of the person exerted on the crate (in the +x

direction), fk is the force of kinetic friction (in va
the —x direction), F), is the vertical normal force

exerted by the floor (in the +y direction), and
mg 1s the force of gravity. The magnitude of the

force of friction is given by (Eq. 6-2):

Ji= iy . Y mg
Applying Newton’s second law to the x and y axes, we obtain

F—f, = ma
F,—mg=20
respectively.

(a) The second equation above yields the normal force Fiy= mg, so that the friction is
fio = Fy =pu,mg = (0.35)(55 kg)(9.8 m/s*)=1.9 x10> N .

(b) The first equation becomes
F — u,mg =ma

which (with =220 N) we solve to find
a=£—,ukg=0.56m/s2 .
m

Note: For the crate to accelerate, the condition F' > f, = ¢,mg must be met. As can be
seen from the equation above, the greater the value of y, , the smaller the acceleration
with the same applied force.

8. To maintain the stone’s motion, a horizontal force (in the +x direction) is needed that
cancels the retarding effect due to kinetic friction. Applying Newton’s second to the x
and y axes, we obtain

F —f, = ma

F,—mg=20

respectively. The second equation yields the normal force Fiy = mg, so that (using Eq. 6-2)
the kinetic friction becomes f; = 14 mg. Thus, the first equation becomes

F—pumg=ma=0
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where we have set a = 0 to be consistent with the idea that the horizontal velocity of the
stone should remain constant. With m = 20 kg and z4 = 0.80, we find F = 1.6 x 10° N.

9. We choose +x horizontally rightward and +y upward and observe that the 15 N force
has components F, = F' cos fand F), = — F'sin 6.

(a) We apply Newton’s second law to the y axis:

F,—Fsin@-mg=0 = F, =(15N)sin 40°+(3.5kg)(9.8 m/s*) = 44 N.
With g4 = 0.25, Eq. 6-2 leads to fy = 11 N.
(b) We apply Newton’s second law to the x axis:

(15N)cos 40° - 11N
3.5kg

=0.14 m/s’.

FcosO—f, =ma = a=

Since the result is positive-valued, then the block is accelerating in the +x (rightward)
direction.

10. The free-body diagram for the block is shown below, with F being the force applied
to the block, FN the normal force of the floor on the block, mg the force of gravity, and

f the force of friction. We take the +x direction to be horizontal to the right and the +y

direction to be up. The equations for the x and the y components of the force according to
Newton’s second law are:

F. =Fcosf—f=ma f(—cﬁn

F,=Fsinf0+F,—-mg=0.

Y mg
Now f =uFn, and the second equation above gives Fy = mg — Fsind, which yields
f =u,(mg—Fsin@). This expression is substituted for f'in the first equation to obtain

F cos 0— py (mg — F sin 6) = ma,
so the acceleration is

a= E(cos O+ 1, sin 0)— u,g.
m
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(a) If 1, =0.600 and gz, =0.500, then the magnitude of f has a maximum value of
Symax = 1,y =(0.600)(mg —0.500mg sin 20°) = 0.497mg.

On the other hand, F cos@ =0.500mg cos20°=0.470mg. Therefore, Fcos@ < f _ and

§,max

the block remains stationary with a =0.
(b) If 1, =0.400 and g, =0.300, then the magnitude of f has a maximum value of
Somax = . Fy =(0.400)(mg —0.500mg sin 20°) = 0.332mg.

In this case, F'cos@ =0.500mg cos20° =0.470mg > f, Therefore, the acceleration of

the block is

,max °

a =£(cos O+, sin 0) — . g
m

=(0.500)(9.80 m/sz)[cos 20°+(0.300)sin 20°] —(0.300)(9.80 m/s*)
=2.17 m/s>.

11. (a) The free-body diagram for the crate is shown below.

Yong
T is the tension force of the rope on the crate, F) is the normal force of the floor on the

crate, mg is the force of gravity, and /7 is the force of friction. We take the +x direction
to be horizontal to the right and the +y direction to be up. We assume the crate is
motionless. The equations for the x and the y components of the force according to
Newton’s second law are:
Tcos 0—f=0
T'sin@+F,-mg=0

where 8= 15° is the angle between the rope and the horizontal. The first equation gives f
= T cos @ and the second gives Fy = mg — T sin 6. If the crate is to remain at rest, f must
be less than u Fy, or T cos 8 < u; (mg — T sind). When the tension force is sufficient to
just start the crate moving, we must have
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T cos 0=y, (mg — T sin 6).
We solve for the tension:

0.50) (68 kg) (9.8 m/s’
r=—~"8 (050) (68 ke)( oo ):3O4Nz3.0><102N.
cos @+ u sin 0 cos 15° +0.50 sin 15°

(b) The second law equations for the moving crate are

Tcos O—f=ma
Fy+ Tsin 6—mg=0.

Now f =wFy, and the second equation gives Fy = mg — Tsinf, which yields
f =u,(mg—Tsinf). This expression is substituted for fin the first equation to obtain

T cos O— py (mg— T sin 6) = ma,

so the acceleration is

T (cos 0+ p, sin 0)

a= —HE -
m

Numerically, it is given by

304 N)(cos15° + 035 sin 15°
ot )(°°S68 1: sin 15%) _ (035)(98 m/s) = 13 m/s".
g

12. There is no acceleration, so the (upward) static friction forces (there are four of them,
one for each thumb and one for each set of opposing fingers) equals the magnitude of the
(downward) pull of gravity. Using Eq. 6-1, we have

du F, =mg=(79kg)(9.8 m/s?)
which, with s, = 0.70, yields Fy=2.8 x 10* N.

13. We denote the magnitude of 110 N force exerted by the worker on the crate as F. The

magnitude of the static frictional force can vary between zero and f .. = i F) .

(a) In this case, application of Newton’s second law in the vertical direction yields
F, =mg . Thus,

fo o = M Fy = pmg =(0.37)(35kg)(9.8m/s*) =1.3x10° N

which is greater than F.
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(b) The block, which is initially at rest, stays at rest since F' < f; max. Thus, it does not
move.

(c) By applying Newton’s second law to the horizontal direction, the magnitude of the
frictional force exerted on the crate is f, =1.1x10*> N.

(d) Denoting the upward force exerted by the second worker as F», then application of
Newton’s second law in the vertical direction yields Fy= mg — F», which leads to

j.;,max :lusFN :lus(mg_F;) :

In order to move the crate, F' must satisfy the condition F'> f; . = s (mg — F>) ,
or

110N > (0.37)[ (35kg)(9.8m/s’) - F, |.

The minimum value of F, that satisfies this inequality is a value slightly bigger than
45.7 N, so we express our answer as 2 min = 46 N.

(e) In this final case, moving the crate requires a greater horizontal push from the worker
than static friction (as computed in part (a)) can resist. Thus, Newton’s law in the

horizontal direction leads to

F+F > f = 110 N+F, >1269 N

which leads (after appropriate rounding) to F» min = 17 N.

14. (a) Using the result obtained in Sample Problem — “Friction, applied force at an
angle,” the maximum angle for which static friction applies is

0. =tan" g =tan' 0.63 ~ 32°.
This is greater than the dip angle in the problem, so the block does not slide.
(b) Applying Newton’s second law, we have

F+mgsin 0—f =ma=0

§, max

F, —mgcos 8 = 0.

Along with Eq. 6-1 (f5, max = t4Fy) we have enough information to solve for F. With
0 =24°and m = 1.8 x 10" kg, we find

F=mg(u,cos@—sinf)=3.0x10" N.
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15. An excellent discussion and equation development related to this problem is given in
Sample Problem — “Friction, applied force at an angle.” We merely quote (and apply)
their main result:

0 =tan ' g =tan"'0.04 ~ 2°.

16. (a) In this situation, we take f . to point uphill and to be equal to its maximum value,
in which case f; max = 4 F), applies, where g, = 0.25. Applying Newton’s second law to
the block of mass m = W/g = 8.2 kg, in the x and y directions, produces

F

min 1

—-mgsin@+f . =ma=0

F, —mgcos 8=10
which (with 8= 20°) leads to

F,

min 1

— mg(sin @+ u, cos9)=8.6 N.

(b) Now we take fs to point downhill and to be equal to its maximum value, in which

case fs. max = M:Fy applies, where g = 0.25. Applying Newton’s second law to the block
of mass m = W/g = 8.2 kg, in the x and y directions, produces

F

min 2

=mgsin 0—f . =ma=0

Fy,—mgcos 0= 0
which (with = 20°) leads to

F

min 2

=mg (sin O+ y, cos @) = 46 N.

A value slightly larger than the “exact” result of this calculation is required to make it
accelerate uphill, but since we quote our results here to two significant figures, 46 N is a
“good enough” answer.

(c) Finally, we are dealing with kinetic friction (pointing downbhill), so that

0=F-mgsin@-f, =ma
0=F, —mgcosd

along with f; = 4F'n (Where 4 = 0.15) brings us to
F =mg (sin @ + u, cos §) =39 N..

17. If the block is sliding then we compute the kinetic friction from Eq. 6-2; if it is not
sliding, then we determine the extent of static friction from applying Newton’s law, with
zero acceleration, to the x axis (which is parallel to the incline surface). The question of



226 CHAPTER 6

whether or not it is sliding is therefore crucial, and depends on the maximum static
friction force, as calculated from Eq. 6-1. The forces are resolved in the incline plane
coordinate system in Figure 6-5 in the textbook. The acceleration, if there is any, is along
the x axis, and we are taking uphill as +x. The net force along the y axis, then, is certainly
zero, which provides the following relationship:

ZF’y=O = F,=Wcos @

where W = mg = 45 N is the weight of the block, and &= 15° is the incline angle. Thus,
Fy=43.5N, which implies that the maximum static friction force should be

ﬁ,max = (050) (435 N) =21.7N.
(a) For P = (5.0 N)i , Newton’s second law, applied to the x axis becomes
f—|P|-mgsinf@=ma.

Here we are assuming f is pointing uphill, as shown in Figure 6-5, and if it turns out that

it points downhill (which is a possibility), then the result for f; will be negative. If /= f;
then a = 0, we obtain

f,=| P|+mgsind=5.0 N + (43.5 N)sin15° =17 N,

orfs =7 N)i . This is clearly allowed since £, is less than f; max.

s

(b) For P = (-8.0 N)i, we obtain (from the same equation) ]78 =(20 N)i , which is still
allowed since it is less than f; max.

(c) But for P = (-15 N)i, we obtain (from the same equation) f; = 27 N, which is not

allowed since it is larger than f; max. Thus, we conclude that it is the kinetic friction
instead of the static friction that is relevant in this case. The result is

f. = 1, Fyi=(0.34)(43.5 N)i=(15 N)i.
18. (a) We apply Newton’s second law to the “downhill” direction:
mgsinf—f=ma,

where, using Eq. 6-11,
f=fi= Fy= pymgcost.

Thus, with 24 = 0.600, we have
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a = gsinf— pycos@=—3.72 m/s*
which means, since we have chosen the positive direction in the direction of motion

(down the slope) then the acceleration vector points “uphill”; it is decelerating. With
v, =18.0 m/s and Ax = d = 24.0 m, Eq. 2-16 leads to

v=4lvi +2ad =12.1 m/s.

(b) In this case, we find a = +1.1 m/s*, and the speed (when impact occurs) is 19.4 mys.

19. (a) The free-body diagram for the block is shown below.
AT

A
’
\ A=

Y mg
F is the applied force, ﬁN is the normal force of the wall on the block, j? is the force of
friction, and mg is the force of gravity. To determine whether the block falls, we find the
magnitude f of the force of friction required to hold it without accelerating and also find
the normal force of the wall on the block. We compare f'and gFy. If f< wFy, the block
does not slide on the wall but if /> xFl, the block does slide. The horizontal component
of Newton’s second law is ¥ —Fy =0, so Fy=F =12 N and

1Fy=(0.60)(12 N)=7.2 N.

The vertical component is f—mg =0, so f=mg = 5.0 N. Since /< uFy the block does not
slide.

(b) Since the block does not move, /= 5.0 N and Fy = 12 N. The force of the wall on the
block is

E, =—F,i+fj=-(12N)i+(5.0N)j
where the axes are as shown on Fig. 6-26 of the text.
20. Treating the two boxes as a single system of total mass mc + myw=1.0 + 3.0 = 4.0 kg,

subject to a total (leftward) friction of magnitude 2.0 N + 4.0 N = 6.0 N, we apply
Newton’s second law (with +x rightward):
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F-—f. =m.a = 120N-6.0N=(4.0kg)

which yields the acceleration a = 1.5 m/s>. We have treated F as if it were known to the
nearest tenth of a Newton so that our acceleration is “good” to two significant figures.
Turning our attention to the larger box (the Wheaties box of mass mw = 3.0 kg) we apply
Newton’s second law to find the contact force F’ exerted by the Cheerios box on it.

F'—fy=mya = F-40N=(3.0kg)(1.5m/s%).
From the above equation, we find the contact force to be /"= 8.5 N.

21. Fig.ure 6-4 in the textbook shows a similar situation (using ¢ for the unknown angle)
along with a free-body diagram. We use the same coordinate system as in that figure.

(a) Thus, Newton’s second law leads to

X: Tcosg— f=ma
y: Tsing+F, —mg=0

Setting @ = 0 and f = fimax = Fn, We solve for the mass of the box-and-sand (as a

function of angle):
m= Z(sin¢+ COS¢]
g Ky

which we will solve with calculus techniques (to find the angle ¢, corresponding to the
maximum mass that can be pulled).

d_m:z(cos¢m_51n¢m]:0
dt g My

This leads to tan ¢ = x, which (for ¢, =035) yields ¢, =19°.

(b) Plugging our value for ¢  into the equation we found for the mass of the box-and-
sand yields m = 340 kg. This corresponds to a weight of mg =3.3 x 10° N.

22. The free-body diagram for the sled is shown below, with F being the force applied to
the sled, FN the normal force of the inclined plane on the sled, mg the force of gravity,

and f the force of friction. We take the +x direction to be along the inclined plane and

the +y direction to be in its normal direction. The equations for the x and the y
components of the force according to Newton’s second law are:
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=F,—mgcosf=0.

F =F—f-mgsin@=ma=0
F-F T

Now f=uFy, and the second equation gives Fiy = mgcos@, which yields f = umgcosé.
This expression is substituted for f'in the first equation to obtain

F=mg(sin@+ pcosb)

From the figure, we see that ' =2.0 N when £ =0 . This implies mgsind=2.0 N.
Similarly, we also find F =5.0 N when £=0.5:

5.0 N=mg(sin@+0.50cos @) =2.0 N +0.50mg cos @

which yields mg cos@ = 6.0 N. Combining the two results, we get

tan @ = = 0=18°.

o
W | —

23. Let the tensions on the strings connecting m, and m3 be 7,3 and that connecting m;
and m; be T, respectively. Applying Newton’s second law (and Eq. 6-2, with Fiy = myg
in this case) to the system we have
myg —T,; =mya
Ty —umg—T,=ma
T, —mg=ma

Adding up the three equations and using m, = M ,m, = m, =2M , we obtain
2Mg — 2 Mg — Mg = SMa .

With a = 0.500 m/s” this yields z4 = 0.372. Thus, the coefficient of kinetic friction is
roughly 24 = 0.37.

24. We find the acceleration from the slope of the graph (recall Eq. 2-11): a = 4.5 m/s”.
Thus, Newton’s second law leads to
F— tumg = ma,

where F'=40.0 N is the constant horizontal force applied. With m = 4.1 kg, we arrive at
M = 0.54.
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25. The free-body diagrams for block B and for the knot just above block 4 are shown

below. N
A F,
7 T,
< >
\ 4 mgg’

T] is the tension force of the rope pulling on block B or pulling on the knot (as the case
may be), f; is the tension force exerted by the second rope (at angle €= 30°) on the knot,
f is the force of static friction exerted by the horizontal surface on block B, F) is

normal force exerted by the surface on block B, W, is the weight of block 4 (W, is the
magnitude of m,g), and Wj is the weight of block B (Wp = 711 N is the magnitude of

myg).

For each object we take +x horizontally rightward and +y upward. Applying Newton’s
second law in the x and y directions for block B and then doing the same for the knot
results in four equations:

Yl_jjv,maxzo
F,-W,=0
T,cos0-T,=0

I,sn@-W,=0

where we assume the static friction to be at its maximum value (permitting us to use Eq.
6-1). Solving these equations with z = 0.25, we obtain W, =103 N~1.0x10*> N.

26. (a) Applying Newton’s second law to the system (of total mass M = 60.0 kg) and
using Eq. 6-2 (with Fiy = Mg in this case) we obtain

F— Mg =Ma = a=0.473 m/s".
Next, we examine the forces just on m; and find F3, = ms(a + g) = 147 N. If the

algebra steps are done more systematically, one ends up with the interesting relationship:
F,, =(m,/ M)F (which is independent of the friction!).

(b) As remarked at the end of our solution to part (a), the result does not depend on the
frictional parameters. The answer here is the same as in part (a).
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27. First, we check to see whether the bodies start to move. We assume they remain at
rest and compute the force of (static) friction that holds them there, and compare its
magnitude with the maximum value yFy. The free-body diagrams are shown below.

T

B

mAg) mgg

T is the magnitude of the tension force of the string, f/'is the magnitude of the force of
friction on body 4, Fy is the magnitude of the normal force of the plane on body 4, m g

is the force of gravity on body 4 (with magnitude W, = 102 N), and m,g is the force of
gravity on body B (with magnitude W3 = 32 N). 8= 40° is the angle of incline. We are
not told the direction of f but we assume it is downbhill. If we obtain a negative result for
£, then we know the force is actually up the plane.

(a) For 4 we take the +x to be uphill and +y to be in the direction of the normal force. The
x and y components of Newton’s second law become

T—f-W,sinf=0
Fy—W,cos 0= 0.

Taking the positive direction to be downward for body B, Newton’s second law leads to
W, — T = 0. Solving these three equations leads to

f=W,-W,sin0 =32 N-(102 N)sin40°= —34 N

(indicating that the force of friction is uphill) and to

F, =W, cos 8= (102 N) cos 40° = 78N

which means that
frmax = MsFn = (0.56) (78 N) = 44 N.

Since the magnitude f of the force of friction that holds the bodies motionless is less than
fs.max the bodies remain at rest. The acceleration is zero.

(b) Since 4 is moving up the incline, the force of friction is downhill with
magnitude f, = 1, F, . Newton’s second law, using the same coordinates as in part (a),

leads to
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T—f —W,sin0=mya
F,—W,cos0=0
W,—T=mga

for the two bodies. We solve for the acceleration:
W, —W,sin — uW, cos @ 32N —(102N)sin 40° - (0.25)(102N)cos 40°
B my +m, B (32N+102N) /(9.8 m/s?)

= -39 m/sz.

The acceleration is down the plane, that is, @ =(-3.9 m/ sz){ , which is to say (since the

a

initial velocity was uphill) that the objects are slowing down. We note that m = W/g has
been used to calculate the masses in the calculation above.

(c) Now body 4 is initially moving down the plane, so the force of friction is uphill with
magnitude f, =, F, . The force equations become

T+f, —W,sin@=m,a
F,—W,cos0=0
W,—-T = mza
which we solve to obtain

W, —W,sin @+ uW,cos & 32N — (102N)sin 40° + (0.25)(102N)cos 40°
a = =
my +m, (32N+102N) / (9.8 m/s’)
= -1.0m/s”.

The acceleration is again downhill the plane, that is, @ =(—1.0 m/ sz)i. In this case, the
objects are speeding up.

28. The free-body diagrams are shown below.

~|
>

mggv

T is the magnitude of the tension force of the string, fis the magnitude of the force of
friction on block A, Fy is the magnitude of the normal force of the plane on block 4, m g
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is the force of gravity on body 4 (where m, = 10 kg), and m,g is the force of gravity on

block B. 8= 30° is the angle of incline. For 4 we take the +x to be uphill and +y to be in
the direction of the normal force; the positive direction is chosen downward for block B.

Since 4 is moving down the incline, the force of friction is uphill with magnitude f; =
Fy (where 14 = 0.20). Newton’s second law leads to

T—f, +m,gsin@ =mua=0
F,—m,gcosf =0

myg—T =mza=0

for the two bodies (where a = 0 is a consequence of the velocity being constant). We
solve these for the mass of block B.

my=m, (sin@— u, cos§)=3.3 kg.

29. (a) Free-body diagrams for the blocks 4 and C, considered as a single object, and for
the block B are shown below.

, AT
AFy
f T
<« ! ®
F
F_> —>
V gAC VFgB

T is the magnitude of the tension force of the rope, Fi is the magnitude of the normal
force of the table on block A4, f is the magnitude of the force of friction, W,¢ is the

combined weight of blocks 4 and C (the magnitude of force ﬁg 4c shown in the figure),
and Wp is the weight of block B (the magnitude of force ﬁ; » shown). Assume the blocks

are not moving. For the blocks on the table we take the x axis to be to the right and the y
axis to be upward. From Newton’s second law, we have

X component: T-f=0

y component:  Fy— Wyc=0.
For block B take the downward direction to be positive. Then Newton’s second law for
that block is Wz — T = 0. The third equation gives 7 = Wy and the first gives f= T = Wj.

The second equation gives Fiy = Wc. If sliding is not to occur, f must be less than u Fl,
or Wg < us Wyc. The smallest that W4 can be with the blocks still at rest is
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Wac= Wplps = (22 N)/(0.20) = 110 N.
Since the weight of block A4 is 44 N, the least weight for Cis (110 —44) N = 66 N.

(b) The second law equations become

T—f=Wiga
FN— WA =0
WB*T:(WB/g)a.

In addition, /= w4Fy. The second equation gives Fy = Wy, so f= w4W,. The third gives T
= Wp— (Ws/g)a. Substituting these two expressions into the first equation, we obtain

Wy — (Wslg)a— uWs=(Wig)a.
Therefore,
g(Wy — ww,) (9.8 m/s*)(22N —(0.15)(44 N))
W+ Ww, 44N +22 N

=23 m/s’.

30. We use the familiar horizontal and vertical axes for x and y directions, with rightward
and upward positive, respectively. The rope is assumed massless so that the force exerted

by the child F is identical to the tension uniformly through the rope. The x and y

components of F are Fcos® and Fsin6), respectively. The static friction force points
leftward.

(a) Newton’s Law applied to the y-axis, where there is presumed to be no acceleration,
leads to
F,+Fsinf-mg=0

which implies that the maximum static friction is g(mg — F sin ). If f; = f; max 1S
assumed, then Newton’s second law applied to the x axis (which also has @ = 0 even
though it is “verging” on moving) yields

Fcos@— f,=ma = Fcos 8—pu (mg—Fsind) =0

which we solve, for €= 42° and g, = 0.42, to obtain F'= 74 N.
(b) Solving the above equation algebraically for F, with /¥ denoting the weight, we obtain

P uw _ (042)(180N) 76 N
cos@+ using cos@+(0.42) sind cosf+(0.42) sind '

(c) We minimize the above expression for F' by working through the condition:
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dF _ uW(sinf - ucost) 0
df  (cos@+p, sin )

which leads to the result &= tan™! s =23°.

(d) Plugging &= 23° into the above result for F, with g = 0.42 and W = 180 N, yields
F=70N.

31. The free-body diagrams for the two blocks are shown below. T is the magnitude of
the tension force of the string, F,,is the normal force on block 4 (the leading block),

F,, is the normal force on block B, £, is kinetic friction force on block 4, f, is kinetic

friction force on block B. Also, my is the mass of block 4 (where m, = W,/g and W, = 3.6
N), and mj is the mass of block B (where mp = Wp/g and Wy = 7.2 N). The angle of the
incline is 8= 30°.

—
FNB

mﬁg

For each block we take +x downhill (which is toward the lower-left in these diagrams)
and +y in the direction of the normal force. Applying Newton’s second law to the x and y
directions of both blocks 4 and B, we arrive at four equations:

W,sin@—f,-T=m,
F,,—W,cos0=0
Wysin@—f,+T =mza
Fy—W,cos60=0

which, when combined with Eq. 6-2 ( f, = 4, ,F,where 1 4 = 0.10 and f, = 1, F\, /3

where 14 5 = 0.20), fully describe the dynamics of the system so long as the blocks have
the same acceleration and 7> 0.

(a) From these equations, we find the acceleration to be

a=g|sind— Wy Wy cosé [=3.5 m/s’.
W,+W,
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(b) We solve the above equations for the tension and obtain

ww,
T=| —+£- - cosé=0.21 N.
(WA +WB] (/ukB :UkA)
Note: The tension in the string is proportional to g, , — 4, ,, the difference in coefficients
of kinetic friction for the two blocks. When the coefficients are equal (, , = 1, ,), the

two blocks can be viewed as moving independent of one another and the tension is zero.
Similarly, when g, , < g, , (the leading block A has larger coefficient than the B), the

string is slack, so the tension is also zero.

32. The free-body diagram for the block is shown below, with F being the force applied
to the block, F, v the normal force of the floor on the block, mg the force of gravity, and

/; the force of friction.

We take the +x direction to be horizontal to the right and the +y direction to be up. The
equations for the x and the y components of the force according to Newton’s second law
are:

F =Fcos@—f=ma
F,=F,-Fsinf-mg=0

Now f=uFy, and the second equation gives Fy = mg + Fsiné, which yields
f=u,(mg+Fsinb).
This expression is substituted for f'in the first equation to obtain

F cos 0— 1y (mg + F sin 6) = ma,
so the acceleration is

a :E(cosé’—,uk sin@) - 4,8
m

From the figure, we see that @ =3.0 m/s® when g, = 0. This implies
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3.0m/s? = Ecos 6.
m

We also find a =0 when g, =0.20:

0= E(cos 60— (0.20) sin 8)— (0.20)(9.8 m/s*) =3.00 m/s’ — 020 sin 0-1.96 ms”
m m

=1.04 m/s* —O.ZOEsin 0

m

which yields 5.2 m/s”* = Esin 6. Combining the two results, we get
m

2
ang=| 225|173 = 6=60°.
3.0 m/s

33. We denote the magnitude of the frictional force av, where o =70 N-s/m. We take

o : . . dv
the direction of the boat’s motion to be positive. Newton’s second law gives —av = m—

dt’
Thus,
vdv a !
—=—— dt
—=——1,

Yo

where vy is the velocity at time zero and v is the velocity at time 7. The integrals are
evaluated with the result
In (lj __atl
v m
We take v = vy/2 and solve for time:
t=-"m| 2 |= —ﬁln[lJ = —Mln(lj =99s.
a \v, a \2 70N-s/m \2

34. The free-body diagrams for the slab and block are shown below.

A FNS A FN/;
. F f
f <>
<—9 slab block
lFNh v mbg
msg
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F' is the 100 N force applied to the block, F,, is the normal force of the floor on the slab,

F, 1s the magnitude of the normal force between the slab and the block, 1 is the force

of friction between the slab and the block, m; is the mass of the slab, and m;, is the mass
of the block. For both objects, we take the +x direction to be to the right and the +y
direction to be up.

Applying Newton’s second law for the x and y axes for (first) the slab and (second) the
block results in four equations:

_f:msas
FNS_FNs_msgzo

f-F =mya,
Fy,—m,g =0

from which we note that the maximum possible static friction magnitude would be
wF,, =umg=(0.60)(10 kg)(9.8 m/s’)=59 N .

We check to see whether the block slides on the slab. Assuming it does not, then a; = a;
(which we denote simply as a) and we solve for f:

mF (40 kg)(100N)
m +m,  40kg+10kg

80N

which is greater than f; max so that we conclude the block is sliding across the slab (their
accelerations are different).

(a) Using = w4 F),, the above equations yield

4 = Hmg —F _ (0.40)(10 kg)(9.8 m/s*)—100 N

A =-6.1 m/s’.
m, 10 kg

The negative sign means that the acceleration is leftward. That is, g, =(-6.1 m/ sz)f .

(b) We also obtain
_ mymyg  (0.40)(10 kg)(9.8 m/s’)
’ m 40 kg

N

—0.98 m/s>.

As mentioned above, this means it accelerates to the left. Thatis, @, =(-0.98 m/ $2)i.
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35. The free-body diagrams for the two blocks, treated individually, are shown below
(first m and then M). F"is the contact force between the two blocks, and the static friction

force ji is at its maximum value (so Eq. 6-1 leads to f; = fs max = 4F" where g4 = 0.38).

Treating the two blocks together as a single system (sliding across a frictionless floor),
we apply Newton’s second law (with +x rightward) to find an expression for the
acceleration:

F=m, a :>a=m+M

Aﬁf Fy

F
< > +—>

mg .
Ymg Y Mg

This is equivalent to having analyzed the two blocks individually and then combined
their equations. Now, when we analyze the small block individually, we apply Newton’s
second law to the x and y axes, substitute in the above expression for a, and use Eq. 6-1.

F-F'=ma = F':F—m( r j
m+M

fi-mg=0 = uF'-mg=0.

These expressions are combined (to eliminate F”) and we arrive at

F=—"8 = 4.9x10° N.
__m
,us( m+ M )
. 2m g C .
36. Using Eq. 6-16, we solve for the area Aﬁ, which illustrates the inverse
PV,

proportionality between the area and the speed-squared. Thus, when we set up a ratio of
areas, of the slower case to the faster case, we obtain

2
Ay _(310km/hY o
A 160 km/ h

fast

37. In the solution to exercise 4, we found that the force provided by the wind needed to
equal F'= 157 N (where that last figure is not “significant’’).



240 CHAPTER 6

(a) Setting F' = D (for Drag force) we use Eq. 6-14 to find the wind speed v along the
ground (which actually is relative to the moving stone, but we assume the stone is
moving slowly enough that this does not invalidate the result):

V= 2F = 2(157 z\]) —=90 m/s =3.2x10? km/h.
CpA (0.80)(1.21 kg/m”)(0.040 m"~)

b) Doubling our previous result, we find the reported speed to be 6.5 x 10> km/h.
( g our p p P

(c) The result is not reasonable for a terrestrial storm. A category 5 hurricane has speeds
on the order of 2.6 x 10% m/s.

38. (a) From Table 6-1 and Eq. 6-16, we have

2F,
v= |5 = Cpd=2"%
CpA 12

where v, = 60 m/s. We estimate the pilot’s mass at about m = 70 kg. Now, we convert v =
1300(1000/3600) = 360 m/s and plug into Eq. 6-14:

2
D=%CpAv2 =% (2m—§J v? =mg (1]

! Vt

which yields D = (70 kg)(9.8 m/s*)(360/60)* ~ 2 x 10* N.

(b) We assume the mass of the ejection seat is roughly equal to the mass of the pilot.
Thus, Newton’s second law (in the horizontal direction) applied to this system of mass
2m gives the magnitude of acceleration:

2
D g(v
=—==—| =18
|a| 2m 2[1/[] g

39. For the passenger jet D, =5 CplAv_f. , and for the prop-driven transport D, =1 C P AV,
where p, and p, represent the air density at 10 km and 5.0 km, respectively. Thus the
ratio in question is

D, pp* (038 kg/m*)(1000 km/h)’ 25
D, p;  (0.67 kg/m’)(500 km/h)

40. This problem involves Newton’s second law for motion along the slope.
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(a) The force along the slope is given by

F, =mgsin0— uF, =mgsin 0 — umg cos @ = mg(sin & — pi cos 0)
=(85.0kg)(9.80 m/sz)[sin 40.0°—(0.04000) cos 40.0°]
=510 N.

Thus, the terminal speed of the skier is

2F
v =, |8 = 2(5101‘? —=66.0 m/s.
CpA  \(0.150)(1.20 kg/m*)(1.30 m?)

(b) Differentiating v, with respect to C, we obtain

2F
dv,=—L | coge= L 2010N) g 150)*24c
2\ p4 2 (1.20 kg/m®)(1.30 m?)

=—(2.20x10> m/s)dC.

41. Perhaps surprisingly, the equations pertaining to this situation are exactly those in
Sample Problem — “Car in flat circular turn,” although the logic is a little different. In the
Sample Problem, the car moves along a (stationary) road, whereas in this problem the cat
is stationary relative to the merry-go-round platform. But the static friction plays the
same role in both cases since the bottom-most point of the car tire is instantaneously at
rest with respect to the race track, just as static friction applies to the contact surface
between cat and platform. Using Eq. 6-23 with Eq. 4-35, we find

us= (2aR/T Y /gR = 42R/gT*.
With 7= 6.0 s and R = 5.4 m, we obtain 4 = 0.60.

42. The magnitude of the acceleration of the car as he rounds the curve is given by V/R,
where v is the speed of the car and R is the radius of the curve. Since the road is
horizontal, only the frictional force of the road on the tires makes this acceleration
possible. The horizontal component of Newton’s second law is /' = mv*/R. If Fy is the
normal force of the road on the car and m is the mass of the car, the vertical component of
Newton’s second law leads to Fy = mg. Thus, using Eq. 6-1, the maximum value of static
friction is
Ssmax = s Fn = psmg.

If the car does not slip, /< ymg. This means

2

% Spg = v<uRg.
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Consequently, the maximum speed with which the car can round the curve without
slipping is

Vo =\ 1R =+/(0.60)(30.5 m)(9.8 m/s*) =13 m/s ~ 48 km/h.

43. The magnitude of the acceleration of the cyclist as it rounds the curve is given by v*/R,
where v is the speed of the cyclist and R is the radius of the curve. Since the road is
horizontal, only the frictional force of the road on the tires makes this acceleration
possible. The horizontal component of Newton’s second law is = mv*/R. If Fy is the
normal force of the road on the bicycle and m is the mass of the bicycle and rider, the
vertical component of Newton’s second law leads to Fy = mg. Thus, using Eq. 6-1, the
maximum value of static friction 1S fsmax = s Fiy = psmg. 1f the bicycle does not slip, /<

tsmg. This means
2 2
L <pug = R22
R .8

Consequently, the minimum radius with which a cyclist moving at 29 km/h = 8.1 m/s can
round the curve without slipping is

Vv 8dms)Y
" g (0.32)(9.8 m/s?)

44. With v =96.6 km/h = 26.8 m/s, Eq. 6-17 readily yields

_ vV (26.8 m/s)’

R 7.6 m

=94.7 m/s*

which we express as a multiple of g:

L), 94.7 m/s’ o7
g) % (osoms? )87 08

45. The free-body diagrams of the student at the top and bottom of the Ferris wheel are
shown below. At the top (the highest point in the circular motion) the seat pushes up on
the student with a force of magnitude Fly,.p, while the Earth pulls down with a force of
magnitude mg. Newton’s second law for the radial direction gives

2
my

mg_ N.,top =

R

At the bottom of the ride, F, is the magnitude of the upward force exerted by the

N,bottom
seat. The net force toward the center of the circle is (choosing upward as the positive
direction):
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LS}

FN,bottom _mg =

The Ferris wheel is “steadily rotating” so the value F. =mv’ /R is the same everywhere.

The apparent weight of the student is given by F,.

— - RN
F -~ AN
N,top // N
top / AN
- - - /
e \\ / \\
// N /
/ A I ‘
/ N | |
! K ‘ F. /
! g \ N,bottom /
\ ’
| mg | " ,
| N\ /
\ i N s
\ / \\ ~ - //
\ / - —
\ / bottom
\ /
N s’
= - mg

(a) At the top, we are told that Fiy o, = 556 N and mg = 667 N. This means that the seat is
pushing up with a force that is smaller than the student’s weight, and we say the student

experiences a decrease in his “apparent weight” at the highest point. Thus, he feels
“light.”

(b) From (a), we find the centripetal force to be

mv2
F =
R

=mg—F, ., =667TN-556 N=111N.
Thus, the normal force at the bottom is

2
my

:T+mg:Fc+mg:111N+667N=778 N.

N ,bottom

(c) If the speed is doubled, F'=

2
@ =4(111N) =444 N. Therefore, at the highest

point we have
F!

N, top

=mg—F'=667N-444N=223N.
(d) Similarly, the normal force at the lowest point is now found to be

i
F N ,bottom

=F'+mg=444N+667N=1111N~1.11x10° N.

Note: The apparent weight of the student is the greatest at the bottom and smallest at the
top of the ride. The speed v=./gR would result in F,

sudden sensation of “weightlessness” at the top of the ride.

=0, giving the student a

top
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46. (a) We note that the speed 80.0 km/h in SI units is roughly 22.2 m/s. The horizontal
force that keeps her from sliding must equal the centripetal force (Eq. 6-18), and the
upward force on her must equal mg. Thus,

Foet =\/(mg)* + (mv*/R)* =547 N.

(b) The angle is tanﬁl[(mvz/R)/(mg)] = tanfl(vz/gR) = 9.53° (as measured from a vertical
axis).

47. (a) Equation 4-35 gives 7= 27zR/v =2(10 m)/(6.1 m/s) = 10 s.

(b) The situation is similar to that of Sample Problem — “Vertical circular loop, Diavolo,”
but with the normal force direction reversed. Adapting Eq. 6-19, we find

Fy=m(g—Vv/R)=486 N ~4.9 x 10° N.
(c) Now we reverse both the normal force direction and the acceleration direction (from

what is shown in Sample Problem — “Vertical circular loop, Diavolo”) and adapt Eq. 6-19
accordingly. Thus we obtain

Fy=m(g +v*/R)=1081 N ~ 1.1 kN.
48. We will start by assuming that the normal force (on the car from the rail) points up.
Note that gravity points down, and the y axis is chosen positive upward. Also, the

direction to the center of the circle (the direction of centripetal acceleration) is down.
Thus, Newton’s second law leads to

2
Fy —mg:m{—v—].
r

(a) When v =11 m/s, we obtain Fy=3.7 x 10° N.
(b) F“N points upward.
(c) When v = 14 m/s, we obtain Fy=—1.3 x 10° N, or | Fy|=1.3 x 10° N.

(d) The fact that this answer is negative means that F v points opposite to what we had

assumed. Thus, the magnitude of F“N is |ﬁN |=1.3 kN and its direction is down.

49. At the top of the hill, the situation is similar to that of Sample Problem — “Vertical
circular loop, Diavolo,” but with the normal force direction reversed. Adapting Eq. 6-19,
we find

Fy = m(g—Vv/R).
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Since Fy = 0 there (as stated in the problem) then v* = gR. Later, at the bottom of the

valley, we reverse both the normal force direction and the acceleration direction (from

what is shown in the Sample Problem) and adapt Eq. 6-19 accordingly. Thus we obtain
Fy=m(g +v/R)=2mg=1372 N~ 1.37 x 10> N.

50. The centripetal force on the passenger is F =mv’ /r .

(a) The slope of the plot at v=8.30 m/s is

a
dv

2my _ 2(85.0kg)(8.30 m/s)

v=8.30 m/s 3.50 m

=403 N-s/m.

v=8.30 m/s r

(b) The period of the circular ride is 7 =2zr/v. Thus,

2

mv*  m(2zr\  Arnimr
F = = — = 3

r r\ T T
and the variation of F' with respect to 7" while holding » constant is

872 mr
T3

dF =— dT.

The slope of the plotat 7 =2.50s is

d_F 872 mr

dT

_ 87°(85.0kg)(3.50m)

- —1.50x10° N/s.
T=2.50s (2.50 s)

- 3
T=2505 T

51. The free-body diagram for the airplane of mass
m is shown to the right. We note that I:“; is the force Fl cos@ f
of aerodynamic lift and @ points rightwards in the A !

figure. We also note that |d|=v’/R . Applying
Newton’s law to the axes of the problem (+x 0
rightward and +y upward) we obtain
- F,sing
F,sin@=m—
R —>
F, cos@ =mg. mg VY

2

o : v :
Eliminating mass from these equations leads to tanfd = R The equation allows us to
&

solve for the radius R.
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With v =480 km/h = 133 m/s and = 40°, we find

B v 3 (133 m/s)’
gtand (9.8 m/s’)tan40°

=2151m~2.2x10° m.

52. The situation is somewhat similar to that shown in the “loop-the-loop” example done
in the textbook (see Figure 6-10) except that, instead of a downward normal force, we are

dealing with the force of the boom F, on the car, which is capable of pointing any
direction. We will assume it to be upward as we apply Newton’s second law to the car (of
total weight 5000 N): F, —W =ma where m=W /g and a=-v'/r . Note that the

centripetal acceleration is downward (our choice for negative direction) for a body at the
top of its circular trajectory.

(a) If r=10 m and v = 5.0 m/s, we obtain Fz=3.7 x 10° N = 3.7 kN.

(b) The direction of F, » 1s up.

(c) If »=10m and v = 12 m/s, we obtain Fz=—2.3 x 10° N=-2.3 kN, or |Fp | =2.3 kN.
(d) The minus sign indicates that F, » points downward.

53. The free-body diagram (for the hand straps of mass m) is the view that a passenger
might see if she was looking forward and the streetcar was curving toward the right (so

da points rightward in the figure). We note that |@|=v> / R where v = 16 km/h = 4.4 m/s.

Applying Newton’s law to the axes of the problem (+x is rightward and +y is upward) we
obtain

|

. 7
Tsin@=m— |
R |
|

7

Tcos@ =mg.

We solve these equations for the angle:

2
6 =tan" (V—]
Rg

which yields 8= 12°. m g’

54. The centripetal force on the passenger is F =mv’ /7.

2
my

2
r

(a) The variation of F' with respect to » while holding v constant is dF = — dr.
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(b) The variation of F with respect to v while holding » constant is dF = %dv .

r

(c) The period of the circular ride is 7 =27zr/v. Thus,

e mv’ :ﬂ(brr]z _ 4722mr’

r r\ T T

and the variation of ' with respect to 7 while holding » constant is

87’ mr ) v Y my’
dF =— dT =-8x"mr| — | dT =— drT.

T 27r r?

55. We note that the period 7 is eight times the time between flashes (m s), so T =
0.0040 s. Combining Eq. 6-18 with Eq. 4-35 leads to

_4mmR _ 4(0.030 kg)r*(0.035 m)
(0.0040 )

F =26%x10°N.

56. We refer the reader to Sample Problem — “Car in banked circular turn,” and use the
result Eq. 6-26:
2
0= tan™' (V—j
gR

with v =60(1000/3600) = 17 m/s and R = 200 m. The banking angle is therefore = 8.1°.
Now we consider a vehicle taking this banked curve at v' = 40(1000/3600) = 11 m/s. Its

(horizontal) acceleration is @’ = V' */ R, which has components parallel to the incline and
perpendicular to it:
Vv cos @

a, = a' cos@ =

. V?siné
a, =a'sinf = .

These enter Newton’s second law as follows (choosing downhill as the +x direction and
away-from-incline as +y):
mgsin®d - f =ma,
F,—mgcosf =ma,
and we are led to
f.  mgsin@—mv”cosO/R

F, mgcos@+mv’sin@/R
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We cancel the mass and plug in, obtaining f,/Fy = 0.078. The problem implies we should
set f; = fsmax SO that, by Eq. 6-1, we have g, =0.078.

57. For the puck to remain at rest the magnitude of the tension force 7T of the cord must
equal the gravitational force Mg on the cylinder. The tension force supplies the
centripetal force that keeps the puck in its circular orbit, so 7= mv*/r. Thus Mg = mv*/r.
We solve for the speed:

=1.81 m/s.

e Mgr _ [(2.50kg)(9.80 m/s*)(0.200 m)
1.50kg

m

58. (a) Using the kinematic equation given in Table 2-1, the deceleration of the car is
vi=v;+2ad = 0=(35m/s)’+2a(107 m)

which gives a =—5.72 m/s”>. Thus, the force of friction required to stop the car is
f=m|a|=(1400kg)(5.72 m/s’) ~8.0x10° N.

(b) The maximum possible static friction is

S = H,mg = (0.50)(1400 kg)(9.80 m/s*) ~ 6.9x10° N.

(c) If x4, =0.40, then f, = y,mg and the deceleration is a =—y, g . Therefore, the speed
of the car when it hits the wall is

v= V2 +2ad =J(35 m/s)’ —2(0.40)(9.8 m/s>)(107 m) = 20 m/s.

(d) The force required to keep the motion circular is

P mv, _ (1400 kg)(35.0 m/s)’

) =1.6x10* N,
r 107 m

(e) Since F, > f, .., no circular path is possible.
59. The free-body diagram for the ball is shown below. f; is the tension exerted by the
upper string on the ball, T, is the tension force of the lower string, and m is the mass of

the ball. Note that the tension in the upper string is greater than the tension in the lower
string. It must balance the downward pull of gravity and the force of the lower string.
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mg

7,
(a) We take the +x direction to be leftward (toward the center of the circular orbit) and +y

upward. Since the magnitude of the acceleration is @ = V¥R, the x component of
Newton’s second law is

2
my

T, cos@+T, cosl = R

where v is the speed of the ball and R is the radius of its orbit. The y component is
T, sin@—T,sind—-mg=0.

The second equation gives the tension in the lower string: 7, =T, —mg/sin@. Since the

triangle is equilateral 8= 30.0°. Thus,

(1.34 kg)(9.80 m/s?)
sin30.0°

T,=350N- —8.74 N.

(b) The net force has magnitude

Fow =(T,+T,)cos @ =(35.0 N+8.74 N)cos 30.0° = 37.9 N.

net,str

(c) The radius of the path is
R =((1.70 m)/2)tan 30.0° = 1.47 m.

Using Fretstr = va/R, we find that the speed of the ball is

RF,
v:\/Tm: 147 mGTIN) _ o o

(d) The direction of F

net,str

is leftward (“radially inward’’).

60. The free-body diagrams for the two boxes are shown below. T is the magnitude of the
force in the rod (when T > 0 the rod is said to be in tension and when 7 < 0 the rod is

under compression), FM is the normal force on box 2 (the uncle box), 13N1 is the the

normal force on the aunt box (box 1), fl 1s kinetic friction force on the aunt box, and fz
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is kinetic friction force on the uncle box. Also, m; = 1.65 kg is the mass of the aunt box
and m; = 3.30 kg is the mass of the uncle box (which is a lot of ants!).

For each block we take +x downhill (which is toward the lower-right in these diagrams)
and +y in the direction of the normal force. Applying Newton’s second law to the x and y
directions of first box 2 and next box 1, we arrive at four equations:

mygsin@—f,-T=m, a
Fy,—m,gcosfd=0
mgsin@—f,+T =ma
Fy,—mgcos@ =0

which, when combined with Eq. 6-2 (fi = @1 Fz where g = 0.226 and f, = 1Fn, where
1o =0.113), fully describe the dynamics of the system.

(a) We solve the above equations for the tension and obtain

T:[%] (14, — 11, ) cos@ = 105 N.
mz +m1

(b) These equations lead to an acceleration equal to

a= g(sin&’—[’uzmz—chosﬁj =362 m/s’.
m, +m,

(c) Reversing the blocks is equivalent to switching the labels. We see from our algebraic
result in part (a) that this gives a negative value for 7 (equal in magnitude to the result we
got before). Thus, the situation is as it was before except that the rod is now in a state of
compression.

61. Our system consists of two blocks, one on top of the other. If we pull the bottom
block too hard, the top block will slip on the bottom one. We’re interested in the
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maximum force that can be applied such that the two will move together. The free-body
diagrams for the two blocks are shown below.

A FN,t FN,b

\N
w2

Mp

1

erg mpg
We first calculate the coefficient of static friction for the surface between the two blocks.
When the force applied is at a maximum, the frictional force between the two blocks

must also be a maximum. Since F, =12 N of force has to be applied to the top block for

—>
Fy,

slipping to take place, using F, = f, . = u F, = umg, wehave

F 12N

13

“mg (4.0kg)(9.8m/s5)

m 0.31.

Using the same reasoning, for the two masses to move together, the maximum applied
force would be

F=u(m+m)g.

(a) Substituting the value of x found above, the maximum horizontal force has a

magnitude
F=pu(m+m)g=(0.31)(4.0kg+5.0kg)(9.8m/s’)=27N

(b) The maximum acceleration is

L e=(0.31)9.8m/s’)=3.0m/s.

m, +m,

max

62. The free-body diagram for the stone is shown below, with ' being the force applied
to the stone, F, v the downward normal force of the ceiling on the stone, mg the force of

gravity, and f the force of friction. We take the +x direction to be horizontal to the right

and the +y direction to be up. The equations for the x and the y components of the force
according to Newton’s second law are:

F. =Fcos@—f=ma
F,=Fsinf0-F, —-mg=0.
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Now f =, F,, and the second equation from above gives F, = F'sinf—-mg, which
yields f =y, (Fsin@-mg).
F

This expression is substituted for fin the first equation to obtain
F cos 0— . (F sin @ —mg ) = ma.

For a =0, the force is
F — _lukmg ‘ .
cos 0— y, sin 0

With g4 =0.65, m =5.0 kg, and €= 70°, we obtain F'= 118 N.

63. (a) The free-body diagram for the person (shown as an L-shaped block) is shown
below. The force that she exerts on the rock slabs is not directly shown (since the
diagram should only show forces exerted on her), but it is related by Newton’s third law)

to the normal forces F,, and F,, exerted horizontally by the slabs onto her shoes and

back, respectively. We will show in part (b) that Fy; = Fi so that there is no ambiguity
in saying that the magnitude of her push is F,. The total upward force due to (maximum)

static friction is f = f, + f, where f, = u F,, and f, = u,F,,. The problem gives the
values 15 = 1.2 and u = 0.8.

Aﬁ

—

“— Fwn

fi
FNl —

¢—»
mg

(b) We apply Newton’s second law to the x and y axes (with +x rightward and +y upward
and there is no acceleration in either direction).
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FNl_FNz =0
S+ f,—-mg=0

The first equation tells us that the normal forces are equal: F; = Fy, = Fy. Consequently,
from Eq. 6-1,

i = wuFy
fz :/ustN

f :(ﬂ“}fz-
H o

lusl +1 f2 ng
ﬂs2

we conclude that

Therefore, f; + o — mg = 0 leads to

which (with m = 49 kg) yields 5 = 192 N. From this we find F,, = f, / u_, =240 N. This
is equal to the magnitude of the push exerted by the rock climber.

(c) From the above calculation, we find f, = 1 F,, =288 N, which amounts to a fraction

S 288
W (49) (998) 000

or 60% of her weight.
64. (a) The upward force exerted by the car on the passenger is equal to the downward

force of gravity (W = 500 N) on the passenger. So the net force does not have a vertical
contribution; it only has the contribution from the horizontal force (which is necessary for

maintaining the circular motion). Thus Iiet =F=210N.
(b) Using Eq. 6-18, we havev = \/ﬂ _ [2IONETOm) 44.0 m/s.
m 51.0kg

65. The layer of ice has a mass of

M, =(917 kg/m*) (400 mx 500 mx0.0040 m) =7.34x10° kg.

This added to the mass of the hundred stones (at 20 kg each) comes to m = 7.36 x 10° kg.
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(a) Setting F = D (for Drag force) we use Eq. 6-14 to find the wind speed v along the
ground (which actually is relative to the moving stone, but we assume the stone is
moving slowly enough that this does not invalidate the result):

oo |tumg (0.10)(7.36 x 10° kg) (9.8 m/s”) 10 ~ 60 kv
4C..p 4. \4(0.002)(1.21kg/m’)(400 x 500 m’) '

(b) Doubling our previous result, we find the reported speed to be 139 km/h.

(c) The result is reasonable for storm winds. (A category-5 hurricane has speeds on the
order of 2.6 x 10% m/s.)

66. Note that since no static friction coefficient is mentioned, we assume f; is not relevant
to this computation. We apply Newton's second law to each block's x axis, which for m;
is positive rightward and for m; is positive downhill:

T—fr = ma
myg sinfd—T = mpa .

Adding the equations, we obtain the acceleration:

m,gsinf — f,
a=—"——".
m, +m,

For fi = wk'n = pymig, we obtain

g (3.0 kg)(9.8 m/s*)sin 30°—(0.25)(2.0 kg)(9.8 m/s”)
3.0kg+2.0kg

=1.96 m/s*.

Returning this value to either of the above two equations, we find 7= 8.8 N.

67. Each side of the trough exerts a normal force on the crate. The first diagram shows
the view looking in toward a cross section.

mg
The net force is along the dashed line. Since each of the normal forces makes an angle of
45° with the dashed line, the magnitude of the resultant normal force is given by
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F, =2F, cos45°=+/2F,.

The second diagram is the free-body diagram for the crate (from a “side” view, similar to
that shown in the first picture in Fig. 6-51). The force of gravity has magnitude mg,
where m is the mass of the crate, and the magnitude of the force of friction is denoted by f.
We take the +x direction to be down the incline and +y to be in the direction of 7, . Then

the x and the y components of Newton’s second law are

X: mg sin 6— f=ma
y: Fy.—mgcos 8=0.

Since the crate is moving, each side of the trough exerts a force of kinetic friction, so the
total frictional force has magnitude

fzzﬂkFszﬂkFNr/‘/E:\/EﬂkFNw

Combining this expression with Fi,. = mg cos € and substituting into the x component
equation, we obtain

mgsin@—\/zmgcosé’= ma .
Therefore a = g(sinH—x/E,uk cosb).

68. (a) To be on the verge of sliding out means that the force of static friction is acting
“down the bank” (in the sense explained in the problem statement) with maximum

N
possible magnitude. We first consider the vector sum F of the (maximum) static
friction force and the normal force. Due to the facts that they are perpendicular and their

magnitudes are simply proportional (Eq. 6-1), we find F is at angle (measured from the
vertical axis) ¢ = 0 + 6, where tanf, = y (compare with Eq. 6-13), and & is the bank

angle (as stated in the problem). Now, the vector sum of F and the vertically downward
pull (mg) of gravity must be equal to the (horizontal) centripetal force (mv*/R), which

leads to a surprisingly simple relationship:

mvz/R_v2

mg Rg

tang =

Writing this as an expression for the maximum speed, we have

Rg(tan0+ u,)
1—p tand

Vinax =\/Rgtan(6’+tan_] H,) =\/

(b) The graph is shown below (with #1in radians):
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vmax— (m/s)
100

80

60]

40

20

———— T §
0 0.2 04 0.6 0.8

(c) Either estimating from the graph (x = 0.60, upper curve) or calculating it more
carefully leads to v =41.3 m/s = 149 km/h when 6= 10° = 0.175 radian.

(d) Similarly (for g = 0.050, the lower curve) we find v =21.2 m/s = 76.2 km/h when 6=
10° = 0.175 radian.

69. For simplicity, we denote the 70° angle as € and the magnitude of the push (80 N) as
P. The vertical forces on the block are the downward normal force exerted on it by the
ceiling, the downward pull of gravity (of magnitude mg) and the vertical component of

P (which is upward with magnitude P sin 6). Since there is no acceleration in the vertical
direction, we must have
F, =Psinf-mg

in which case the leftward-pointed kinetic friction has magnitude
Ji = 1 (Psinf—mg).
Choosing +x rightward, Newton’s second law leads to

Pcos@—u, (Psind—mg)
m

Pcos 0—f, =ma = a=

which yields a = 3.4 m/s* when z4 = 0.40 and m = 5.0 k.

70. (a) We note that R (the horizontal distance from the bob to the axis of rotation) is the
circumference of the circular path divided by 27; therefore, R = 0.94/27=0.15 m. The
angle that the cord makes with the horizontal is now easily found:

0= cos '(R/L) = cos '(0.15 m/0.90 m) = 80°.

The vertical component of the force of tension in the string is 75inéd and must equal the
downward pull of gravity (mg). Thus,
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7=""8 _040N.

sin @

Note that we are using 7 for tension (not for the period).

(b) The horizontal component of that tension must supply the centripetal force (Eq. 6-18),
so we have Tcos® = mv*/R. This gives speed v = 0.49 m/s. This divided into the
circumference gives the time for one revolution: 0.94/0.49 = 1.9 s.

71. (a) To be “on the verge of sliding” means the applied force is equal to the maximum
possible force of static friction (Eq. 6-1, with Fy = mg in this case):

omax = smg =353 N.

(b) In this case, the applied force 1? indirectly decreases the maximum possible value of
friction (since its y component causes a reduction in the normal force) as well as directly
opposing the friction force itself (because of its x component). The normal force turns
out to be

Fy=mg— Fsind

where 6= 60°, so that the horizontal equation (the x application of Newton’s second law)
becomes
FcosO— fmax = Fcos@— pus(mg — Fsind)=0 = F=39.7N.

(c) Now, the applied force F indirectly increases the maximum possible value of friction
(since its y component causes a reduction in the normal force) as well as directly
opposing the friction force itself (because of its x component). The normal force in this
case turns out to be

Fy=mg+ Fsinb,

where 8= 60°, so that the horizontal equation becomes
FcosO@— fomax = Fcos@— p(mg + Fsinf)=0 = F =320 N.
72. With 8= 40°, we apply Newton’s second law to the “downhill” direction:

mgsinf—f = ma,
f=fi= Fy = ymgcosé

using Eq. 6-12. Thus,
a=0.75 m/s* = g(sinf— yy cosO)

determines the coefficient of kinetic friction: z4= 0.74.
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73. (a) With 8= 60°, we apply Newton’s second law to the “downhill” direction:

mgsinf—f = ma

f=fi= tu Fy =ty mgcoséo.
Thus,

a=g(sin@— gy cos)=7.5 m/s".
(b) The direction of the acceleration a is down the slope.
(c) Now the friction force is in the “downhill” direction (which is our positive direction)
so that we obtain

a=g(sin@+ wcosf)=9.5 m/s’.

(d) The direction is down the slope.

74. The free-body diagram for the puck is shown on A }_7)

. = . . N
the right. F) is the normal force of the ice on the
puck, ]7 is the force of friction (in the —x direction),
and mg is the force of gravity.

<@
(a) The horizontal component of Newton’s second r
law gives —f = ma, and constant acceleration f
kinematics (Table 2-1) can be used to find the
acceleration. v mg»
Since the final velocity is zero, v’ = v, + 2ax leads to a = —v; /2x. This is substituted
into the Newton’s law equation to obtain
2 (0.110 kg)(6.0 m/s)’
pomi 2)( Lo

2x 2(15 m)

(b) The vertical component of Newton’s second law gives Fyy—mg = 0, so Fiy = mg which
implies (using Eq. 6-2) f= w4 mg. We solve for the coefficient:

f 0.13N

L. ~0.12
M mg ~ (0110 kg) (9.8 m/s?)

75. We may treat all 25 cars as a single object of mass m = 25 x 5.0 x 10* kg and (when
the speed is 30 km/h = 8.3 m/s) subject to a friction force equal to

f=25%x250x83=52x10*N.
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(a) Along the level track, this object experiences a “forward” force 7T exerted by the
locomotive, so that Newton’s second law leads to

T—f=ma = T=52x10"+(1.25x10°)(0.20)=3.0x10° N.

(b) The free-body diagram is shown below, with #as the angle of the incline.

~

Fy

mg'Y
The +x direction (which is the only direction to which we will be applying Newton’s
second law) is uphill (to the upper right in our sketch).

Thus, we obtain
T— f—mgsinf = ma

where we set a = 0 (implied by the problem statement) and solve for the angle. We obtain
6=1.2°.

76. An excellent discussion and equation development related to this problem is given in
Sample Problem — “Friction, applied force at an angle.” Using the result, we obtain

O=tan' u =tan"' 0.50 =27°
which implies that the angle through which the slope should be reduced is
@=45°-27°=20°.

77. We make use of Eq. 6-16, which yields

amg 2008
\/ Coni® = \/(1.6)(1.2)n(0.03)2 = 147 m/s.

78. (a) The coefficient of static friction is x4 = tan(6ip) = 0.577 ~0.58.

(b) Using
mgsinf—f=ma
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f=fi=mFy= ymgcosé
and a = 2d/¢* (with d =2.5 m and 7 = 4.0 s), we obtain g = 0.54.

79. The free-body diagrams for blocks 4 and B are shown below.

y FN,B
Fya \/ ¥ A
>
mygsing
m m ,gcos@ s Y
) 9 48 "4 mBg

Newton’s law gives
m,gsinf@—-T =ma

for block 4 (where 8= 30°). For block B, we have
T—f =mga.

Now the frictional force is given by f, =y F, ; = g,myg . The equations allow us to

solve for the tension 7" and the acceleration a.
(a) Combining the above equations to solve for 7, we obtain

m,npg

T (sin<9+,uk)g:(4'Okg)(2'0kg)
m,+m, 4.0kg+2.0kg

(sin30°+0.50)(9.80 m/s*)=13N.

(b) Similarly, the acceleration of the two-block system is

(9.80m/s*)=1.6m/s>.

(mysin@-pumy )  (4.0kg)sin30°-(0.50)(2.0kg)
m,+m, g 4.0kg+2.0kg
80. We use Eq. 6-14, D=1CpAv’, where p is the air density, 4 is the cross-sectional

area of the missile, v is the speed of the missile, and C is the drag coefficient. The area is
given by 4 = 7zZR*, where R = 0.265 m is the radius of the missile. Thus

D= %(0.75)(1.2 kg/m’)z(0.265 m)’ (250 m/s)” = 62x 10° N.
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81. The magnitude of the acceleration of the cyclist as he moves along the horizontal
circular path is given by v*/R, where v is the speed of the cyclist and R is the radius of the
curve.

mg Y
The horizontal component of Newton’s second law is f; = mv*/R, where f; is the static
friction exerted horizontally by the ground on the tires. Similarly, if Fy is the vertical

force of the ground on the bicycle and m is the mass of the bicycle and rider, the vertical
component of Newton’s second law leads to F,, =mg =833 N.

(a) The frictional force is

2 2
Fom _ (85.0kg)(9.00 mis) 75 N
R 25.0m

(b) Since the frictional force ]_‘; and ﬁN , the normal force exerted by the road, are

perpendicular to each other, the magnitude of the force exerted by the ground on the
bicycle is therefore

F={f?+F}=JQ275N)y +(833N)’ =877 N.

82. At the top of the hill the vertical forces on the car are the upward normal force
exerted by the ground and the downward pull of gravity. Designating +y downward, we

have

2
my

mg—FN :T

from Newton’s second law. To find the greatest speed without leaving the hill, we set Fiy
= 0 and solve for v:

v=1JgR = /(9.8 m/s>)(250 m) = 49.5 m/s =49.5(3600/1000) km/h = 178 km/h.

83. (a) The push (to get it moving) must be at least as big as f;max= & Fv (Eq. 6-1, with
Fx=mg in this case), which equals (0.51)(165 N) = 84.2 N.

(b) While in motion, constant velocity (zero acceleration) is maintained if the push is
equal to the kinetic friction force f; = 1 Fy = ppmg=52.8 N.
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(c) We note that the mass of the crate is 165/9.8 = 16.8 kg. The acceleration, using the
push from part (a), is
a=(842N-52.8N)/(16.8 kg) ~ 1.87 m/s".

84. (a) The x component of F tries to move the crate while its y component indirectly
contributes to the inhibiting effects of friction (by increasing the normal force).
Newton’s second law implies

x direction: Fcos@—f;,=0

y direction: Fy— Fsinf—mg=0.

To be “on the verge of sliding” means f; = fimax = tFy (Eq. 6-1). Solving these
equations for F' (actually, for the ratio of F'to mg) yields

o A
mg cos@— . sin@

This is plotted below (&1in degrees).
F/mg

100
80—3
60—f
40—5

20

(b) The denominator of our expression (for F/mg) vanishes when
. 4 [ 1 j
cos@—pu sinf=0 = 6, ,=tan | —
H
S 1 o
For p, =0.70, we obtain Jnr = a0 ; =357

(c) Reducing the coefficient means increasing the angle by the condition in part (b).

— af — 5Qo°
(d) For u, =0.60 we have O = tan (;] =97,

85. The car is in “danger of sliding” down when
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H, =tan @ =tan35.0° = 0.700.

This value represents a 3.4% decrease from the given 0.725 value.

86. (a) The tension will be the greatest at the lowest point of the swing. Note that there is
no substantive difference between the tension 7 in this problem and the normal force Fiy
in Sample Problem — “Vertical circular loop, Diavolo.” Equation 6-19 of that Sample
Problem examines the situation at the top of the circular path (where Fly is the least), and
rewriting that for the bottom of the path leads to

T=mg+mv*/r

where Fly is at its greatest value.

(b) At the breaking point 7 = 33 N = m(g + v*/r) where m = 0.26 kg and r = 0.65 m.
Solving for the speed, we find that the cord should break when the speed (at the lowest
point) reaches 8.73 m/s.

87. The free-body diagram is shown below (not to scale). The mass of the car is m =
(10700/9.80) kg = 1.09 x 10° kg. We choose “inward” (horizontally towards the center of
the circular path) as the positive direction. The normal force is Fiy = mg in this situation,

and the required frictional force is f, = mv’/R.

Ay A

mg Y
(a) With a speed of v =13.4 m/s and a radius R = 61 m, Newton’s second law (using Eq.
6-18) leads to

2
my

= =321x10° N .
/. R

(b) The maximum possible static friction is found to be
e = 1,mg =(0.35)(10700 N) =3.75 x 10° N

using Eq. 6-1. We see that the static friction found in part (a) is less than this, so the car
rolls (no skidding) and successfully negotiates the curve.

88. For the m, = 1.0 kg block, application of Newton's laws result in
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Fcos@-T~f, =mya x axis
Fy,—-Fsin@-m,g=0 » axis.

Since fi = p F, these equations can be combined into an equation to solve for a:
F(cos@—p,smO)~T — y,m,g =m,a.
Similarly (but without the applied push) we analyze the m; = 2.0 kg block:

T—-f/=ma x axis

F, —mg=0 y axis.
Using fi = w F),, the equations can be combined:
T'-yumg=ma.

Subtracting the two equations for a and solving for the tension, we obtain

;_m(cos0—psind) . _ (2.0 kg)lcos35°~(0.20)sin35°]

(20N)=94N.
m, +m, 20kg+1.0kg

89. We apply Newton’s second law (as Fpush — f = ma). If we find Fyush < fmax, We
conclude “no, the cabinet does not move” (which means a is actually 0 and f'= Fyush), and
if we obtain a > 0 then it is moves (so = f;). For fn.x and f; we use Eq. 6-1 and Eq. 6-2
(respectively), and in those formulas we set the magnitude of the normal force equal to
556 N. Thus, fmax =378 N and f, =311 N.

(a) Here we find Fpush < fmax, Which leads to f'= Fpus = 222 N.

(b) Again we find Fpush < fmax, Which leads to f'= Fpusn = 334 N.

(c) Now we have Fpush > fmax, Which means it moves and f=f; =311 N.

(d) Again we have Fyush > fmax, Which means it moves and f=f, =311 N.

(e) The cabinet moves in (c¢) and (d).

90. Analysis of forces in the horizontal direction (where there can be no acceleration)
leads to the conclusion that /' = F; the magnitude of the normal force is 60 N. The

maximum possible static friction force is therefore uFn = 33 N, and the kinetic friction
force (when applicable) is z4Fy=23 N.

- -
(a) In this case, P = 34 N upward. Assuming f points down, then Newton's second
law for the y leads to
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P—mg—f = ma.

If we assume f'= f; and a = 0, we obtain f= (34 — 22) N = 12 N. This is less than f; max,
H

which shows the consistency of our assumption. The answer is: f; = 12 N down.

5
(b) In this case, P = 12 N upward. The above equation, with the same assumptions as in
part (a), leads to /= (12 — 22) N =—10 N. Thus, | f; | < f;, max, justifying our assumption
that the block is stationary, but its negative value tells us that our initial assumption about

- -
the direction of f is incorrect in this case. Thus, the answer is: f; = 10 N up.

5

(c) In this case, P = 48 N upward. The above equation, with the same assumptions as in

part (a), leads to f'= (48 — 22) N =26 N. Thus, we again have f; < f; max, and our answer
H

is: f; =26 N down.

(d) In this case, I;) =62 N upward. The above equation, with the same assumptions as in
part (a), leads to /= (62 — 22) N = 40 N, which is larger than f; max, invalidating our
assumptions. Therefore, we take /= f; and a # 0 in the above equation; if we wished to
find the value of @ we would find it to be positive, as we should expect. The answer is:

N
fi =23 N down.

_)
(e) In this case, P = 10 N downward. The above equation (but with P replaced with —P)
with the same assumptions as in part (a), leads to /= (=10 — 22) N = —32 N. Thus, we
have | f; | < f; max, justifying our assumption that the block is stationary, but its negative

N
value tells us that our initial assumption about the direction of f* is incorrect in this case.

5
Thus, the answer is: f; =32 N up.

5
(f) In this case, P = 18 N downward. The above equation (but with P replaced with —P)
with the same assumptions as in part (a), leads to f'= (=18 — 22) N = —40 N, which is
larger (in absolute value) than f; max, invalidating our assumptions. Therefore, we take /=
frand a # 0 in the above equation; if we wished to find the value of @ we would find it to

9
be negative, as we should expect. The answer is: f; =23 N up.
(g) The block moves up the wall in case (d) where a > 0.

(h) The block moves down the wall in case (f) where a < 0.

BN
(1) The frictional force f; is directed down in cases (a), (c), and (d).

91. The free-body diagram for the first part of this problem (when the block is sliding
downhill with zero acceleration) is shown below (left).
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Newton’s second law gives

mgsin@— f, =mgsin@ -, F, =ma_=0
mgcos@—F, =ma,=0.

The two equations can be combined to give g, =tané.

Now (for the second part of the problem, with the block projected uphill) the friction
direction is reversed (see figure above right). Newton’s second law for the uphill motion
(and Eq. 6-12) leads to

mgsin@+ f, =mgsin@+ u F, =ma_
mgcos@—F, =ma,=0.

Note that by our convention, a >0 means that the acceleration is downbhill, and
therefore, the speed of the block will decrease as it moves up the incline.

(a) Using g, =tan@ and F, =mgcos@, we find the x-component of the acceleration to

be
(tan@)(mgcosb)

m

. F .
a, =gs1n¢9+'uk7N=gsm0+

=2gsind.

The distance the block travels before coming to a stop can be found by using Eq. 2-16:
2

v} =V, —2a,Ax, which yields

2 2 2
Yo _ Yo Yo

Ax = = - = - .
2a, 2(2gsin@) 4gsinf

(b) We usually expect s> 14 (see the discussion in Section 6-1). The “angle of repose”
(the minimum angle necessary for a stationary block to start sliding downhill) is g =
tan(Gepose). Therefore, we expect Gepose > € found in part (a). Consequently, when the
block comes to rest, the incline is not steep enough to cause it to start slipping down the
incline again.
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92. Consider that the car is “on the verge of sliding out,” meaning that the force of static
friction is acting “down the bank™ (or “downhill” from the point of view of an ant on the

N
banked curve) with maximum possible magnitude. We first consider the vector sum F
of the (maximum) static friction force and the normal force. Due to the facts that they are

perpendicular and their magnitudes are simply proportional (Eq. 6-1), we find F is at
angle (measured from the vertical axis) ¢ = €+ 6, where tan 6, = 1, (compare with Eq. 6-

13), and &is the bank angle. Now, the vector sum of F and the vertically downward pull
(mg) of gravity must be equal to the (horizontal) centripetal force (mv*/R), which leads to
a surprisingly simple relationship:

tan ¢

_mvz/R_ e

mg Rg

Writing this as an expression for the maximum speed, we have

Rg(tan@+ u,)
1-pu tanf

Vo = \/Rgtan(0+tan’1 ) :\/

(a) We note that the given speed is (in SI units) roughly 17 m/s. If we do not want the
cars to “depend” on the static friction to keep from sliding out (that is, if we want the
component “down the back™ of gravity to be sufficient), then we can set g = 0 in the

above expression and obtain v=,/Rgtanf . With R =150 m, this leads to 8= 11°.
(b) If, however, the curve is not banked (so € = 0) then the above expression becomes

v:\/Rgtan(tan*1 u,) =~Rgu, .

Solving this for the coefficient of static friction, we have z = 0.19.

93. (a) The box doesn’t move until 7= 2.8 s, which is when the applied force F reaches a
magnitude of /= (1.8)(2.8) = 5.0 N, implying therefore that f; m.x = 5.0 N. Analysis of
the vertical forces on the block leads to the observation that the normal force magnitude
equals the weight Fiy=mg = 15 N. Thus, 14 =f; max/Fn = 0.34.

(b) We apply Newton’s second law to the horizontal x axis (positive in the direction of

motion):
F—fi=ma = 18t — f, =(15)(12t - 24).

Thus, we find f; = 3.6 N. Therefore, w4 = fi/ Fy= 0.24.
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94. In the figure below, m = 140/9.8 = 14.3 kg is the mass of the child. We use w_ and
w, as the components of the gravitational pull of Earth on the block; their magnitudes

are wy = mg sin € and w, = mg cos 6.

(a) With the x axis directed up along the incline (so that a = —0.86 m/s), Newton’s
second law leads to

f, —140sin25°= m(—0.86)

which yields f; = 47 N. We also apply Newton’s second law to the y axis (perpendicular
to the incline surface), where the acceleration-component is zero:

F,—140c0s25°=0 = F, =127 N.

Therefore, 1 = fi/Fn=0.37.

(b) Returning to our first equation in part (a), we see that if the downhill component of
the weight force were insufficient to overcome static friction, the child would not slide at
all. Therefore, we require 140 sin 25° > f; max = 4 F, which leads to tan 25° = 0.47 > .
The minimum value of x4 equals 44 and is more subtle; reference to §6-1 is recommended.
If 14 exceeded x4 then when static friction were overcome (as the incline is raised) then it
should start to move, which is impossible if f; is large enough to cause deceleration! The
bounds on g are therefore given by 0.47 > 1, > 0.37.

95. (a) The x component of F contributes to the motion of the crate while its y
component indirectly contributes to the inhibiting effects of friction (by increasing the
normal force). Along the y direction, we have Fy — Fcosd — mg = 0 and along the x
direction we have Fsinf — f; = 0 (since it is not accelerating, according to the problem).
Also, Eq. 6-2 gives fr = i Fy. Solving these equations for F yields

F= /“lkmg
sin@ -y, cosd

(b) When 0 <, =tan”' y , F will not be able to move the mop head.
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96. (a) The distance traveled in one revolution is 27R = 22(4.6 m) = 29 m. The (constant)
speed is consequently v = (29 m)/(30 s) = 0.96 m/s.

(b) Newton’s second law (using Eq. 6-17 for the magnitude of the acceleration) leads to

v

f, = m[ I: ] =m(0.20)

in SI units. Noting that Fy= mg in this situation, the maximum possible static friction is
Jfsmax = s mg using Eq. 6-1. Equating this with f; = m(0.20) we find the mass m cancels
and we obtain g = 0.20/9.8 = 0.021.

97. The free-body diagram is shown below.

AF,
7o Am F
< >
mg Y

We adopt the familiar axes with +x rightward and +y upward, and refer to the 85 N
horizontal push of the worker as F (and assume it to be rightward). Applying Newton’s
second law to the x axis and y axis, respectively, gives

F—f =ma_
F,-mg=0.

On the other hand, using Eq. 2-16 (v’ =v; +2a Ax ), we find the acceleration to be

22 2
ax=v % _(1.0m/s) 0 _0.357m/s’.
2Ax  2(1.4m)

Using f, = u F),, we find the coefficient of kinetic friction between the box and the floor
to be
fi _F-ma, _85N-(40kg)(0.357 m/s”)

5 =0.18.
F, mg (40kg)(9.8m/s")

H =

98. We resolve this horizontal force into appropriate components.
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(a) Applying Newton’s second law to the x F,= Fcos6
(directed uphill) and y (directed away from
the incline surface) axes, we obtain

Fcos@— f, —mgsinf = ma
F, —Fsinf@—-mgcosd = 0.

Using fi = i Fy, these equations lead to
F ) .
a=—(cos@— p,sinf)— g(sin@+ p,cosH)
m

which yields @ =-2.1 m/s*, or |a|=2.1 m/s*, for z4 =0.30, F =50 N and m = 5.0 kg.
(b) The direction of a is down the plane.

4.0mss)?

¢) With vo =+4.0 m/s and v =0, Eq. 2-16 gives Ax =— =
© ° b8 22 1m/s’)

3.9m

(d) We expect 1 > 14; otherwise, an object started into motion would immediately start
decelerating (before it gained any speed)! In the minimal expectation case, where x4, =
0.30, the maximum possible (downhill) static friction is, using Eq. 6-1,

fs,max =u F, = pu (Fsinf+mgcosd)

which turns out to be 21 N. But in order to have no acceleration along the x axis, we must
have

f,=Fcos@—mgsinf=10 N

(the fact that this is positive reinforces our suspicion that ﬁ points downhill). Since the f;
needed to remain at rest is less than f; max, it stays at that location.
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1. (a) From Table 2-1, we have v’ = v +2aAx . Thus,

v =V +2ahx = \/(2.4><1o7 m/s) +2 (3.6x10" m/s*)(0.035 m) = 2.9x10” ms.
(b) The initial kinetic energy is

(1.67x107 kg)(2.4x10" m/s) = 4.8x107°J.

K, :lmvg :l
2 2

1

The final kinetic energy is

% (1.67x10" kg)(2.9x107 m/s)z =6.9x10™7J.

1,
K, =—mv =
72
The change in kinetic energy is AK=6.9x 10 2 J—4.8 x 102 J=2.1 x 10" J.
2. With speed v = 11200 m/s, we find

K :%mvz :%(2.9x105 kg) (11200 m/s)* =1.8x10" J.

3. (a) The change in kinetic energy for the meteorite would be

AK=K,-K,=-K, = —%mv? = _%(4><106 ke)(15x10’ m/s)2 = -5x10"7,

11

or | AK |=5x10" J . The negative sign indicates that kinetic energy is lost.

(b) The energy loss in units of megatons of TNT would be

I megaton TNT
42x10%7]

—AK =(5x10"1) ( ] =0.1megaton TNT.

(c) The number of bombs N that the meteorite impact would correspond to is found by
noting that megaton = 1000 kilotons and setting up the ratio:

271
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~ 0.1x1000kiloton TNT 2
13kiloton TNT '

4. We apply the equation x(¢) = x, + vt + L at’, found in Table 2-1. Since at 1 =0's, xo = 0,

and v, =12 m/s, the equation becomes (in unit of meters)
x()=12t+1at’.

With x=10 mwhen 7=1.0 s, the acceleration is found to be a =—4.0 m/s*>. The fact
that a <0 implies that the bead is decelerating. Thus, the position is described by

x(t) =12t —2.0¢* . Differentiating x with respect to ¢ then yields

v = Z12-4.00.
dt

Indeed at  =3.0 s, v(¢ =3.0) = 0and the bead stops momentarily. The speed at =10 sis
v(t=10)=-28 m/s, and the corresponding kinetic energy is

K=%mv2 =%(l.8x10_2kg)(—28 m/s)’*=7.11].

5. We denote the mass of the father as m and his initial speed v;. The initial kinetic energy
of the father is

]<i = _KSOH
2

and his final kinetic energy (when his speed is vy = v; + 1.0 m/s) is K, = K . We use

these relations along with Eq. 7-1 in our solution.

(a) We see from the above that K, =3 K, which (with SI units understood) leads to

lmv,2 _1 {%m (v,+1.0 m/s)z]

The positive root (from the quadratic formula) yields v; = 2.4 m/s.

(b) From the first relation above (K, =+ K, ), we have

1 son
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Tz =1 [1 (mi2) j
2 2 \2

and (after canceling m and one factor of 1/2) are led to v, =2v, =4.8 m/s.

6. The work done by the applied force 130 is given by W = Fa od = F dcos¢. From the
figure, we see that W =25 Jwhen ¢ =0and d =5.0 cm. This yields the magnitude of
E:

F =K—&=5.0><102 N.

“d 0.050m

(a) For ¢ =64°, we have W = F.d cos ¢ = (5.0x10°N)(0.050 m)cos64° =11 J.
(b) For ¢ =147°, we have W = F,d cos ¢ = (5.0x10*N)(0.050 m)cos147°=-21J.

7. Since this involves constant-acceleration motion, we can apply the equations of Table
2-1, such as x=v,t++at’ (where x,=0). We choose to analyze the third and fifth

points, obtaining

0.2m=v,(1.0 s)+%a (1.0 s)’

0.8m =v,(2.0 s)+%a (2.0 s)>.

Simultaneous solution of the equations leads to v, =0 and a = 0.40m/s’ . We now have

two ways to finish the problem. One is to compute force from F' = ma and then obtain the
work from Eq. 7-7. The other is to find AK as a way of computing W (in accordance
with Eq. 7-10). In this latter approach, we find the velocity at #=2.0s from

v =y, +at(sov=0.80m/s). Thus,
W=AK = %(3.0kg) (0.80m/s)> =0.96 J.
8. Using Eq. 7-8 (and Eq. 3-23), we find the work done by the water on the ice block:

W=F-d= [(210 N)i-(150 N)}'H(ls m)i—(12 m)ﬂ = (210 N)(15 m) + (=150 N)(~12 m)
=5.0x10°J.

9. By the work-kinetic energy theorem,
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W=AK = %mv; —%mvf = %(2.Okg)((6.0m/s)2 ~(4.0m/s)?)=20 1.

We note that the directions of v, and v, play no role in the calculation.
10. Equation 7-8 readily yields

W= F.Ax + F, Ay =(2.0 N)cos(100°)(3.0 m) + (2.0 N)sin(100°)(4.0 m) = 6.8 J.
11. Using the work-kinetic energy theorem, we have

AK=W =F-d=Fdcosg.

In addition, F =12 Nand d =\/(2.00 m)’ +(=4.00 m)* +(3.00 m)* =5.39 m.

(a) If AK=+30.0 J, then

¢ =cos™ (gj =cos ! 30.07 =62.3°.
Fd (12.0 N)(5.39 m)

(b) AK =-30.0J, then
¢ =cos™ (ﬁj =cos ! —30.07 =118°.
Fd (12.0 N)(5.39 m)

12. (a) From Eq. 7-6, F = W/x = 3.00 N (this is the slope of the graph).

(b) Equation 7-10 yields K= K; + W=3.00J + 6.00 J =9.00 J.

13. We choose +x as the direction of motion (so @ and F are negative-valued).

(a) Newton’s second law readily yields F = (85kg)(—2.0m/s?) so that
F=|F|=1.7x10"N.

(b) From Eq. 2-16 (with v = 0) we have

(37 rn/s)2

— 7 _=34x10*m.
2(—2.0m/sz)

0:v§+2an = Ax=-

Alternatively, this can be worked using the work-energy theorem.
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(c) Since F is opposite to the direction of motion (so the angle ¢ between F and
d = Ax is 180°) then Eq. 7-7 gives the work done as W = —FAx =-5.8x10"] .

(d) In this case, Newton’s second law yields F =(85kg)(—4.0m/sz) so that
F=|F|=34x10*N.

(e) From Eq. 2-16, we now have

2
pe=—BT) e,
2(—4.0ms’)

(f) The force F is again opposite to the direction of motion (so the angle ¢ is again 180°)
so that Eq. 7-7 leads to W = —FAx =-5.8x10"J. The fact that this agrees with the result
of part (c) provides insight into the concept of work.

14. The forces are all constant, so the total work done by them is given by W = F

Ax
net >
where Fe is the magnitude of the net force and Ax is the magnitude of the displacement.

We add the three vectors, finding the x and y components of the net force:

F

net x

=—F —F,sin50.0°+ F; c0s35.0°=-3.00N - (4.00 N)sin 35.0°+ (10.0 N) cos 35.0°
=2.13N

F . =-F,c0s50.0°+ F; sin35.0°=—(4.00N) c0s50.0°+(10.0 N)sin 35.0°

nety

=3.17N.

The magnitude of the net force is

Frp =\[F + FL, ={(2.13N)? +(3.17N)? =3.82N.

net y
The work done by the net force is

W=F

net

d=(3.82N)(4.00m)=15.3 J

where we have used the fact that d ||17“n

et

(which follows from the fact that the canister
started from rest and moved horizontally under the action of horizontal forces — the
resultant effect of which is expressed by F_ ).

15. (a) The forces are constant, so the work done by any one of them is given by
W=F-d,where d is the displacement. Force 131 1s in the direction of the displacement,

SO
W, = Fdcos@, =(5.00N)(3.00m)cos0°=15.0 J.
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Force F‘z makes an angle of 120° with the displacement, so
W, = F,d cos¢, =(9.00N)(3.00m)cos120°=-13.5 J.
Force 17"3 is perpendicular to the displacement, so
W5 = Fsd cos ¢ = 0 since cos 90° = 0.
The net work done by the three forces is

W=Ww+W,+W,=15.0J-13.5J+0=+1.50 J.

(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the
displacement.

16. The change in kinetic energy can be written as
1 N |
AK = Em(vf -v)= 5m(2an) =maAx

where we have used v; =v’ +2aAx from Table 2-1. From the figure, we see that

AK =(0-30) J=-30 Jwhen Ax=+5 m. The acceleration can then be obtained as

AK  (=301)

= =-0.75 m/s’.
mAx (8.0 kg)(5.0 m)

a=

The negative sign indicates that the mass is decelerating. From the figure, we also see
that when x =5 m the kinetic energy becomes zero, implying that the mass comes to rest
momentarily. Thus,

ve =v’ =2aAx=0-2(-0.75 m/s*)(5.0 m)=7.5 m*/s?,

or v, =2.7 m/s . The speed of the object when x =-3.0 m is

v= V2 +2aAx = /7.5 m*/s? +2(=0.75 m/s*)(=3.0 m) =12 m/s =3.5 m/s.

17. We use F to denote the upward force exerted by the cable on the astronaut. The
force of the cable is upward and the force of gravity is mg downward. Furthermore, the
acceleration of the astronaut is @ = g/10 upward. According to Newton’s second law, the
force is given by



277

F-mg=ma = F:m(g+a)=%mg,

in the same direction as the displacement. On the other hand, the force of gravity has
magnitude F, =mg and is opposite in direction to the displacement.

(a) Since the force of the cable F' and the displacement d are in the same direction, the
work done by F is

1lmgd 11 (72 kg)(9.8 m/s*)(15 m)
10 10

W,.=Fd= =1.164x10* J~1.2x10* J.

(b) Using Eq. 7-7, the work done by gravity is
W, =—F,d =-mgd =— (72 kg)(9.8 m/s*)(15 m) = -1.058x10* J ~ -1.1x10" J
(c) The total work done is the sum of the two works:

W =W, +W,=1.164x10"1-1.058x10"T=1.06x10’ T ~1.1x10"J .

net

Since the astronaut started from rest, the work-kinetic energy theorem tells us that this is
her final kinetic energy.

3
(d) Since K =1mv*, her final speed is v = 2K = 2(1.06x1071) =5.4m/s.
m 72 kg

Note: For a general upward acceleration a, the net work done is

w

net

=W, +W,=Fd-F,d=m(g+a)d —mgd =mad .

Since W,

net

=AK =mv*/2, by the work-kinetic energy theorem, the speed of the
astronaut would be v =+/2ad , which is independent of the mass of the astronaut.

18. In both cases, there is no acceleration, so the lifting force is equal to the weight of the
object.

(a) Equation 7-8 leads to W = F - d= (360kN)(0.10m) =36 kI.

(b) In this case, we find W = (4000 N)(0.050 m) =2.0x10* J.

19. Equation 7-15 applies, but the wording of the problem suggests that it is only
necessary to examine the contribution from the rope (which would be the “W,” term in
Eq. 7-15):
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W,=-(50N)(0.50 m) =-251]
(the minus sign arises from the fact that the pull from the rope is anti-parallel to the
direction of motion of the block). Thus, the kinetic energy would have been 25 J greater
if the rope had not been attached (given the same displacement).

20. From the figure, one may write the kinetic energy (in units of J) as a function of x as

K=K —-20x=40-20x.

Since W =AK = Ii -Ax , the component of the force along the force along +x is
F,=dK/dx =-20 N. The normal force on the block is F, = F,, which is related to the

gravitational force by
mg = \|F’ +(—Fy)2 .

(Note that F), points in the opposite direction of the component of the gravitational force.)
With an initial kinetic energy K, =40.0 J and v, =4.00 m/s , the mass of the block is

2K, 2(40.0))
Ve (4.00 m/s)?

=5.00 kg.

Thus, the normal force is

F, =(mg)’ - F> = (5.0 kg)’ (9.8 m/s*)* —(20 N)* =44.7 N~ 45 N.

21. We use F to denote the magnitude of the force of the cord on the block. This force is
upward, opposite to the force of gravity (which has magnitude F, = Mg), to prevent the

block from undergoing free fall. The acceleration is a = g/4 downward. Taking the
downward direction to be positive, then Newton’s second law yields

Fnet

=mid = Mg—F =M(§j,

so F'=3Mg/4, in the opposite direction of the displacement. On the other hand, the force
of gravity F, =mg is in the same direction to the displacement.

(a) Since the displacement is downward, the work done by the cord’s force is, using Eq.
7-7,

W, =—Fd = —%Mgd .
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(b) Similarly, the work done by the force of gravity is W, = F,d = Mgd .

(c) The total work done on the block is simply the sum of the two works:

w

net

1
=W.+W, = —%Mgd+Mgd :ZMgd .

Since the block starts from rest, we use Eq. 7-15 to conclude that this (M gd /4) is the
block’s kinetic energy K at the moment it has descended the distance d.

(d) Since K =1 Mv*, the speed is

- [ POBITS_ [sd
M M 2

at the moment the block has descended the distance d.

22. We use d to denote the magnitude of the spelunker’s displacement during each stage.
The mass of the spelunker is m = 80.0 kg. The work done by the lifting force is denoted
W;where i =1, 2, 3 for the three stages. We apply the work-energy theorem, Eq. 17-15.

(a) For stage 1, W, —mgd = AK, =+mv}, where v, =5.00 m/s. This gives
W, =mgd +%mv12 =(80.0 kg)(9.80 m/s*)(10.0 m)+%(80.0 kg)(5.00 m/s)* =8.84x10° J.

(b) For stage 2, W, — mgd = AK, = 0, which leads to
W, =mgd =(80.0 kg)(9.80 m/s*)(10.0 m)=7.84x10" J.

(c) For stage 3, W, —mgd = AK, = —1mv; . We obtain
W, =mgd —%mvf =(80.0 kg)(9.80 m/s*)(10.0 m) —%(80.0 kg)(5.00 m/s)’ = 6.84x10° J.

23. The fact that the applied force ]i causes the box to move up a frictionless ramp at a
constant speed implies that there is no net change in the kinetic energy: AK =0. Thus,
the work done by ﬁa must be equal to the negative work done by gravity: W, =W, .
Since the box is displaced vertically upward by 2=0.150 m, we have

W, =+mgh = (3.00 kg)(9.80 m/s>)(0.150 m) =4.41 ]
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24. (a) Using notation common to many vector-capable calculators, we have (from Eq. 7-
8) W = dot([20.0,0] + [0, —(3.00)(9.8)], [0.500 £ 30.0°]) = +1.31 J, where “dot” stands
for dot product.

(b) Eq. 7-10 (along with Eq. 7-1) then leads to

v=4/2(1.311)/3.00 kg) = 0.935 m/s.

25. (a) The net upward force is given by
F+F,—-(m+M)g=(m+M)a

where m = 0.250 kg is the mass of the cheese, M = 900 kg is the mass of the elevator cab,
F is the force from the cable, and F,, =3.00 N is the normal force on the cheese. On the

cheese alone, we have

2
Fomgema = a=300N (0250 kg)(980m/s®) o0
0.250 kg

Thus the force from the cable is F =(m+M)(a+g)—F, =1.08x10* N, and the work
done by the cable on the cab is

W =Fd, =(1.80x10* N)(2.40 m)=2.59x10" J.
(b)If W =92.61 kJand d, =10.5 m, the magnitude of the normal force is

4
F, = (m+M)g—dK= (0.250 kg +900 kg)(9.80 m/s?) — 22210 T 4o\

) 10.5m

26. We make use of Eq. 7-25 and Eq. 7-28 since the block is stationary before and after
the displacement. The work done by the applied force can be written as

a

W =-W = %k(xj -x7).

The spring constant is & =(80 N)/(2.0 cm)=4.0x10°N/m. With W, =4.0J , and
x,=—2.0 cm, we have

X, =% 2, +x7 =+ 2(4'(3) D +(=0.020 m)* =+0.049 m=+4.9 cm.
TNk (4.0x10° N/m)
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27. From Eq. 7-25, we see that the work done by the spring force is given by
_ 1 2 2
/8 _Ek(xi —X;).

The fact that 360 N of force must be applied to pull the block to x =+ 4.0 cm implies that
the spring constant is
360N

= =90 N/cm =9.0x10° N/m.
4.0 cm

k

(a) When the block moves from x, =+5.0 cmto x=+3.0 cm, we have
W, = %(9.0>< 10° N/m)[(0.050 m)* —(0.030 m)*]=7.2 J.
(b) Moving from x, =+5.0 cmto x=-3.0 cm, we have
W, = %(9.0><103 N/m)[(0.050 m)* —(~0.030 m)*]=7.2 J.
(c) Moving from x;, =+5.0 cmto x=-5.0 cm, we have
W= %(9.0><103 N/m)[(0.050 m)* —(~0.050 m)*]=0J.
(d) Moving from x, =+5.0 cmto x=-9.0 cm, we have
W, = %(9.0>< 10° N/m)[(0.050 m)* —(~0.090 m)*]=-25J.

28. The spring constant is £ = 100 N/m and the maximum elongation is x; = 5.00 m.
Using Eq. 7-25 with x,= 0, the work is found to be

/4 =%kxi2 =%(100 N/m)(5.00 m)* =1.25x10° J.

29. The work done by the spring force is given by Eq. 7-25: W, :%k(xl.2 -x7). The

spring constant £ can be deduced from the figure which shows the amount of work done
to pull the block from 0 to x = 3.0 cm. The parabola W, = kx* / 2 contains (0,0), (2.0 cm,

0.40 J) and (3.0 cm, 0.90 J). Thus, we may infer from the data that k =2.0x10’ N/m.
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(a) When the block moves from x;, =+5.0 cmto x=+4.0 cm, we have
W= %(2.0x103 N/m)[(0.050 m)* —(0.040 m)*]=0.90 J.
(b) Moving from x, =+5.0 cmto x=-2.0 cm, we have
W= %(2.0x103 N/m)[(0.050 m)* —(-0.020 m)*]=2.11J.
(c) Moving from x;, =+5.0 cmto x=-5.0 cm, we have
W, = %(2.0x103 N/m)[(0.050 m)* —(~0.050 m)*]=0 J.

30. Hooke’s law and the work done by a spring is discussed in the chapter. We apply the
work-kinetic energy theorem, in the form of AK =W, +W,_, to the points in Figure 7-35 at

x =1.0 m and x = 2.0 m, respectively. The “applied” work W, is that due to the constant
force P.

4J=P(1.0 m)—%k(l.o m)’

0=P(2.0 m) —%k(z.o m)’.

(a) Simultaneous solution leads to P = 8.0 N.
(b) Similarly, we find £ = 8.0 N/m.

31. (a) As the body moves along the x axis from x; = 3.0 m to x,= 4.0 m the work done by
the force is

W:J'x/» F. dx:J'xf. —6x dx=—3(x; —xl.2)=—3 (402 _3.02)=_21 J.
According to the work-kinetic energy theorem, this gives the change in the kinetic energy:

1

W= AK:%m(v;. —v?)

where v; s the initial velocity (at x;) and vris the final velocity (at x;). The theorem yields

v = |2 = 22D L8 0 sy = 6.6 ms.
m 2.0kg
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(b) The velocity of the particle is v/= 5.0 m/s when it is at x = x. The work-kinetic energy
theorem is used to solve for x. The net work done on the particle is W = —3(xj2f —x; ) , SO

1

the theorem leads to

—3(xﬁ. —xf) = %m (vi —vf )
Thus,
X, :\/_%(v?; —v )+x; :J—%((s.o m/s)’ — (8.0 m/s)’ )+ (3.0 m)’ =4.7 m.

32. The work done by the spring force is given by Eq. 7-25: W, =%k(xi2 —x}). Since

F_=—kx, the slope in Fig. 7-36 corresponds to the spring constant £. Its value is given
by k=80 N/cm=8.0x10’ N/m.

(a) When the block moves from x, =+8.0 cmto x=+5.0 cm, we have

W, =%(8.0><103 N/m)[(0.080 m)* —(0.050 m)*]=15.6 J~16J.
(b) Moving from x, =+8.0 cmto x=-5.0 cm, we have

W= %(8.0><103 N/m)[(0.080 m)* —(—=0.050 m)*]=15.6 J =16 J.

(c) Moving from x;, =+8.0 cmto x=-8.0 cm, we have

W %(8.0x103 N/m)[(0.080 m)? — (~0.080 m)*]=0 J.

(d) Moving from x; =+8.0 cmto x=-10.0 cm, we have
/4 =%(8.0><103 N/m)[(0.080 m)* —(=0.10 m)*]=-14.4 I ~—14].

33. (a) This is a situation where Eq. 7-28 applies, so we have
Fx=3k? = (3.0N)x=3(50 N/m)x’

which (other than the trivial root) gives x = (3.0/25) m=0.12 m.

(b) The work done by the applied force is W, = Fx = (3.0 N)(0.12 m) =0.36 J.
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(c) Eq. 7-28 immediately gives W, =-W,=-0.36J.

(d) With K, = K considered variable and K; = 0, Eq. 7-27 gives K = Fx — %kxz. We take

the derivative of K with respect to x and set the resulting expression equal to zero, in
order to find the position x. taht corresponds to a maximum value of K:

Xe= = = (3.0/50) m = 0.060 m.

=~

We note that x. is also the point where the applied and spring forces “balance.”
(e) At x. we find K = Kiax = 0.090 J.

34. According to the graph the acceleration a varies linearly with the coordinate x. We
may write a = ox, where a is the slope of the graph. Numerically,

20 m/s’
a="—"-——""
80m

=255,

The force on the brick is in the positive x direction and, according to Newton’s second
law, its magnitude is given by F' = ma = max. 1f x;is the final coordinate, the work done
by the force is

-2
W:j/F dx:maj'fxdx:ma)Ci:(lOkg)(Z.SS )
0 0 5 ;

(8.0 m)> =8.0x10” J.

35. Given a one-dimensional force F'(x), the work done is simply equal to the area under

the curve: W = rf F(x) dx.

Fol-

~F,

(a) The plot of F(x) is shown above. Here we take x( to be positive. The work is negative
as the object moves from x =0 to x = x, and positive as it moves from x = x, to x = 2x, .



285

Since the area of a triangle is (base)(altitude)/2, the work done from x =0 tox = x, is
W, =~(x,)(F,)/2
and the work done from x = x; to x =2x, is

W, = (23, ~x)(F)/ 2= () (Fy) /2.

The total work is the sum of the two: W =W, + W, = —%E)xo +%Fox0 =0.

(b) The integral for the work is

2
W:J.ZOF0 R dx=F, Ty
0 X, 2x,

36. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done.
Finding that area (in terms of rectangular [length x width] and triangular
[3 base x height] areas) we obtain

2x,

=0.

0

W =W,

0<x<2

+W. +W, +W,

2<x<4 4<x<6 6<x<8 (20 +10+0- 5) J=251.

37. (a) We first multiply the vertical axis by the mass, so that it becomes a graph of the
applied force. Now, adding the triangular and rectangular “areas” in the graph (for 0 <x
<4) gives 42 J for the work done.

(b) Counting the “areas” under the axis as negative contributions, we find (for 0 < x < 7)
the work to be 30 J at x =7.0 m.

(c) And at x = 9.0 m, the work is 12 J.

(d) Equation 7-10 (along with Eq. 7-1) leads to speed v = 6.5 m/s at x = 4.0 m. Returning
to the original graph (where a was plotted) we note that (since it started from rest) it has
received acceleration(s) (up to this point) only in the +x direction and consequently must
have a velocity vector pointing in the +x direction at x = 4.0 m.

(e) Now, using the result of part (b) and Eq. 7-10 (along with Eq. 7-1) we find the speed
is 5.5 m/s at x = 7.0 m. Although it has experienced some deceleration during the 0 < x <
7 interval, its velocity vector still points in the +x direction.

(f) Finally, using the result of part (¢) and Eq. 7-10 (along with Eq. 7-1) we find its speed
v=3.5m/s at x =9.0 m. It certainly has experienced a significant amount of deceleration
during the 0 < x < 9 interval; nonetheless, its velocity vector sti/l points in the +x
direction.
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38. (a) Using the work-kinetic energy theorem
2.0 ) 1 3
K, =K, +j0 (2.5-x7) dx=0+(2.5)(2.0) —5(2.0) =231

(b) For a variable end-point, we have Ky as a function of x, which could be differentiated
to find the extremum value, but we recognize that this is equivalent to solving F' = 0 for x:

F=0= 25-x*=0.

Thus, K is extremized at x = +/2.5~1.6 m and we obtain
V25 2 1 3
Kf:Kl.+j0 (2.5-x )dx:0+(2.5)(\/2.5)—§ (V2.5)y=261.

Recalling our answer for part (a), it is clear that this extreme value is a maximum.

39. As the body moves along the x axis from x; = 0 m to x,= 3.00 m the work done by the

force is
3

= o X = ; cx—3.00x")dx=| —x"—x =—(3. —(3.
W=["F dv=["(cx-3.00x")d [;2 3) ;@om2(3mm
x,- X‘. 0

=4.50c-27.0.

However, W =AK =(11.0-20.0)=-9.00 J from the work-kinetic energy theorem.

Thus,
4.50c-27.0=-9.00

or c=4.00 N/m.

40. Using Eq. 7-32, we find
1.25 42
W= | et dx =021]

0.25

where the result has been obtained numerically. Many modern calculators have that
capability, as well as most math software packages that a great many students have
access to.

41. We choose to work this using Eq. 7-10 (the work-kinetic energy theorem). To find the
initial and final kinetic energies, we need the speeds, so

v:§£:30—&m+30ﬂ

dt
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in SI units. Thus, the initial speed is v; = 3.0 m/s and the speed at = 4 s is v/ = 19 m/s.
The change in kinetic energy for the object of mass m = 3.0 kg is therefore

AK:%m (v;—v7)=5281

which we round off to two figures and (using the work-kinetic energy theorem) conclude
that the work done is W =5.3x10°J.

42. We solve the problem using the work-kinetic energy theorem, which states that the
change in kinetic energy is equal to the work done by the applied force, AK =W . In our
problem, the work done is W = F'd , where F is the tension in the cord and d is the length
of the cord pulled as the cart slides from x; to x,. From the figure, we have

d =[x+ 1 =\x2 +h* =/(3.00 m)> +(1.20 m)* —/(1.00 m) +(1.20 m)’
=323m-1.56 m=1.67m

which yields AK = Fd =(25.0 N)(1.67 m)=41.7 J.

43. (a) The power is given by P = Fv and the work done by F from time t, to time ¢, is
given by
W=|["Pdi=|"Fvdr.

Since F is the net force, the magnitude of the acceleration is a = F/m, and, since the
initial velocity is v,=0 , the velocity as a function of time is given by

v=v,+at =(F/m)t. Thus,
W= L’z (F* /m)t dt =%(F2 Im)(t; —t]).

(5.0 N)?

For t,=0 and ¢, =1.0s, W=
2 15 kg

Ja 05)>=0.83 1.

B B (5.0 N)* 2
(b) For ¢, =1.0s, and ¢, =2.0s, W = 2( 5 ke j[(ZO s)> —(1.0s)*]=2.51.
(c) For t, =2.0s and ¢, =3.0s, W :%(%J[(&O s)° —(2.0s)°]1=421.

(d) Substituting v = (F/m)t into P = Fv we obtain P = F’t/m for the power at any time ¢.
At the end of the third second
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b ((S.ON)Z (3.0 s)j _sow
15 kg

44. (a) Since constant speed implies AK = 0, we require W, =W, , by Eq. 7-15. Since
W, is the same in both cases (same weight and same path), then W, =9.0x1 0° J just as it

was in the first case.

(b) Since the speed of 1.0 m/s is constant, then 8.0 meters is traveled in 8.0 seconds.
Using Eq. 7-42, and noting that average power is the power when the work is being done
at a steady rate, we have

P W 9001J

== =1.1x10> W.
At 80s

(c) Since the speed of 2.0 m/s is constant, 8.0 meters is traveled in 4.0 seconds. Using Eq.
7-42, with average power replaced by power, we have

p_ W _9003

== =225W ~2.3x10* W.
At 4.0s

45. The power associated with force F is given by P = F - ¥, where ¥ is the velocity
of the object on which the force acts. Thus,

P=F-V=Fvcosg=(122 N)(5.0 m/s)cos37°=4.9x10> W.

46. Recognizing that the force in the cable must equal the total weight (since there is no
acceleration), we employ Eq. 7-47:

P = Fvcos @ = mg(gj
At

where we have used the fact that &= 0° (both the force of the cable and the elevator’s
motion are upward). Thus,

P=(3.0x10° kg)(9.8 m/s2)(210 o

—j =2.7x10° W.

23s

47. (a) Equation 7-8 yields

W= FiAx+F,Ay+F.Az
=(2.00 N)(7.5 m —0.50 m) + (4.00 N)(12.0 m — 0.75 m) + (6.00 N)(7.2m — 0.20 m)
=101J ~ 1.0x 10%J.

(b) Dividing this result by 12 s (see Eq. 7-42) yields P = 8.4 W.
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48. (a) Since the force exerted by the spring on the mass is zero when the mass passes
through the equilibrium position of the spring, the rate at which the spring is doing work
on the mass at this instant is also zero.

(b) The rate is given by P = F - ¥ = — Fv, where the minus sign corresponds to the
fact that F and v are anti-parallel to each other. The magnitude of the force is given by

F = kx = (500 N/m)(0.10 m) = 50 N,

while v is obtained from conservation of energy for the spring-mass system:
L, 1., 1 2 1 2
E=K+U=10 JZEmv +§kx 25(0.30 kg)v +§(500 N/m)(0.10 m)

which gives v="7.1 m/s. Thus,
P=—Fv=—(50 N)(7.1 m/s)=-3.5 x 10° W.

49. We have a loaded elevator moving upward at a constant speed. The forces involved
are: gravitational force on the elevator, gravitational force on the counterweight, and the
force by the motor via cable. The total work is the sum of the work done by gravity on
the elevator, the work done by gravity on the counterweight, and the work done by the
motor on the system:

W=w+W +W,.
Since the elevator moves at constant velocity, its kinetic energy does not change and

according to the work-kinetic energy theorem the total work done is zero, that is,
W=AK=0.

The elevator moves upward through 54 m, so the work done by gravity on it is

W, =-m gd =—(1200 kg)(9.80 m/s*)(54 m)=—6.35 x 10’ J.

The counterweight moves downward the same distance, so the work done by gravity on it
is

W.=m_ gd =(950 kg)(9.80 m/s*)(54 m)=5.03x10 J.
Since W = 0, the work done by the motor on the system is

W, =-W,-W,=6.35x10"J — 5.03x10° J = 1.32x10° J.

m

This work is done in a time interval of A7 =3.0 min =180 s, so the power supplied by
the motor to lift the elevator is
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5
p=u 132X 10T 540 100w,
At 180s

50. (a) Using Eq. 7-48 and Eq. 3-23, we obtain
P=F -V =(4.0N)(—2.0 m/s)+ (9.0 N)(4.0 m/s) = 28 W.
(b) We again use Eq. 7-48 and Eq. 3-23, but with a one-component velocity: v = vj.

P=F-y =-12W=(-2.0 N)w.
which yields v =6 m/s.

51. (a) The object’s displacement is

—

d=d,—d =(-8.00 m)i+(6.00 m)j+(2.00 mk.
Thus, Eq. 7-8 gives

W =F-d =(3.00 N)(=8.00 m)-+(7.00 N)(6.00 m)+(7.00 N)(2.00 m)=32.0 J.
(b) The average power is given by Eq. 7-42:

avgzﬁzﬁz&oo W.
t 4.00

(c) The distance from the coordinate origin to the initial position is

d, =+/(3.00 m)> +(~2.00 m) +(5.00 m)’ =6.16 m,

and the magnitude of the distance from the coordinate origin to the final position is

d, :\/(—5.00 m)’ +(4.00 m)*> +(7.00 m)* =9.49 m.
Their scalar (dot) product is
cz. -c?f =(3.00 m)(—5.00 m)+(-2.00 m)(4.00 m)+(5.00 m)(7.00 m)=12.0 m°.

Thus, the angle between the two vectors is

d-d,
p=cos™ | —- :cosl(i):ml".
dd, (6.16)(9.49)
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52. According to the problem statement, the power of the car is

aw d(1 , dv
P=—=—| —mv° |= mv— = constant.
dt  dt\2 dt

The condition implies dt = mvdv/ P, which can be integrated to give

.[Td IVT mvdy T mv;

2P

0

where v, is the speed of the car at #=T7. On the other hand, the total distance traveled
can be written as
niV;

3P

IVT % myvdy = %J.Ovr Vvidy =

L:joTvdt: . 7

By squaring the expression for L and substituting the expression for 7, we obtain
32 2\3 3

| ™t =g mvp | _ 8PT

3P Om\ 2P 9m

PT? = %mL2 = constant.

which implies that

. . . . T
Differentiating the above equation gives dPT’ +3PT°dT =0, or dT = —3—PdP.

53. (a) Noting that the x component of the third force is F3, = (4.00 N)cos(60°), we apply
Eq. 7-8 to the problem:

W=[5.00 N-1.00 N + (4.00 N)cos 60°](0.20 m) = 1.20 J.
(b) Equation 7-10 (along with Eq. 7-1) then yields v =~/2W/m = 1.10 nm/s.

54. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done. We
find the area in terms of rectangular [length x width] and triangular [ base x height]

areas and use the work-kinetic energy theorem appropriately. The initial point is taken to
be x = 0, where vo = 4.0 m/s.

(a) With K, =1mv; =16 J, we have

K,—K,=W,__ +W,

1<x<2

+W.

2<x<3

=—40]

<x<l

so that K3 (the kinetic energy when x = 3.0 m) is found to equal 12 J.
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(b) With SI units understood, we write W, as F,Ax=(-4.0 N)(x, —3.0 m)and apply

<x<x/

the work-kinetic energy theorem:

Kx - K3 = I/V3<)c<x .
! f
K, —12=(-4)(x, - 3.0)

so that the requirement K =8.0 J leads to x, =4.0 m.

(c) As long as the work is positive, the kinetic energy grows. The graph shows this
situation to hold until x = 1.0 m. At that location, the kinetic energy is

K =K, +W, _ =161+20J=181.

<x<1
55. The horse pulls with a force F. As the cart moves through a displacement d , the
work done by F is W = F-d=Fd cos¢g, where ¢ is the angle between F and d.

(a) In 10 min the cart moves

'j(szgo ft/mi

d=var=| 60 2 :
60 min/h

- j(lo min) = 5280 ft

so that Eq. 7-7 yields

W = Fdcos ¢ = (40 1b)(5280 ft) cos 30°=1.8x10° ft-Ib.

(b) The average power is given by Eq. 7-42. With Az =10 min =600s, we obtain

W 1.8x10° ft-Ib

> =2 o =305 ft-Ib/s,
Sy, 600 s

which (using the conversion factor 1 hp =550 ft-1b/s found on the inside back cover of
the text) converts to P,y = 0.55 hp.

56. The acceleration is constant, so we may use the equations in Table 2-1. We choose
the direction of motion as +x and note that the displacement is the same as the distance
traveled, in this problem. We designate the force (assumed singular) along the x direction
acting on the m = 2.0 kg object as F.

(a) With vy = 0, Eq. 2-11 leads to a = v/t. And Eq. 2-17 gives Ax = Jvt. Newton’s
second law yields the force F' = ma. Equation 7-8, then, gives the work:
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W:FAx:m(Xj(lvtjzlmvz
t )\ 2 2

as we expect from the work-kinetic energy theorem. With v = 10 m/s, this yields
W=10x10"1J.

(b) Instantaneous power is defined in Eq. 7-48. With t=3.0 s, we find
v
P:Fv=m(—Jv:67 W.
t

(c) The velocity at #'=1.5s is v'=at'=5.0 m/s. Thus, P’ = Fv' = 33 W.

57. (a) To hold the crate at equilibrium in the final situation, ¥ must have the same
magnitude as the horizontal component of the rope’s tension 7" sin &, where @ is the
angle between the rope (in the final position) and vertical:

6= sinl(ﬂ) =19.5°.
12.0

But the vertical component of the tension supports against the weight: T cos € =mg.

Thus, the tension is
T=(230kg)(9.80 m/s?)/cos 19.5° =2391 N

and F'= (2391 N) sin 19.5° =797 N.

An alternative approach based on drawing a vector triangle (of forces) in the final
situation provides a quick solution.

(b) Since there is no change in kinetic energy, the net work on it is zero.

(c) The work done by gravity is W, = Fg od = —mgh , where h = L(1 — cos @) is the

vertical component of the displacement. With L = 12.0 m, we obtain W, =—1547 J, which
should be rounded to three significant figures: —1.55 kJ.

(d) The tension vector is everywhere perpendicular to the direction of motion, so its work
is zero (since cos 90° = 0).

(e) The implication of the previous three parts is that the work due to F' is —W, (so the
net work turns out to be zero). Thus, Wr=—-W,=1.55kJ.

(f) Since F does not have constant magnitude, we cannot expect Eq. 7-8 to apply.
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58. (a) The force of the worker on the crate is constant, so the work it does is given by
W, = F-d=Fd cos¢, where F is the force, d is the displacement of the crate, and ¢ is
the angle between the force and the displacement. Here =210 N, d = 3.0 m, and ¢ =
20°. Thus,
Wr= (210 N) (3.0 m) cos 20° =590 J.

(b) The force of gravity is downward, perpendicular to the displacement of the crate. The
angle between this force and the displacement is 90° and cos 90° = 0, so the work done
by the force of gravity is zero.

(c) The normal force of the floor on the crate is also perpendicular to the displacement, so
the work done by this force is also zero.

(d) These are the only forces acting on the crate, so the total work done on it is 590 J.

1/3
50 km E
1 km 1 megaton

and find £ = 50° ~ 1 x 10° megatons of TNT.

59. (a) We set up the ratio

(b) We note that 15 kilotons is equivalent to 0.015 megatons. Dividing the result from
part (a) by 0.013 yields about ten million bombs.

60. (a) In the work-kinetic energy theorem, we include both the work due to an applied
force W, and work done by gravity ¥, in order to find the latter quantity.

AK =W,+W, = 30J=(100 N)(1.8 m)cos 180°+W¥,
leading to W7, =2.1x10° J.

(b) The value of W, obtained in part (a) still applies since the weight and the path of the
child remain the same, so AK = W,=2.1x1 0> 7.

61. One approach is to assume a “path” from 7, to 7, and do the line-integral accordingly.

Another approach is to simply use Eq. 7-36, which we demonstrate:
X, Yy -4 -3
W= j dex+J.y’ Fdy= jz (2x)dx + L (3) dv

with SI units understood. Thus, we obtain W=12]J-18J=-61.
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62. (a) The compression of the spring is d = 0.12 m. The work done by the force of
gravity (acting on the block) is, by Eq. 7-12,

W, =mgd = (025 kg) (9.8 m/s’) (0.12 m) =029 .

(b) The work done by the spring is, by Eq. 7-26,

W, = —%kdz = —% (250 N/m) (0.12 m)* =—1.8 J.

(c) The speed v; of the block just before it hits the spring is found from the work-kinetic
energy theorem (Eq. 7-15):

1
AK:O—Eme =W +W,

which yields

v[:\/(—z)(m+m):\/(—2)(o.29 T-18D) oo o
m 0.25kg

(d) If we instead had v = 7m/s, we reverse the above steps and solve for d’. Recalling
the theorem used in part (c), we have

0—%mv{2 =W/'+W, = mga”—%kd’2

which (choosing the positive root) leads to

4= mg++m’g* + mkv!?

k

which yields d” = 0.23 m. In order to obtain this result, we have used more digits in our
intermediate results than are shown above (so v, =+/12.048 m/s=3.471m/s and v =
6.942 m/s).

63. A crate is being pushed up a frictionless inclined plane. The forces involved are:
gravitational force on the crate, normal force on the crate, and the force applied by the

worker. The work done by a force F' on an object as it moves through a displacement
disW=F-d = Fd cos¢@, where ¢ 1is the angle between F and d.

(a) The applied force is parallel to the incline. Thus, using Eq. 7-6, the work done on the
crate by the worker’s applied force is

W =Fdcos0°=(209 N)(1.50 m)=314 J.
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(b) Using Eq. 7-12, we find the work done by the gravitational force to be

W,=F,dcos(90°+25°) =mgdcos115°
=(25.0kg)(9.8m/s*)(1.50 m)cosl15°
~—155 1.

(c) The angle between the normal force and the direction of motion remains 90° at all
times, so the work it does is zero:
W, =F,dcos90°=0.

(d) The total work done on the crate is the sum of all three works:
W=Ww,+W,+W, =314 J+(-1551)+0 J=158J.

Note: By the work-kinetic energy theorem, if the crate is initially at rest, then its kinetic
energy after having moved 1.50 m up the incline would be K =W =158 J, and the speed
of the crate at that instant is

v=+2K/m=2(158 J)/25.0kg =3.56 m/s.

64. (a) The force F of the incline is a combination of normal and friction force, which is
serving to “cancel” the tendency of the box to fall downward (due to its 19.6 N weight).

Thus, F = mg upward. In this part of the problem, the angle ¢ between the belt and F
is 80°. From Eq. 7-47, we have

P =Fv cos¢=(19.6 N)(0.50 m/s) cos 80° = 1.7 W.

(b) Now the angle between the belt and F is 90°, so that P = 0.

(c) In this part, the angle between the belt and F is 100°, so that
P =(19.6 N)(0.50 m/s) cos 100° =-1.7 W.

65. There is no acceleration, so the lifting force is equal to the weight of the object. We
note that the person’s pull F is equal (in magnitude) to the tension in the cord.

(a) As indicated in the hint, tension contributes twice to the lifting of the canister: 27 =

mg. Since ‘ﬁ‘:T,we find F‘=98N.

(b) To rise 0.020 m, two segments of the cord (see Fig. 7-45) must shorten by that
amount. Thus, the amount of string pulled down at the left end (this is the magnitude of

d , the downward displacement of the hand) is d = 0.040 m.
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(c) Since (at the left end) both F and d are downward, then Eq. 7-7 leads to
W =F-d=(98N)(0.040 m)=3.9 J.

(d) Since the force of gravity F, (with magnitude mg) is opposite to the displacement

—

d, =0.020 m (up) of the canister, Eq. 7-7 leads to

W=F, -d =-(196N)(0.020 m)=-3.9 J.

g
This is consistent with Eq. 7-15 since there is no change in kinetic energy.

66. After converting the speed: v=120km/h =33.33 m/s, we find
K= %mvz = %(1200kg)(33.33m/s)2 =6.67x10°J.

67. According to Hooke’s law, the spring force is given by

F =—k(x—-x,)=—-kAx,
where Ax is the displacement from the equilibrium position. Thus, the first two situations
in Fig. 7-46 can be written as
—110 N =—-k(40 mm—x,)
—240 N =-k(60 mm-—x,)

The two equations allow us to solve for £, the spring constant, as well as x,, the relaxed

position when no mass is hung.
(a) The two equations can be added to give
240 N-110 N = k(60 mm—40 mm)
which yields k£ = 6.5 N/mm. Substituting the result into the first equation, we find

110N 110 N

X, =40 mm-——-+—=40 mm- =23 mm.
k 6.5 N/mm

(b) Using the results from part (a) to analyze that last picture, we find the weight to be

W=k@B0mm-x,)=(6.5N/mm)(30 mm-23 mm)=45 N .
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Note: An alternative method to calculate # in the third picture is to note that since the

amount of stretching is proportional to the weight hung, we have % = ﬁx’ . Applying
X

this relation to the second and the third pictures, the weight W is

A —
W= =2 Wz:(30 mm -2 mmj(240N):45N,
Ax, 60 mm-23 mm

in agreement with the result shown in (b).

68. Using Eq. 7-7, we have W = Fd cos ¢ =1504 J. Then, by the work-kinetic energy

theorem, we find the kinetic energy Ky = K; + W = 0 + 1504 J. The answer is therefore
1.5kJ.

69. The total weight is (100)(660 N) = 6.60 x 10* N, and the words “raises ... at constant
speed” imply zero acceleration, so the lift-force is equal to the total weight. Thus

P=Fv=(6.60 x 10%(150 m/60.0 s) = 1.65 x 10> W.
70. With SI units understood, Eq. 7-8 leads to W= (4.0)(3.0) — ¢(2.0) = 12 — 2c.
(a) If W=0, then c=6.0 N.
(b) If W=17], thenc=-2.5N.
(c)If W= —181J,then c=15N.
71. Using Eq. 7-8, we find
W =F-d=(Fcos@ i+F sin@ j)-(xi + yj) = Fxcos @+ Fysin 0

where x =2.0 m, y=-4.0 m, F =10 N, and 8=150°. Thus, we obtain W =—-37 J. Note
that the given mass value (2.0 kg) is not used in the computation.

72. (a) Eq. 7-10 (along with Eq. 7-1 and Eq. 7-7) leads to

vr=(2 d F cos6)"*= (cos6)"?,

m
where we have substituted F=2.0 N, m =4.0 kg, and d = 1.0 m.
12

(b) With v; = 1, those same steps lead to v,= (1 + cos@) .

(c) Replacing #with 180° — &, and still using v; = 1, we find
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vr=[1+ cos(180° — 6’)]1/2 =(1- 0030)1/2.

(d) The graphs are shown on the right. Note 141
that as 6 is increased in parts (a) and (b) the ,]
force provides less and less of a positive ]
acceleration, whereas in part (c) the force
provides less and less of a deceleration (as its & ]
value increases). The highest curve (which 067
slowly decreases from 1.4 to 1) is the curve for 4]
part (b); the other decreasing curve (starting at ]
1 and ending at 0) is for part (a). The rising ]
curve is for part (c); it is equal to 1 where 6= T T T o T T e s
90°.

0.8

0.2

73. (a) The plot of the function (with SI units understood) is shown below.

T T T T T T T T T r X
0 02 04 06 08 1 1.2 14 1.6 1.8 2

Estimating the area under the curve allows for a range of answers. Estimates from 11 J to
14 J are typical.

(b) Evaluating the work analytically (using Eq. 7-32), we have

2
W= leOe’mdx = 20| =126 T~13 1.

0

74. (a) Using Eq. 7-8 and SI units, we find
W=F-d=2i-4))-8i+cj)=16—-4c

which, if equal zero, implies ¢ = 16/4 =4 m.

(b) If W> 0 then 16 > 4¢, which implies ¢ <4 m.

(c) If W <0 then 16 <4c, which implies ¢ > 4 m.
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75. A convenient approach is provided by Eq. 7-48.
P =Fv = (1800 kg + 4500 kg)(9.8 m/s%)(3.80 m/s) = 235 kW.

Note that we have set the applied force equal to the weight in order to maintain constant
velocity (zero acceleration).

76. (a) The component of the force of gravity exerted on the ice block (of mass m) along
the incline is mg sin 8, where 0 = sin_1(0.91/ 1.5) gives the angle of inclination for the
inclined plane. Since the ice block slides down with uniform velocity, the worker must
exert a force F “uphill” with a magnitude equal to mg sin 0. Consequently,

F = mgsin @ = (45 kg)(9.8 m/sz)((i'iﬂ} ~2.7x10* N.
om

(b) Since the “downhill” displacement is opposite to F , the work done by the worker is
W, =—(2.7x10°N) (1.5 m) =—4.0x 10°J.

(¢) Since the displacement has a vertically downward component of magnitude 0.91 m (in
the same direction as the force of gravity), we find the work done by gravity to be

W, =(45kg) (98 m/s’) (0.91 m)=4.0x10J.

(d) Since FN is perpendicular to the direction of motion of the block, and cos90° = 0,
work done by the normal force is W3 = 0 by Eq. 7-7.

(e) The resultant force Iiet is zero since there is no acceleration. Thus, its work is zero, as
can be checked by adding the above results W, + W, + W, =0.

77. (a) To estimate the area under the curve between x = 1 m and x = 3 m (which should
yield the value for the work done), one can try “counting squares” (or half-squares or
thirds of squares) between the curve and the axis. Estimates between 5 J and 8 J are
typical for this (crude) procedure.

(b) Equation 7-32 gives
3

a _a a_
Lx—zdx—?’— = 6J

where a =—9 N'm” is given in the problem statement.
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78. (a) Using Eq. 7-32, the work becomes W = %xz — x> (SI units understood). The plot

is shown below:

o +=+r—"T"- X
1 2 3 4

(b) We see from the graph that its peak value occurs at x = 3.00 m. This can be verified

by taking the derivative of W and setting equal to zero, or simply by noting that this is
where the force vanishes.

() The maximum value is =3 (3.00)* — (3.00)° =13.50J.

(d) We see from the graph (or from our analytic expression) that W =0 at x =4.50 m.

(e) The case is at rest when v=0. Since W = AK =mv* /2, the condition implies W =0.
This happens at x =4.50 m.

79. Figure 7-49 represents x(¢), the position of the lunchbox as a function of time. It is
convenient to fit the curve to a concave-downward parabola:

1 1,
x()=—t(10-t)=t——1".
(0 10( ) 0

By taking one and two derivatives, we find the velocity and acceleration to be

dx t . d*x 1 ) 2
v(t)=—=1—-— (iInm/s), a= =——=-0.2 (iInm/s").
® dt 5 ( ) dt’ 5 ( )

The equations imply that the initial speed of the box is v, =v(0)=1.0m/s, and the
constant force by the wind is

F=ma=(2.0kg)(-0.2m/s>)=-0.40 N .

The corresponding work is given by (SI units understood)

W(t)=F - x(t)=—0.04t(10—¢).
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The initial kinetic energy of the lunch box is

K. :%mvf =%(2.0 kg)(1.0m/s)> =1.01J.

1

With AK =K, — K, =W, the kinetic energy at a later time is given by (in SI units)
K@)=K,+W =1-0.04:(10—-1¢)
(a) When ¢ = 1.0 s, the above expression gives
K(1s)=1-0.04(1)(10-1)=1-0.36=0.64=0.6J

where the second significant figure is not to be taken too seriously.

(b) At t=5.0 s, the above method gives K(5.0s)=1-0.04(5)(10-5)=1-1=0.

(c) The work done by the force from the wind from¢#=1.0stot=5.0sis
W=K(5.00-K(1.0s)=0-0.6~-0.6J.

80. The problem indicates that SI units are understood, so the result (of Eq. 7-23) is in
joules. Done numerically, using features available on many modern calculators, the
result is roughly 0.47 J. For the interested student it might be worthwhile to quote the
“exact” answer (in terms of the “error function”):

1.2
f'ls e dx = Var[2r [erf(672 /5) — erf(3\2 /20)] .
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1. The potential energy stored by the spring is given by U =1 kx*, where k is the spring

constant and x is the displacement of the end of the spring from its position when the
spring is in equilibrium. Thus

k=2—U=2(LJ)2:8.9><103N/m.

2

x* (0.075m)

2. We use Eq. 7-12 for W, and Eq. 8-9 for U.

(a) The displacement between the initial point and A4 is horizontal, so ¢ = 90.0° and
W, =0 (since cos 90.0° = 0).

(b) The displacement between the initial point and B has a vertical component of /4/2
downward (same direction as Ii ), so we obtain

1 1
W,=F,-d =§mgh =E(825 kg)(9.80 m/s*)(42.0 m)=1.70x10" J .

(c) The displacement between the initial point and C has a vertical component of 4
downward (same direction as F, ), so we obtain

W,=F,-d=mgh=(825 kg)(9.80 m/s’)(42.0 m)=3.40x10° J.

(d) With the reference position at C, we obtain

U, :%mgh =%(825 kg)(9.80 m/s?)(42.0 m)=1.70x10° J.

(e) Similarly, we find
U,=mgh=(825kg)(9.80 m/s*)(42.0 m)=3.40x10" J.

(f) All the answers are proportional to the mass of the object. If the mass is doubled, all
answers are doubled.

3. (a) Noting that the vertical displacement is 10.0 m — 1.50 m = 8.50 m downward (same
direction as ﬁg ), Eq. 7-12 yields

303
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2 o _
W, =mgd cos ¢ =(2.00 kg)(9.80 m/s")(8.50 m)cos0° =167 J.

(b) One approach (which is fairly trivial) is to use Eq. 8-1, but we feel it is instructive to
instead calculate this as AU where U = mgy (with upward understood to be the +y
direction). The result is

AU =mg(y, - y,) = (2.00 kg)(9.80 m/s*)(1.50 m~10.0 m) = ~167 J.

(c) In part (b) we used the fact that U; = mgy; =196 J.
(d) In part (b), we also used the fact U= mgy,=29 J.

(e) The computation of W, does not use the new information (that U = 100 J at the
ground), so we again obtain W, =167 J.

(f) As a result of Eq. 8-1, we must again find AU =-W,=-167J.
(g) With this new information (that Uy = 100 J where y = 0) we have
Ui=mgy;+ Uy=296].
(h) With this new information (that Uy = 100 J where y = 0) we have
Ur=mgys+ Uy =129 J.
We can check part (f) by subtracting the new U; from this result.
4. (a) The only force that does work on the ball is the force of gravity; the force of the rod
is perpendicular to the path of the ball and so does no work. In going from its initial

position to the lowest point on its path, the ball moves vertically through a distance equal
to the length L of the rod, so the work done by the force of gravity is

W =mgL = (0.341 kg)(9.80 m/s*)(0.452 m)=1.5117.

(b) In going from its initial position to the highest point on its path, the ball moves
vertically through a distance equal to L, but this time the displacement is upward,
opposite the direction of the force of gravity. The work done by the force of gravity is

W =-mgL =—(0.341 kg)(9.80 m/s*)(0.452 m) =—1.51J.
(c) The final position of the ball is at the same height as its initial position. The

displacement is horizontal, perpendicular to the force of gravity. The force of gravity
does no work during this displacement.
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(d) The force of gravity is conservative. The change in the gravitational potential energy
of the ball-Earth system is the negative of the work done by gravity:

AU =-mgL =—(0.341 kg)(9.80 m/s*)(0.452 m)=—1.51]

as the ball goes to the lowest point.

(e) Continuing this line of reasoning, we find
AU =+mgL = (0.341 kg)(9.80 m/s*)(0.452 m)=1.51]
as it goes to the highest point.

(f) Continuing this line of reasoning, we have AU = 0 as it goes to the point at the same
height.

(g) The change in the gravitational potential energy depends only on the initial and final

positions of the ball, not on its speed anywhere. The change in the potential energy is the
same since the initial and final positions are the same.

5. (a) The force of gravity is constant, so the work it does is given by W =F -d , where

Fis the force and d is the displacement. The force is vertically downward and has
magnitude mg, where m is the mass of the flake, so this reduces to W = mgh, where # is
the height from which the flake falls. This is equal to the radius r of the bowl. Thus

W =mgr =(200x10" kg)(9.8 m/sz)(22.0 x107m)=4.31x107].

(b) The force of gravity is conservative, so the change in gravitational potential energy of
the flake-Earth system is the negative of the work done: AU=—W=-4.31 x 107 J.

(c) The potential energy when the flake is at the top is greater than when it is at the
bottom by |AU]. If U = 0 at the bottom, then U= +4.31 x 10~ J at the top.

(d) If U= 0 at the top, then U=—4.31 x 10~ J at the bottom.

(e) All the answers are proportional to the mass of the flake. If the mass is doubled, all
answers are doubled.

6. We use Eq. 7-12 for W, and Eq. 8-9 for U.

(a) The displacement between the initial point and Q has a vertical component of &7 — R
downward (same direction as F. % )> 80 (with 2 = 5R) we obtain

W,=F, -d=4mgR=4(3.20x10" kg)(9.80 m/s*)(0.12 m)=0.15J .
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(b) The displacement between the initial point and the top of the loop has a vertical
component of 7 — 2R downward (same direction as Ii ), so (with 2 = 5R) we obtain

W, = Fg -d =3mgR =3(3.20x107 kg)(9.80 m/s?)(0.12 m)=0.111.
(c) With y=h = 5R, at P we find
U =5mgR =5(3.20x107 kg)(9.80 m/s*)(0.12 m)=0.19 J .
(d) With y =R, at O we have
U =mgR =(3.20x107 kg)(9.80 m/s*)(0.12 m) =0.038 J .
(e) With y = 2R, at the top of the loop, we find
U =2mgR =2(3.20x107 kg)(9.80 m/s*)(0.12 m)=0.075J.

(f) The new information (v, #0) is not involved in any of the preceding computations;
the above results are unchanged.

7. The main challenge for students in this type of problem seems to be working out the
trigonometry in order to obtain the height of the ball (relative to the low point of the
swing) h = L — L cos @ (for angle @ measured from vertical as shown in Fig. 8-32). Once
this relation (which we will not derive here since we have found this to be most easily
illustrated at the blackboard) is established, then the principal results of this problem
follow from Eq. 7-12 (for W, ) and Eq. 8-9 (for U).

(a) The vertical component of the displacement vector is downward with magnitude %, so
we obtain

W,=F,-d=mgh=mgL(1-cos0)
= (5.00 kg)(9.80 m/s*)(2.00 m)(1-cos30°) =13.11J.

(b) From Eq. 8-1, we have AU =W, =-mgL(1 —cos 8)=-13.1]J.
(c) With y = h, Eq. 8-9 yields U=mgL(1 —cos 8)=13.11].

(d) As the angle increases, we intuitively see that the height / increases (and, less
obviously, from the mathematics, we see that cos € decreases so that 1 — cos & increases),
so the answers to parts (a) and (c) increase, and the absolute value of the answer to part (b)
also increases.
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8. (a) The force of gravity is constant, so the work it does is given by W = F -d , where

F is the force and d is the displacement. The force is vertically downward and has
magnitude mg, where m is the mass of the snowball. The expression for the work reduces
to W= mgh, where h is the height through which the snowball drops. Thus

W =mgh=(1.50 kg)(9.80 m/s*)(12.5m) =184 ] .

(b) The force of gravity is conservative, so the change in the potential energy of the
snowball-Earth system is the negative of the work it does: AU=—-W=-184J.

(c) The potential energy when it reaches the ground is less than the potential energy when
it is fired by |AUJ, so U =-184 J when the snowball hits the ground.

9. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects
friction and other dissipative effects).

(a) In Problem 9-2, we found U, = mgh (with the reference position at C). Referring
again to Fig. 8-27, we see that this is the same as U, which implies that K, = K and thus
that

Vq4=Vo= 17.0 m/s.

(b) In the solution to Problem 9-2, we also found U, =mgh/2. In this case, we have

K,+U,=K;+U,

1, | h
—mvy +mgh=—mvy +mg| —
5o g 5 "s g(Z)

which leads to

vy = V2 +gh = J(17.0 m/s)* +(9.80 m/s>)(42.0 m) = 26.5 mJs.

(c) Similarly, v =Jv2 +2gh =/(17.0 m/s)* +2(9.80 m/s*)(42.0 m) = 33.4 m/s.

(d) To find the “final” height, we set K,= 0. In this case, we have
Ky+Uy,=K,+U,

%mvé +mgh=0+mgh,

2 2
which yields A, = h+20=42.0 m+- L0 _g

-—=56.7 m.
2g 2(9.80 m/s?)
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(e) It is evident that the above results do not depend on mass. Thus, a different mass for
the coaster must lead to the same results.

10. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects
friction and other dissipative effects).

(a) In the solution to Problem 9-3 (to which this problem refers), we found U; = mgy; =
196 J and Ur = mgy, = 29.0J (assuming the reference position is at the ground). Since
K; = 0 in this case, we have

0+196 J=K,+29.0J

/2K :
which gives Ky =167 J and thus leads to v = L 24679 _ 12.9 m/s.
m 2.00 kg

(b) If we proceed algebraically through the calculation in part (a), we find Ky=— AU =
mgh where h = y; — yrand is positive-valued. Thus,

V= 2£ =./2gh
m

as we might also have derived from the equations of Table 2-1 (particularly Eq. 2-16).
The fact that the answer is independent of mass means that the answer to part (b) is
identical to that of part (a), that is,v=12.9 m/s .

(c) IfK; # 0, then we find K, = mgh + K; (where K; is necessarily positive-valued). This

represents a larger value for Krthan in the previous parts, and thus leads to a larger value
for v.

11. (a) If X; 1s the kinetic energy of the flake at the edge of the bowl, K/ is its kinetic
energy at the bottom, U; is the gravitational potential energy of the flake-Earth system
with the flake at the top, and Uy is the gravitational potential energy with it at the bottom,
then K;+ Ur=K; + U.,.

Taking the potential energy to be zero at the bottom of the bowl, then the potential energy
at the top is U; = mgr where r = 0.220 m is the radius of the bowl and m is the mass of the
flake. K; = 0 since the flake starts from rest. Since the problem asks for the speed at the

.1 .
bottom, we write Emv2 for K. Energy conservation leads to

W,=F,-d=mgh=mgL(1-cos0).

The speed is v =+/2gr =+/2(9.8 m/s?)(0.220 m) =2.08 m/s.
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(b) Since the expression for speed does not contain the mass of the flake, the speed would
be the same, 2.08 m/s, regardless of the mass of the flake.

(c) The final kinetic energy is given by K,= K; + U; — Uy Since K; is greater than before,
Kris greater. This means the final speed of the flake is greater.

12. We use Eq. 8-18, representing the conservation of mechanical energy. We choose the
reference position for computing U to be at the ground below the cliff; it is also regarded
as the “final” position in our calculations.
(a) Using Eq. 8-9, the initial potential energy is given by U; = mgh where A = 12.5 m and
m =1.50 kg . Thus, we have

K +U =K,+U,

1 1
—mv} +mgh=—mv’ +0
2 2

which leads to the speed of the snowball at the instant before striking the ground:

V= Jg(%mvf +mghj =V’ + 2gh

m

where v; = 14.0 m/s is the magnitude of its initial velocity (not just one component of it).
Thus we find v =21.0 m/s.

(b) As noted above, v; is the magnitude of its initial velocity and not just one component
of it; therefore, there is no dependence on launch angle. The answer is again 21.0 m/s.

(c) It is evident that the result for v in part (a) does not depend on mass. Thus, changing
the mass of the snowball does not change the result for v.

13. We take the reference point for gravitational potential energy at the position of the
marble when the spring is compressed.

(a) The gravitational potential energy when the marble is at the top of its motion is
U, =mgh , where h =20 m is the height of the highest point. Thus,

U, =(50x10" kg)(98m/s*)(20 m) = 0.98 J.

(b) Since the kinetic energy is zero at the release point and at the highest point, then
conservation of mechanical energy implies AU, + AU, = 0, where AU, is the change in
the spring's elastic potential energy. Therefore, AU; = -AU, =—-0.98 J.
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(c) We take the spring potential energy to be zero when the spring is relaxed. Then, our
result in the previous part implies that its initial potential energy is Uy = 0.98 J. This must

be 1hkx®, where k is the spring constant and x is the initial compression. Consequently,

20U, 2(0981)
x> (0.080 m)>

=31x10° N/m =31 N/cm.

14. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects
friction and other dissipative effects).

(a) The change in potential energy is AU = mgL as it goes to the highest point. Thus, we
have
AK+AU =0

K, —K,+mgL=0

top

which, upon requiring Ko, = 0, gives Ko = mgL and thus leads to

2K,
Vy = -

= J2gL =+/2(9.80 m/s?)(0.452 m) = 2.98 m/s .

(b) We also found in Problem 9-4 that the potential energy change is AU = —mgL in going
from the initial point to the lowest point (the bottom). Thus,

AK+AU =0

K oiom — Ko —mgL =0

bottom

which, with Ky = mgL, leads to Kyotom = 2mgL. Therefore,

= [PRuen _ 7T = [4(9.80 m/s)(0.452 m) = 421 ms.
m

vbottom

(c) Since there is no change in height (going from initial point to the rightmost point),
then AU = 0, which implies AK = 0. Consequently, the speed is the same as what it was
initially,

vright

=v,=2.98 m/s.

(d) It is evident from the above manipulations that the results do not depend on mass.
Thus, a different mass for the ball must lead to the same results.

15. We neglect any work done by friction. We work with SI units, so the speed is
converted: v=130(1000/3600) = 36.1 m/s.
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(a) We use Eq. 8-17: Kr + Uy = K; + U; with U; = 0, Ur = mgh and Ky = 0. Since
K = %mv2 , where v is the initial speed of the truck, we obtain

v (36.1m/s)’

= 2 —66.5m.
2¢ 2(9.8m/s’)

lmv2 =mgh = h=
2
If L is the length of the ramp, then L sin 15° = 66.5 m so that L = (66.5 m)/sin 15° = 257
m. Therefore, the ramp must be about 2.6 x 10> m long if friction is negligible.

(b) The answers do not depend on the mass of the truck. They remain the same if the
mass is reduced.

(c) If the speed is decreased, ~# and L both decrease (note that % is proportional to the
square of the speed and that L is proportional to /).

16. We place the reference position for evaluating gravitational potential energy at the
relaxed position of the spring. We use x for the spring's compression, measured positively
downward (so x > 0 means it is compressed).

(a) With x =0.190 m, Eq. 7-26 gives

W = —%kxz =—722]~-721]

N

for the work done by the spring force. Using Newton's third law, we see that the work
done on the spring is 7.2 J.

(b) As noted above, W, =-7.2 J.

(c) Energy conservation leads to
K +U =K, +U,

mgh, = —mgx +% kx’

which (with m = 0.70 kg) yields /4o = 0.86 m.

(d) With a new value for the height A; =2k, =172 m, we solve for a new value of x
using the quadratic formula (taking its positive root so that x > 0).

mg + \/(mg)z +2mgkh
k

1
mgho’z—mngrEka = x=

which yields x = 0.26 m.
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17. (a) At Q the block (which is in circular motion at that point) experiences a centripetal
acceleration v*/R leftward. We find v* from energy conservation:

K,+Up=K,+U,

0+mgh = %mv2 +mgR
Using the fact that # = 5R, we find mv* = 8mgR. Thus, the horizontal component of the
net force on the block at O is

F = mv*/R = 8mg=8(0.032 kg)(9.8 m/s*)=2.5 N.
The direction is to the left (in the same direction as a ).
(b) The downward component of the net force on the block at Q is the downward force of
gravity
F = mg =(0.032 kg)(9.8 m/s*)=0.31 N.

(c) To barely make the top of the loop, the centripetal force there must equal the force of

gravity:

2
my,

=mg = mvf:ng.

This requires a different value of /4 than was used above.
K,+U,=K,+U,

1
0+mgh= Emvf + mgh,

mgh = %(ng) +mg(2R)

Consequently, 7 =2.5R =(2.5)(0.12 m) = 0.30 m.

(d) The normal force Fy, for speeds v, greater than /gR (which are the only
possibilities for nonzero Fy — see the solution in the previous part), obeys

2
my.

Fy=—}

from Newton's second law. Since v’ is related to / by energy conservation

K,+U,=K +U, :>gh=lv2+2gR

t 2 t
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then the normal force, as a function for / (so long as # > 2.5R — see the solution in the
previous part), becomes

_ 2mgh 3

F, Smg

Thus, the graph for 2 > 2.5R = 0.30 m consists of a straight line of positive slope 2mg/R
(which can be set to some convenient values for graphing purposes). Note that for 2 <
2.5R, the normal force is zero.

Fy

2
1.5
14

0.5

T T | K T T T h
0.1 02 03 04 05 06 07

18. We use Eq. 8-18, representing the conservation of mechanical energy. The reference
position for computing U is the lowest point of the swing; it is also regarded as the
“final” position in our calculations.

(a) The potential energy is U = mgL(1 — cos @) at the position shown in Fig. 8-32 (which
we consider to be the initial position). Thus, we have

K +U =K,+U,

0+ mgL(1—cosf) = %mv2 +0

which leads to

V:\/ngL(l—cosé’) _ l—sz(l_COS ).

m

Plugging in L = 2.00 m and 8= 30.0° we find v =2.29 m/s.

(b) It is evident that the result for v does not depend on mass. Thus, a different mass for
the ball must not change the result.

19. We convert to SI units and choose upward as the +y direction. Also, the relaxed
position of the top end of the spring is the origin, so the initial compression of the spring
(defining an equilibrium situation between the spring force and the force of gravity) is y
=—0.100 m and the additional compression brings it to the position y; =—-0.400 m.
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(a) When the stone is in the equilibrium (a = 0) position, Newton's second law becomes

F

net

-mg=0

=ma
F,

spring

—k(—0.100) — (8.00) (9.8) = 0

where Hooke's law (Eq. 7-21) has been used. This leads to a spring constant equal to
k=784 N/m.

(b) With the additional compression (and release) the acceleration is no longer zero, and
the stone will start moving upward, turning some of its elastic potential energy (stored in
the spring) into kinetic energy. The amount of elastic potential energy at the moment of
release is, using Eq. 8-11,

1

U =Eky12 =%(784 N/m)(-0.400)’ =62.7 J.

(c) Its maximum height y, is beyond the point that the stone separates from the spring
(entering free-fall motion). As usual, it is characterized by having (momentarily) zero
speed. If we choose the y; position as the reference position in computing the
gravitational potential energy, then

K +U =K,+U,

0+ %kyf =0+mgh
where 4 = y, — y; is the height above the release point. Thus, mgh (the gravitational

potential energy) is seen to be equal to the previous answer, 62.7 J, and we proceed with
the solution in the next part.

(d) We find 4 =ky? /2mg =0.800 m, or 80.0 cm.

20. (a) We take the reference point for gravitational energy to be at the lowest point of the
swing. Let @ be the angle measured from vertical. Then the height y of the pendulum
“bob” (the object at the end of the pendulum, which in this problem is the stone) is given
by L(1 —cosf@) =y . Hence, the gravitational potential energy is

mgy =mgL(1 —cos®).

When 6= 0° (the string at its lowest point) we are told that its speed is 8.0 m/s; its kinetic
energy there is therefore 64 J (using Eq. 7-1). At 8= 60° its mechanical energy is

1
Erecn= 5 m’ + mgL(1 —cos@) .
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Energy conservation (since there is no friction) requires that this be equal to 64 J.
Solving for the speed, we find v=15.0 m/s.

(b) We now set the above expression again equal to 64 J (with @being the unknown) but
with zero speed (which gives the condition for the maximum point, or “turning point”
that it reaches). This leads to Gn.x = 79°.

(c) As observed in our solution to part (a), the total mechanical energy is 64 J.

21. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects
friction and other dissipative effects). The reference position for computing U (and height
h) is the lowest point of the swing; it is also regarded as the “final” position in our
calculations.

(a) Careful examination of the figure leads to the trigonometric relation 4 = L — L cos €
when the angle is measured from vertical as shown. Thus, the gravitational potential
energy is U = mgL(1 — cos &) at the position shown in Fig. 8-32 (the initial position).
Thus, we have

K,+U,=K,+U,

1 1
Emvé +mgL (1-cos6,) :Emv2 +0

which leads to

v= \/2[%%/3 +mgL(1—cos 490)} = \/vg +2gL(1-cosb,)
m

= /(8.00 m/s)? +2(9.80 m/s*)(1.25 m)(1 — cos 40°) = 8.35 m/s.

(b) We look for the initial speed required to barely reach the horizontal position —
described by v; = 0 and 8= 90° (or 8= -90°, if one prefers, but since cos(—¢) = cos ¢, the
sign of the angle is not a concern).

K,+U,=K,+U,

1
Emvé +mgL (1-cos6,)=0+mgL
which yields

v, =+/2gLcos b, = \/2(9.80 m/s*)(1.25 m) cos 40° = 4.33 m/s.

(c) For the cord to remain straight, then the centripetal force (at the top) must be (at least)

equal to gravitational force:

2

my,

=mg = mvt2 =mgL
r
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where we recognize that » = L. We plug this into the expression for the kinetic energy (at
the top, where 8= 180°).
K,+U,=K, +U,

%mvé +mgL (1-cos,) = %mvf +mg(1—cos180°)

1 1
Emvg +mgL (1-cos,) = E(mgL) +mg(2L)

which leads to

v, = \/gL(3+2cos 6,) = \/(9.80 m/s*)(1.25 m)(3 + 2 cos 40°) = 7.45 m/s.

(d) The more initial potential energy there is, the less initial kinetic energy there needs to
be, in order to reach the positions described in parts (b) and (c). Increasing € amounts to

increasing Uy, so we see that a greater value of € leads to smaller results for vy in parts (b)
and (c).

22. From Chapter 4, we know the height 4 of the skier's jump can be found from
vi =0=v, , —2gh where vy, = vy sin 28° is the upward component of the skier's “launch

velocity.” To find vy we use energy conservation.

(a) The skier starts at rest y = 20 m above the point of “launch” so energy conservation
leads to

mgyz%mv2:v=\/@:20 m/s

which becomes the initial speed vy for the launch. Hence, the above equation relating / to
v yields
(v, sin 28°)°
h=———=44m.
2g

(b) We see that all reference to mass cancels from the above computations, so a new
value for the mass will yield the same result as before.

23. (a) As the string reaches its lowest point, its original potential energy U = mglL
(measured relative to the lowest point) is converted into kinetic energy. Thus,

1
mgL:Emv2:v=1/2 L .

With L = 1.20 m we obtain v =1/2gL =+/2(9.80 m/s*)(1.20 m) =4.85m/s.



317

(b) In this case, the total mechanical energy is shared between kinetic 1mv; and
potential mgy,. We note that y, = 2r where r = L — d = 0.450 m. Energy conservation
leads to

1
mgL = Emv,f +mgy,

which yields v, = /2gL—-2g(2r) =2.42 m/s .

24. We denote m as the mass of the block, # = 0.40 m as the height from which it dropped
(measured from the relaxed position of the spring), and x as the compression of the spring
(measured downward so that it yields a positive value). Our reference point for the
gravitational potential energy is the initial position of the block. The block drops a total
distance 4 + x, and the final gravitational potential energy is —mg(h + x). The spring

potential energy is 1kx® in the final situation, and the kinetic energy is zero both at the
beginning and end. Since energy is conserved

K +U, =K, +U,

0= —mg(h+x)+%kx2

which is a second degree equation in x. Using the quadratic formula, its solution is

mg* \/(mg)2 + 2mghk
X= ) .

Now mg =19.6 N, A = 0.40 m, and k =1960 N/m, and we choose the positive root so
that x > 0.

B 19.6+\/19.62 +2(19.6)(0.40)(1960)
B 1960

=0.10 m.

X

25. Since time does not directly enter into the energy formulations, we return to Chapter
4 (or Table 2-1 in Chapter 2) to find the change of height during this # = 6.0 s flight.

1
Ay =v, 1t - Egt2

This leads to Ay =-32 m. Therefore AU =mgAy=-318J~-3.2x107 J.

26. (a) With energy in joules and length in meters, we have

AU =U(x)-U(0)= -] (6x' = 12)dx" .

X
0
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Therefore, with U (0) = 27 J, we obtain U(x) (written simply as U) by integrating and
rearranging:
U=27+12x-3x".

(b) We can maximize the above function by working through the dU /dx =0 condition,
or we can treat this as a force equilibrium situation — which is the approach we show.

F=0=6x,-12=0

Thus, x., = 2.0 m, and the above expression for the potential energy becomes U =39 J.

(¢) Using the quadratic formula or using the polynomial solver on an appropriate
calculator, we find the negative value of x for which U= 0 to be x =—1.6 m.

(d) Similarly, we find the positive value of x for which U= 0to be x = 5.6 m.

27. (a) To find out whether or not the vine breaks, it is sufficient to examine it at the
moment Tarzan swings through the lowest point, which is when the vine — if it didn't
break — would have the greatest tension. Choosing upward positive, Newton's second

law leads to
2

T—mg:mv—
r

where » = 18.0 m and m=W/g=688/98=702 kg. We find the v* from energy
conservation (where the reference position for the potential energy is at the lowest point).

1
mgh = Emv2 = v’ = 2gh

where 4 = 3.20 m. Combining these results, we have

2 2
T= mg+mih = mg(1+—hj
r r
which yields 933 N. Thus, the vine does not break.

(b) Rounding to an appropriate number of significant figures, we see the maximum
tension is roughly 9.3x 10* N,

28. From the slope of the graph, we find the spring constant

k=2 0.10N/cm =10N/m.
Ax
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(a) Equating the potential energy of the compressed spring to the kinetic energy of the
cork at the moment of release, we have

lkx2 =lmv2 :>v:x\/E
2 2 m

which yields v = 2.8 m/s for m = 0.0038 kg and x = 0.055 m.

(b) The new scenario involves some potential energy at the moment of release. With d =
0.015 m, energy conservation becomes

lloc2 :lmv2 —i—lka?2 =vy= ﬁ(xz —dz)
2 2 2 m

which yields v= 2.7 m/s.

29. We refer to its starting point as 4, the point where it first comes into contact with the
spring as B, and the point where the spring is compressed x, =0.055 m as C, as shown

in the figure below. Point C is our reference point for computing gravitational potential
energy. Elastic potential energy (of the spring) is zero when the spring is relaxed.

Y6

Information given in the second sentence allows us to compute the spring constant. From
Hooke's law, we find
F 270N

x 0.02m

=1.35x10* N/m.

The distance between points 4 and B is /, and we note that the total sliding distance

[, +x, 1s related to the initial height 4, of the block (measured relative to C) by

A
ly+x,

sinf =

where the incline angle f1is 30°.
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(a) Mechanical energy conservation leads to

1
K,+U,=K.+U,. = 0+mgh, zakxg

which yields
_kx;  (1.35x10" N/m)(0.055 m)*

h
4 2mg 2(12kg)(9.8 m/s?)

=0.174 m.

Therefore, the total distance traveled by the block before coming to a stop is

[ —ta  OATAM G g 2035 m.

sin30° sin30°

(b) From this result, we find [, =x,=0.347 m—-0.055 m=0.292 m, which means that
the block has descended a vertical distance

|Ay|=h,—h, =1,sin6=(0.292 m)sin30°=0.146 m

in sliding from point 4 to point B. Thus, using Eq. 8-18, we have

1 1
O0+mgh, :Emvf; +mgh, = Emvé =mg|Ay|

which yields v, =2g [Ay|=+/2(9.8 m/s*)(0.146 m) =1.69 m/s~1.7 m/s.

Note: Energy is conserved in the process. The total energy of the block at position B is
E, =%mv§ +mgh, = %(12 kg)(1.69m/s)* +(12kg)(9.8 m/s*)(0.028 m)=20.4J,

which is equal to the elastic potential energy in the spring:

%kxg =%(1 .35x10* N/m)(0.055 m)> =20.4J.

30. We take the original height of the box to be the y = 0 reference level and observe that,
in general, the height of the box (when the box has moved a distance d downhill) is
y=—dsin40°.

(a) Using the conservation of energy, we have

K +U, :K+U:>0+O:%mv2+mgy+%kd2.
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Therefore, with d = 0.10 m, we obtain v=0.81 m/s.

(b) We look for a value of d # 0 such that K =0.
K +U, =K+U:>0+O=O+mgy+%kd2.

Thus, we obtain mgd sin40° = 1 kd® and find d=0.21 m.

(c) The uphill force is caused by the spring (Hooke's law) and has magnitude kd = 25.2 N.
The downhill force is the component of gravity mgsin40°= 12.6 N. Thus, the net force

on the box is (25.2 — 12.6) N = 12.6 N uphill, with
a=F/m=(12.6 N)/(2.0 kg) = 6.3 m/s".
(d) The acceleration is up the incline.

31. The reference point for the gravitational potential energy U, (and height /) is at the
block when the spring is maximally compressed. When the block is moving to its highest
point, it is first accelerated by the spring; later, it separates from the spring and finally
reaches a point where its speed v,is (momentarily) zero. The x axis is along the incline,
pointing uphill (so xo for the initial compression is negative-valued); its origin is at the
relaxed position of the spring. We use SI units, so £ = 1960 N/m and xo = —0.200 m.

(a) The elastic potential energy is Lhx; =392 7.

(b) Since initially U, = 0, the change in U, is the same as its final value mgh where m =
2.00 kg. That this must equal the result in part (a) is made clear in the steps shown in the
next part. Thus, AU, = Uy =39.2J.

(c) The principle of mechanical energy conservation leads to
Ky+Uy,=K,+U,

0+ % kx} =0+mgh
which yields # = 2.00 m. The problem asks for the distance along the incline, so we have
d = h/sin 30° = 4.00 m.
32. The work required is the change in the gravitational potential energy as a result of the
chain being pulled onto the table. Dividing the hanging chain into a large number of
infinitesimal segments, each of length dy, we note that the mass of a segment is (m/L) dy

and the change in potential energy of a segment when it is a distance |y| below the table
top is
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dU= (m/L)gly| dy =—(m/L)gy dy

since y is negative-valued (we have +y upward and the origin is at the tabletop). The total
potential energy change is

__mg _1mg 0
AU = . J_L/4ydy—2 . (L/4)" =mgL/32.

The work required to pull the chain onto the table is therefore

W =AU = mgL/32 = (0.012 kg)(9.8 m/s*)(0.28 m)/32 = 0.0010 J.
33. All heights 4 are measured from the lower end of the incline (which is our reference
position for computing gravitational potential energy mgh). Our x axis is along the incline,
with +x being uphill (so spring compression corresponds to x > 0) and its origin being at
the relaxed end of the spring. The height that corresponds to the canister's initial position

(with spring compressed amount x = 0.200 m) is given by A =(D+x)sin@, where
6=37°.

(a) Energy conservation leads to
. 1., 1 ., .
K +U =K,+U, = 0+mg(D+x)s1n(9+Ekx :Emv2+ngsm9

which yields, using the data m =2.00 kg and £ = 170 N/m,

v, = \/ng sin @+ kx’ /m = 2.40m/s.
(b) In this case, energy conservation leads to

K +U =K,+U,

0+mg(D+x)sin6?+%kx2 =%mv§ +0

which yields v, =+/2g(D+x)sin@+kx*/m =4.19 m/s.

34. Let F, be the normal force of the ice on him and m is his mass. The net inward force

is mg cos @— Fy and, according to Newton's second law, this must be equal to mv*/R,
where v is the speed of the boy. At the point where the boy leaves the ice Fiy = 0, so g cos
0= v*/R. We wish to find his speed. If the gravitational potential energy is taken to be
zero when he is at the top of the ice mound, then his potential energy at the time shown is



323

U=-mgR(1 —cos 8).

He starts from rest and his kinetic energy at the time shown is1mv’. Thus conservation
of energy gives
0=1mv’ —mgR(1-cos6),

or v* = 2gR(1 — cos 0). We substitute this expression into the equation developed from
the second law to obtain g cos €= 2g(1 — cos &). This gives cos &= 2/3. The height of
the boy above the bottom of the mound is

h :RcosﬁzgR :§(13.8 m)=9.20 m.
35. (a) The (final) elastic potential energy is

1
U= 5 kx*= 5 (431 N/m)(0.210 m)* = 9.50 J.

1
2
Ultimately this must come from the original (gravitational) energy in the system mgy
(where we are measuring y from the lowest “elevation” reached by the block, so

vy = (d + x)sin(30°).
Thus,
mg(d + x)sin(30°) =9.50 J = d=0.396 m.

(b) The block is still accelerating (due to the component of gravity along the incline,
mgsin(30°)) for a few moments after coming into contact with the spring (which exerts
the Hooke’s law force kx), until the Hooke’s law force is strong enough to cause the
block to begin decelerating. This point is reached when

kx = mg sin30°

which leads to x = 0.0364 m = 3.64 cm; this is long before the block finally stops (36.0
cm before it stops).

36. The distance the marble travels is determined by its initial speed (and the methods of
Chapter 4), and the initial speed is determined (using energy conservation) by the original
compression of the spring. We denote 4 as the height of the table, and x as the horizontal

distance to the point where the marble lands. Then x = v, t and h=1gt’ (since the
vertical component of the marble's “launch velocity” is zero). From these we find
x=v,+/2 h/g. We note from this that the distance to the landing point is directly

proportional to the initial speed. We denote vy, be the initial speed of the first shot and D;
=(2.20—-0.27) m = 1.93 m be the horizontal distance to its landing point; similarly, v, is
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the initial speed of the second shot and D = 2.20 m is the horizontal distance to its
landing spot. Then

Ve, D
WD O T
vOl 1 1

When the spring is compressed an amount ¢, the elastic potential energy is 1 k/*. When
the marble leaves the spring its kinetic energy is +mv;. Mechanical energy is conserved:

Imv; =1k*, and we see that the initial speed of the marble is directly proportional to

the original compression of the spring. If 7, is the compression for the first shot and ¢,
is the compression for the second, then v,, =(¢,//,)v, . Relating this to the previous

result, we obtain

oDy :(2.20 m
Dl

(1.10 cm) =1.25 cm.
1.93 m

37. Consider a differential element of length dx at a distance x from one end (the end that
remains stuck) of the cord. As the cord turns vertical, its change in potential energy is
given by

dU =—(Adx)gx

where A=m/h is the mass/unit length and the negative sign indicates that the potential

energy decreases. Integrating over the entire length, we obtain the total change in the
potential energy:

h 1 1
AU =|dU =—| Agxdx=—-—Agh® =——mgh.
I _[0 g 5 g 5 g
Withm =15 gand 7 =25 cm, we have AU =-0.018J.

38. In this problem, the mechanical energy (the sum of K and U) remains constant as the
particle moves.

(a) Since mechanical energy is conserved, U, + K, =U , +K ,, the kinetic energy of the
particle in region 4 (3.00 m< x<4.00 m) is

K,=U,-U,+K,=12.01-9.00 J+4.00 ] =7.00 ] .

With K, =mv’ /2, the speed of the particle at x =3.5 m (within region 4) is

VA:\/ZKA _ 20000 _gag o
m 0.200 kg
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(b) At x=65m, U=0 and K=U,+K,;=12.0J+4.00J=16.0J by mechanical
energy conservation. Therefore, the speed at this point is

v:\/zK:\/2(16.0 J)=12.6m/s.

m  \0.200 kg

(c) At the turning point, the speed of the particle is zero. Let (8.0m, 24.00)
the position of the right turning point be x,. From the figure

shown on the right, we find x, to be
(xg. 16.00 )

16.00J-0 24.00J-16.00J
X, —7.00 m 8.00 m—x,

= x,=7.67m.

(7.0m, 0 J)

(d) Let the position of the left turning point bex,. From the  (1.0m,20.00J)

figure shown, we find x, tobe
(x7. 16.00 J)
16.00 J-20.00J 9.00J-16.00J
= = x, =1.73 m.
x, —1.00 m 3.00 m—x,
(3.0m, 9.00 J)

39. From the figure, we see that at x = 4.5 m, the potential energy is U; = 15 J. If the
speed is v = 7.0 m/s, then the kinetic energy is

Ky =mv*/2 = (0.90 kg)(7.0 m/s)*/2 =22 J.
The total energy is £,=U 1+ K; = (15 +22)J=37].

(a) At x = 1.0 m, the potential energy is U, = 35 J. By energy conservation, we have K, =
2.0 J > 0. This means that the particle can reach there with a corresponding speed

v, =\/2K2 = [2COD o s,
m  \0.90 kg

(b) The force acting on the particle is related to the potential energy by the negative of the
slope:
P
Ax
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From the figure we have F = SESR Il E +10 N.

2m-4m
(c) Since the magnitude F, > 0, the force points in the +x direction.

(d) At x = 7.0 m, the potential energy is U; = 45 J, which exceeds the initial total energy
E,. Thus, the particle can never reach there. At the turning point, the kinetic energy is
zero. Between x = 5 and 6 m, the potential energy is given by

U(x)=15+30(x-5), 5<x<6.
Thus, the turning point is found by solving 37 =15+30(x—5), which yields x =5.7 m.

(e) At x = 5.0 m, the force acting on the particle is

AU - (45-15 17
' Ax (6-5) m
The magnitude is | F |=30 N.

-30 N.

(f) The fact that F < Oindicated that the force points in the —x direction.

40. (a) The force at the equilibrium position » = req is

L
dr |1 =1 T T

which leads to the result

a B B

(b) This defines a minimum in the potential energy curve (as can be verified either by a
graph or by taking another derivative and verifying that it is concave upward at this
point), which means that for values of r slightly smaller than r.q the slope of the curve is
negative (so the force is positive, repulsive).

(c) And for values of r slightly larger than r.q the slope of the curve must be positive (so
the force is negative, attractive).

41. (a) The energy atx=5.0mis E=K+U=2.0J-5.7]J=-3.71.

(b) A plot of the potential energy curve (SI units understood) and the energy E (the
horizontal line) is shown for 0 <x < 10 m.
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(c) The problem asks for a graphical determination of the turning points, which are the
points on the curve corresponding to the total energy computed in part (a). The result for
the smallest turning point (determined, to be honest, by more careful means) is x = 1.3 m.

(d) And the result for the largest turning point is x = 9.1 m.

(e) Since K = E — U, then maximizing K involves finding the minimum of U. A graphical
determination suggests that this occurs at x = 4.0 m, which plugs into the expression
E—-U=-37—(4xe™) to give K=2.161 ~ 2.2 J. Alternatively, one can measure
from the graph from the minimum of the U curve up to the level representing the total
energy £ and thereby obtain an estimate of K at that point.

(f) As mentioned in the previous part, the minimum of the U curve occurs at x = 4.0 m.

(g) The force (understood to be in newtons) follows from the potential energy, using Eq.
8-20 (and Appendix E if students are unfamiliar with such derivatives).

_dU _

F=
dx

(4 - x) e

(h) This revisits the considerations of parts (d) and (e) (since we are returning to the
minimum of U(x)) — but now with the advantage of having the analytic result of part (g).
We see that the location that produces F' = 0 is exactly x = 4.0 m.

42. Since the velocity is constant, @ =0 and the horizontal component of the worker's
push F cos @ (where = 32°) must equal the friction force magnitude f; = 4 Fy. Also, the

vertical forces must cancel, implying

w

applied

= (8.0N)(0.70m) =5.6 ]

which is solved to find /=71 N.

(a) The work done on the block by the worker is, using Eq. 7-7,

W =Fdcos@=(71N)(9.2 m)cos32°=56x10J .
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(b) Since f; = 14 (mg + F sin 8), we find AE, = f,d =(60N)(9.2m)=5.6x10"]J.
43. (a) Using Eq. 7-8, we have

W, e = (8.0N)(0.70m) =5.6 J.

(b) Using Eq. 8-31, the thermal energy generated is
AE, = f,d =(5.0N)(0.70m)=3.5 J.

44. (a) The work is W= Fd = (35.0 N)(3.00 m) = 105 J.

(b) The total amount of energy that has gone to thermal forms is (see Eq. 8-31 and Eq.
6-2)

AEw = 14, mgd = (0.600)(4.00 kg)(9.80 m/s*)(3.00 m) = 70.6 J.
I£40.0 J has gone to the block then (70.6 — 40.0) J = 30.6 J has gone to the floor.

(c) Much of the work (105 J) has been “wasted” due to the 70.6 J of thermal energy
generated, but there still remains (105 — 70.6 ) J = 34.4 J that has gone into increasing the
kinetic energy of the block. (It has not gone into increasing the potential energy of the
block because the floor is presumed to be horizontal.)

45. (a) The work done on the block by the force in the rope is, using Eq. 7-7,

W = Fdcos8 = (7.68 N)(4.06m)cos15.0°=30.1 J.

(b) Using f for the magnitude of the kinetic friction force, Eq. 8-29 reveals that the
increase in thermal energy is

AE, = fd = (7.42N)(4.06m) =30.1 1.

(c) We can use Newton's second law of motion to obtain the frictional and normal forces,
then use g4 = f/Fy to obtain the coefficient of friction. Place the x axis along the path of
the block and the y axis normal to the floor. The free-body diagram is shown below. The
x and the y component of Newton's second law are

X: Fcos0-f =0
y: Fy+Fsin 6—mg=0,

where m is the mass of the block, F is the force exerted by the rope, and € is the angle
between that force and the horizontal.
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Fsin@ .
Fy I
|
< o >
Fcosg@
mg

The first equation gives
f=Fcos 8=(7.68 N)cos15.0°=7.42 N
and the second gives
Fy=mg - Fsin 0= (3.57 kg)(9.8 m/s*) — (7.68 N)sin15.0°=33.0 N.
Thus, the coefficient of kinetic friction is

go=L 2TA2N_§ 0o,
F, 330N

N

46. We work this using English units (with g = 32 ft/s), but for consistency we convert
the weight to pounds

I 1b
=(9.0)o
g =00 Z(16oz

j: 0.561b

which implies m = 0.018 1b - s*/ft (which can be phrased as 0.018 slug as explained in
Appendix D). And we convert the initial speed to feet-per-second

5280 ft/mi

v, = (818mi/h) ( 3600 b

]:120 ft/s

or a more “direct” conversion from Appendix D can be used. Equation 8-30 provides
AEy = —AEne. for the energy “lost” in the sense of this problem. Thus,

AE, =%m(vf V) +mg(y,—y,) =%(0.018)(1202 ~110*)+0 =20 ft-Ib.

47. We use SI units so m = 0.075 kg. Equation 8-33 provides AEy = —AEpe. for the
energy “lost” in the sense of this problem. Thus,
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1
By =307 ) (33,

= %(0.075 kg)[(12 m/s)* —(10.5 m/s)* ]+ (0.075 kg)(9.8 m/s*)(1.1 m —2.1 m)

=0.531J.
48. We use Eq. 8-31 to obtain

AE, = f,d =(10N)(5.0m) =50 J
and Eq. 7-8 to get

W =Fd =(2.0N)(5.0m) =10 J.

Similarly, Eq. 8-31 gives
W=AK+AU+AE,
10=35+AU +50

which yields AU =-75 J. By Eq. 8-1, then, the work done by gravity is W=-AU=175].

49. (a) We take the initial gravitational potential energy to be U; = 0. Then the final
gravitational potential energy is Ur= —mgL, where L is the length of the tree. The change
is

U, -U, =-mgL=—25kg)(9.8 m/s’)(12 m) = -2.9x10" J .

(b) The kinetic energy is K = %mv2 = %(25 kg)(5.6 m/s)* =3.9x10” J.

(c) The changes in the mechanical and thermal energies must sum to zero. The change in
thermal energy is AEy = fL, where f is the magnitude of the average frictional force;
therefore,

CAK+AU _ 39x10° J-2.9x10" )
L 12 m

f= =2.1x10° N.

50. Equation 8-33 provides AEy = —AEne. for the energy “lost” in the sense of this
problem. Thus,

1
AE, = Em(vi2 —v;)+mg(y,=y,)

= %(60 ke)[(24 m/s)’ — (22 m/s)’]+ (60 kg)(9.8 m/s>)(14 m)

=1.1x10* I.

That the angle of 25° is nowhere used in this calculation is indicative of the fact that
energy is a scalar quantity.
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51. (a) The initial potential energy is
U, =mgy; = (520 kg) (9.8111/52) (300 m) =1.53x10°J

where +y is upward and y = 0 at the bottom (so that Uy= 0).

(b) Since fr = p Fn = e mg cos@ we have AE, = f,d = yymgdcos@ from Eq. 8-31.
Now, the hillside surface (of length d = 500 m) is treated as an hypotenuse of a 3-4-5
triangle, so cos 8= x/d where x = 400 m. Therefore,

AE, = ykmgdg = u,mgx = (0.25)(520)(9.8) (400) = 51x10° J .

(c) Using Eq. 8-31 (with W = 0) we find

K, =K, +U,~U, ~AE, =0+(1.53x10° )= 0 (5.1x10° J)=1.02x10° J.
(d) FromK , =mv* /2, we obtain v =63 m/s.

52. (a) An appropriate picture (once friction is included) for this problem is Figure 8-3 in
the textbook. We apply Eq. 8-31, AEw = fi d, and relate initial kinetic energy K; to the
"resting" potential energy U,

1
Ki+ U =fid+K +U = 200]J+0=fd+0+ Jkd’

where f; = 10.0 N and £ = 400 N/m. We solve the equation for d using the quadratic
formula or by using the polynomial solver on an appropriate calculator, with d = 0.292 m
being the only positive root.

(b) We apply Eq. 8-31 again and relate U, to the "second" kinetic energy K; it has at the
unstretched position.

1
K,+U=fd+K,+U = EkdzszdJrKerO

Using the result from part (a), this yields K, = 14.2 J.

53. (a) The vertical forces acting on the block are the normal force, upward, and the force
of gravity, downward. Since the vertical component of the block's acceleration is zero,
Newton's second law requires Fy = mg, where m is the mass of the block. Thus f'= g4 Fy
= 1mg. The increase in thermal energy is given by AEy, = fd = mgD, where D is the
distance the block moves before coming to rest. Using Eq. 8-29, we have

AE,, =(025)(35kg)(9.8m/s”)(7.8m) =671,
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(b) The block has its maximum kinetic energy Kp.x just as it leaves the spring and enters
the region where friction acts. Therefore, the maximum kinetic energy equals the thermal
energy generated in bringing the block back to rest, 67 J.

(c) The energy that appears as kinetic energy is originally in the form of potential energy
: . 1 . : .
in the compressed spring. Thus, K =U, = Ekx2 , where £ is the spring constant and x is

the compression. Thus,

2(67]
v (P [ AT e
k 640N/m

54. (a) Using the force analysis shown in Chapter 6, we find the normal force
F, =mgcos@ (where mg =267 N) which means

Jie = Fy =pumg cos 0.
Thus, Eq. 8-31 yields

AE, = f,d = u,mgd cos6 = (0.10)(267)(6.1)cos20°=15x10"J.
(b) The potential energy change is
AU = mg(—d sin ) = (267 N)(- 6.1 m) sin 20° =—5.6 x 10* J.

The initial kinetic energy is
1, 1[ 267N

K =—mv, =— >
9.8m/s

(0.457m/s*)=2.8 1.
2 2

Therefore, using Eq. 8-33 (with W = 0), the final kinetic energy is

K, =K —-AU-AE, =28-(-56x10°)-15x10> = 41x10°J.

Consequently, the final speed is v, = /2K, /m =55 m/s.

55. (a) Withx = 0.075 m and k =320N/m, Eq. 7-26 yields W, =-1kx* =-090J. For

later reference, this is equal to the negative of AU.

(b) Analyzing forces, we find Fy = mg, which means f, = i, F,, = u,mg . With d = x, Eq.
8-31 yields
AE, = f,d = u,mgx =(0.25)(2.5)(9.8)(0.075) = 0.46 J.
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(c) Equation 8-33 (with W = 0) indicates that the initial kinetic energy is

K. =AU +AE, =090+046=136]

which leads to v, = 2K, /m =10 m/s.

56. Energy conservation, as expressed by Eq. 8-33 (with = 0) leads to

AE, =K, -K,+U,-U, = f,{d:O—O+%kxz -0

- ,ukmgd:%(?_OON/m)(O.ISm)z = 11,(2.0kg)(9.8m/s?)(0.75m) =2.25 J

which yields g4 = 0.15 as the coefficient of kinetic friction.

57. Since the valley is frictionless, the only reason for the speed being less when it
reaches the higher level is the gain in potential energy AU = mgh where A = 1.1 m.
Sliding along the rough surface of the higher level, the block finally stops since its
remaining kinetic energy has turned to thermal energy AE, = f,d = umgd , where
#=0.60. Thus, Eq. 8-33 (with W = 0) provides us with an equation to solve for the
distance d:

K, =AU +AE, =mg(h+ ud)

where K, =mv’/2 andv;= 6.0 m/s. Dividing by mass and rearranging, we obtain

2
A=t om
2ug  p

58. This can be worked entirely by the methods of Chapters 2—6, but we will use energy
methods in as many steps as possible.

(a) By a force analysis of the style done in Chapter 6, we find the normal force has
magnitude Fiy = mg cos @ (where 6= 40°), which means f, = , F,, = wmg cos @ where
= 0.15. Thus, Eq. 8-31 yields

AEw = frd = ymgd cos 6.

Also, elementary trigonometry leads us to conclude that AU = mgd sin 6. Eq. 8-33 (with
W =0 and Kr= 0) provides an equation for determining d:

K =AU +AE,,

1 .
Emvf =mgd (sin @+ u, cosb)
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where v, =14m/s. Dividing by mass and rearranging, we obtain

2
1%

d= — =0.13m.
2g(sin@+ y, cos )

(b) Now that we know where on the incline it stops (d' = 0.13 + 0.55 = 0.68 m from the
bottom), we can use Eq. 8-33 again (with ¥ = 0 and now with K; = 0) to describe the
final kinetic energy (at the bottom):

K, =-AU-AE,

%mv2 = mgd’(sin@— yn cos@)

which — after dividing by the mass and rearranging — yields

v :\/ng’(sinﬁ—,uk cosd) =2.7m/s.

(c) In part (a) it is clear that d increases if 14 decreases — both mathematically (since it is
a positive term in the denominator) and intuitively (less friction — less energy “lost”). In
part (b), there are two terms in the expression for v that imply that it should increase if z4
were smaller: the increased value of d' = dj + d and that last factor sin &— s cos 6, which
indicates that less is being subtracted from sin &€ when g4 is less (so the factor itself
increases in value).

59. (a) The maximum height reached is 4. The thermal energy generated by air resistance

as the stone rises to this height is AEy, = fh by Eq. 8-31. We use energy conservation in
the form of Eq. 8-33 (with W= 0):

K, +U,+AE, =K +U,

and we take the potential energy to be zero at the throwing point (ground level). The
initial kinetic energy is K, = Emvg , the initial potential energy is U; = 0, the final kinetic
energy is K= 0, and the final potential energy is Uy = wh, where w = mg is the weight of

the stone. Thus, wh + fh = %mvé , and we solve for the height:

2 2
my, _ Vo

2wt f) 280+ flw)

Numerically, we have, with m = (5.29 N)/(9.80 m/s*) = 0.54 kg,
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~ (20.0 m/s)’ 1
2(9.80 m/s?)(1+0.265/5.29)

(b) We notice that the force of the air is downward on the trip up and upward on the trip
down, since it is opposite to the direction of motion. Over the entire trip the increase in

2

thermal energy is AEy = 2fh. The final kinetic energy is K, :%mv , Where v is the

speed of the stone just before it hits the ground. The final potential energy is Uy= 0. Thus,
using Eq. 8-31 (with W =0), we find

LI LI
—mv" +2fh=—mvy;.
2 h=gm

We substitute the expression found for /4 to obtain

2
M lmv2 ——mv;
26(+ flw) 2 2

which leads to

v —vg—izvg_%:vg{l_ 2f J:vg w—f
mg(1+ f/w) w(l+ f/w) w+ f wH f

where w was substituted for mg and some algebraic manipulations were carried out.
Therefore,

v=v, L (20,0 mps) [P NZO265N g6 s
Wt f 529N +0.265 N

60. We look for the distance along the incline d, which is related to the height ascended
by Ah = d sin 6. By a force analysis of the style done in Chapter 6, we find the normal

force has magnitude Fyy = mg cosé, which means f; = 14 mg cosd. Thus, Eq. 8-33 (with W
=0) leads to
0=K,-K +AU+AE,

=0- K. +mgdsin@+ u,mgd cosd
which leads to
K 128

d= : = =43m.
mg(sin@+ p, cosd)  (4.0)(9.8)(sin30°+0.30c0s30°) o

61. Before the launch, the mechanical energy isAE

mech,0

=0. At the maximum height %

where the speed of the beetle vanishes, the mechanical energy is AE =mgh. The

mech,l

change of the mechanical energy is related to the external force by
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AE_ ., =AE

mech — mech,1

AE =mgh=F, dcos¢,

mech,0 avg
where F,y, 1s the average magnitude of the external force on the beetle.

(a) From the above equation, we have

o mgh _ (40x10” ke)(9.80 m/s*)(0.30 m)
“  dcos¢ (7.7%x107 m)(cos 0°)

=1.5x107 N.

(b) Dividing the above result by the mass of the beetle, we obtain

Fo. —h B (0.30 m)
m dcosg & (7.7x107* m)(cos 0°)

g=3.8x10"g.

62. We will refer to the point where it first encounters the “rough region” as point C (this
is the point at a height /4 above the reference level). From Eq. 8-17, we find the speed it
has at point C to be

ve= v = 2gh = \[(8.0)" - 2(9.8)(2.0) = 4.980 ~ 5.0 m/s.
Thus, we see that its kinetic energy right at the beginning of its “rough slide” (heading

uphill towards B) is
1
Kc= 7 m(4.980 m/s)’ = 12.4m

(with SI units understood). Note that we “carry along” the mass (as if it were a known
quantity); as we will see, it will cancel out, shortly. Using Eq. 8-37 (and Eq. 6-2 with Fy
=mgcos#) and y=dsin@, we note that if d < L (the block does not reach point B), this

kinetic energy will turn entirely into thermal (and potential) energy

Kc=mgy+fid = 12.4m=mgdsind + pymgdcosb.
With 4= 0.40 and 6= 30°, we find d = 1.49 m, which is greater than L (given in the
problem as 0.75 m), so our assumption that d < L is incorrect. What is its kinetic energy

as it reaches point B? The calculation is similar to the above, but with d replaced by L
and the final v* term being the unknown (instead of assumed zero):

1
5 mv* = K¢ — (mgL sin@+ pymgL cos) .

This determines the speed with which it arrives at point B:
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vy = V2 —2gL(sin 6+ 4, cos )
= \/(4.98 m/s)”> —2(9.80 m/s*)(0.75 m)(sin 30°+ 0.4 cos 30°) = 3.5 m/s.

63. We observe that the last line of the problem indicates that static friction is not to be
considered a factor in this problem. The friction force of magnitude f = 4400 N
mentioned in the problem is kinetic friction and (as mentioned) is constant (and directed
upward), and the thermal energy change associated with it is AEy, = fd (Eq. 8-31) where d
= 3.7 min part (a) (but will be replaced by x, the spring compression, in part (b)).

(a) With W = 0 and the reference level for computing U = mgy set at the top of the
(relaxed) spring, Eq. 8-33 leads to

U=K+AE, =>v= 2d(g—i)
m

which yields v=74m/s form=1800 kg.

(b) We again utilize Eq. 8-33 (with W = 0), now relating its kinetic energy at the moment
it makes contact with the spring to the system energy at the bottom-most point. Using the
same reference level for computing U = mgy as we did in part (a), we end up with
gravitational potential energy equal to mg(—x) at that bottom-most point, where the spring

(with spring constant & =1.5x10° N/m) is fully compressed.

K:mg(—x)+%kx2 + fx

where K = %mv2 =49x10* ] using the speed found in part (a). Using the abbreviation

E=mg —f=1.3 x 10* N, the quadratic formula yields

+ 2
_sEe kK i”kK —090m

X

where we have taken the positive root.

(c) We relate the energy at the bottom-most point to that of the highest point of rebound
(a distance d’ above the relaxed position of the spring). We assume d' > x. We now use
the bottom-most point as the reference level for computing gravitational potential energy.

1., kx’
—kx"=mgd'+ fd' =>d'=——=28m.
2 2(mg+d)

(d) The non-conservative force (§8-1) is friction, and the energy term associated with it is
the one that keeps track of the total distance traveled (whereas the potential energy terms,
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coming as they do from conservative forces, depend on positions — but not on the paths
that led to them). We assume the elevator comes to final rest at the equilibrium position
of the spring, with the spring compressed an amount d.q given by

m
mg =kd,, = d, =7g:0.12m.

In this part, we use that final-rest point as the reference level for computing gravitational
potential energy, so the original U = mgy becomes mg(d.q + d). In that final position, then,

. . . . . 2
the gravitational energy is zero and the spring energy is kd;, /2. Thus, Eq. 8-33 becomes

total

mg(d,, +d)= %kd:q + fd

total

(1800)(9.8)(0.12 +3.7) = %(1.5 x10°)(0.12)" +(4400)d

which yields diota; = 15 m.

64. In the absence of friction, we have a simple conversion (as it moves along the
inclined ramps) of energy between the kinetic form (Eq. 7-1) and the potential form (Eq.
8-9). Along the horizontal plateaus, however, there is friction that causes some of the
kinetic energy to dissipate in accordance with Eq. 8-31 (along with Eq. 6-2 where 14 =
0.50 and Fy = mg in this situation). Thus, after it slides down a (vertical) distance d it
1

has gained K = 5 mv* = mgd, some of which (AEy = wmgd) is dissipated, so that the
value of kinetic energy at the end of the first plateau (just before it starts descending
towards the lowest plateau) is

K=mgd—-pumgd :%mgd.

In its descent to the lowest plateau, it gains mgd/2 more kinetic energy, but as it slides
across it “loses” g mgd/2 of it. Therefore, as it starts its climb up the right ramp, it has
kinetic energy equal to

1 1 1 3
K=—mgd+—mgd ——umgogd =—mgd .
> g > 8 Zﬂk 4 4 8

Setting this equal to Eq. 8-9 (to find the height to which it climbs) we get H = %d. Thus,

the block (momentarily) stops on the inclined ramp at the right, at a height of
H=0.75d=0.75 (40 cm) = 30 cm

measured from the lowest plateau.

65. The initial and final kinetic energies are zero, and we set up energy conservation in

the form of Eq. 8-33 (with W = 0) according to our assumptions. Certainly, it can only
come to a permanent stop somewhere in the flat part, but the question is whether this
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occurs during its first pass through (going rightward) or its second pass through (going
leftward) or its third pass through (going rightward again), and so on. If it occurs during
its first pass through, then the thermal energy generated is AEw = fid where d < L
and f, = y,mg . If it occurs during its second pass through, then the total thermal energy

is AEy, = . mg(L + d) where we again use the symbol d for how far through the level area
it goes during that last pass (so 0 < d < L). Generalizing to the n™ pass through, we see
that

AEq = pemg[(n — 1)L + d].

In this way, we have
mgh = ,ukmg((n ~1)L+ d)

which simplifies (when 4 = L/2 is inserted) to

=1+ —n.

2,

The first two terms give 1+1/24, =35, so that the requirement 0<d/L <1 demands

) ) 1
that n = 3