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Statistical Thermodynamics: Fundamentals and Applications discusses the
fundamentals and applications of statistical thermodynamics for beginning
graduate students in the engineering sciences. Building on the prototypical
Maxwell-Boltzmann method and maintaining a step-by-step development of
the subject, this book makes few presumptions concerning students’ previous
exposure to statistics, quantum mechanics, or spectroscopy. The book begins
with the essentials of statistical thermodynamics, pauses to recover needed
knowledge from quantum mechanics and spectroscopy, and then moves on to
applications involving ideal gases, the solid state, and radiation. A full intro-
duction to kinetic theory is provided, including its applications to transport
phenomena and chemical kinetics. A highlight of the textbook is its discussion
of modern applications, such as laser-based diagnostics. The book concludes
with a thorough presentation of the ensemble method, featuring its use for real
gases. Each chapter is carefully written to address student difficulties in learn-
ing this challenging subject, which is fundamental to combustion, propulsion,
transport phenomena, spectroscopic measurements, and nanotechnology. Stu-
dents are made comfortable with their new knowledge by the inclusion of both
example and prompted homework problems.
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Preface

My intention in this textbook is to provide a self-contained exposition of the fundamentals
and applications of statistical thermodynamics for beginning graduate students in the engi-
neering sciences. Especially within engineering, most students enter a course in statistical
thermodynamics with limited exposure to statistics, quantum mechanics, and spectroscopy.
Hence, I have found it necessary over the years to “start from the beginning,” not leaving
out intermediary steps and presuming little knowledge in the discrete, as compared to
the continuum, domain of physics. Once these things are done carefully, I find that good
graduate students can follow the ideas, and that they leave the course excited and satisfied
with their newfound understanding of both statistical and classical thermodynamics.

Nevertheless, a first course in statistical thermodynamics remains challenging and
sometimes threatening to many graduate students. Typically, all their previous experience
is with the equations of continuum mechanics, whether applied to thermodynamics, fluid
mechanics, or heat transfer. For most students, therefore, the mathematics of probability
theory, the novelty of quantum mechanics, the confrontation with entropy, and indeed
the whole new way of thinking that surrounds statistical thermodynamics are all built-in
hills that must be climbed to develop competence and confidence in the subject. For this
reason, although I introduce the ensemble method at the beginning of the book, I have
found it preferable to build on the related Maxwell-Boltzmann method so that novices
are not confronted immediately with the conceptual difficulties of ensemble theory. In
this way, students tend to become more comfortable with their new knowledge earlier in
the course. Moreover, they are prepared relatively quickly for applications, which is very
important to maintaining an active interest in the subject for most engineering students.
Using this pedagogy, I find that the ensemble approach then becomes very easy to teach
later in the semester, thus effectively preparing the students for more advanced courses
that apply statistical mechanics to liquids, polymers, and semiconductors.

To hold the students’ attention, I begin the book with the fundamentals of statisti-
cal thermodynamics, pause to recover needed knowledge from quantum mechanics and
spectroscopy, and then move on to applications involving ideal gases, the solid state, and
radiation. An important distinction between this book and previous textbooks is the inclu-
sion of an entire chapter devoted to laser-based diagnostics, as applied to the thermal
sciences. Here, I cover the essentials of absorption, emission, and laser-induced fluores-
cence techniques for the measurement of species concentrations and temperature. A full

XV



xvi ® Preface

introduction to kinetic theory is also provided, including its applications to transport phe-
nomena and chemical kinetics.

During the past two decades, I have developed many problems for this textbook that are
quite different from the typical assignments found in other textbooks, which are often either
too facile or too ambiguous. Typically, the students at Purdue complete eight problem sets
during a semester, with 4-6 problems per set. Hence, there are enough problems included
in the book for approximately three such course presentations. My approach has been to
construct problems using integrally related subcomponents so that students can learn the
subject in a more prompted fashion. Even so, I find that many students need helpful hints
at times, and the instructor should indeed be prepared to do so. In fact, I trust that the
instructor will find, as I have, that these interactions with students, showing you what they
have done and where they are stuck, invariably end up being one of the most rewarding
parts of conducting the course. The reason is obvious. One-on-one discussions give the
instructor the opportunity to get to know a person and to impart to each student his or her
enthusiasm for the drama and subtleties of statistical thermodynamics.

As a guide to the instructor, the following table indicates the number of 50-minute
lectures devoted to each chapter in a 42-lecture semester at Purdue University.

Number of Number of
Chapter Lectures Chapter Lectures
1 1 11 2
2 1 12 1
3 4 13 2
4 2 14 1
5 3 15 2
6 3 16 3
7 2 17 1
8 2 18 2
9 4 19 2
10 3 20 1

In conclusion, I would be remiss if I did not thank my spouse, Marlene, for her for-
bearance and support during the writing of this book. Only she and I know firsthand the
trials and tribulations confronting a partnership wedded to the long-distance writer. Pro-
fessor Lawrence Caretto deserves my gratitude for graciously permitting the importation
of embellished portions of his course notes to the text. I thank Professor Michael Renfro
for his reading of the drafts and for his helpful suggestions. Many useful comments were
also submitted by graduate students who put up with preliminary versions of the book at
Purdue University and at the University of Connecticut. I appreciate Professor Robert
Lucht, who aided me in maintaining several active research projects during the writing of
the book. Finally, I thank the School of Mechanical Engineering at Purdue for providing
me with the opportunity and the resources over these many years to blend my enthusiasm
for statistical thermodynamics with that for my various research programs in combustion
and optical diagnostics.



1 Introduction

To this point in your career, you have probably dealt almost exclusively with the behav-
ior of macroscopic systems, either from a scientific or engineering viewpoint. Examples
of such systems might include a piston—cylinder assembly, a heat exchanger, or a battery.
Typically, the analysis of macroscopic systems uses conservation or field equations related
to classical mechanics, thermodynamics, or electromagnetics. In this book, our focus is
on thermal devices, as usually described by thermodynamics, fluid mechanics, and heat
transfer. For such devices, first-order calculations often employ a series of simple ther-
modynamic analyses. Nevertheless, you should understand that classical thermodynamics
is inherently limited in its ability to explain the behavior of even the simplest thermody-
namic system. The reason for this deficiency rests with its inadequate treatment of the
atomic behavior underlying the gaseous, liquid, or solid states of matter. Without proper
consideration of constituent microscopic systems, such as a single atom or molecule, it
is impossible for the practitioner to understand fully the evaluation of thermodynamic
properties, the meaning of thermodynamic equilibrium, or the influence of temperature
on transport properties such as the thermal conductivity or viscosity. Developing this ele-
mentary viewpoint is the purpose of a course in statistical thermodynamics. As you will
see, such fundamental understanding is also the basis for creative applications of classical
thermodynamics to macroscopic devices.

1.1 The Statistical Foundation of Classical Thermodynamics

Since a typical thermodynamic system is composed of an assembly of atoms or molecules,
we can surely presume that its macroscopic behavior can be expressed in terms of the
microscopic properties of its constituent particles. This basic tenet provides the founda-
tion for the subject of statistical thermodynamics. Clearly, statistical methods are manda-
tory as even one cm® of a perfect gas contains some 10! atoms or molecules. In other
words, the huge number of particles forces us to eschew any approach based on having
an exact knowledge of the position and momentum of each particle within a macroscopic
thermodynamic system.

The properties of individual particles can be obtained only through the methods of
quantum mechanics. One of the most important results of quantum mechanics is that the
energy of a single atom or molecule is not continuous, but discrete. Discreteness arises

1
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(a) (b)

Emissive Signal
Emissive Signal

Wavelength Wavelength

Figure 1.1 Schematic of simplified (a) continuous spectrum and (b) discrete spectrum.

from the distinct energy values permitted for either an atom or molecule. The best evi-
dence for this quantized behavior comes from the field of spectroscopy. Consider, for exam-
ple, the simplified emission spectra shown in Fig. 1.1. Spectrum (a) displays a continuous
variation of emissive signal versus wavelength, while spectrum (b) displays individual
“lines” at specific wavelengths. Spectrum (a) is typical of the radiation given off by a hot
solid while spectrum (b) is typical of that from a hot gas. As we will see in Chapter 7, the
individual lines of spectrum (b) reflect discrete changes in the energy stored by an atom or
molecule. Moreover, the height of each line is related to the number of particles causing
the emissive signal. From the point of view of statistical thermodynamics, the number of
relevant particles (atoms or molecules) can only be determined by using probability theory,
as introduced in Chapter 2.

The total energy of a single molecule can be taken, for simplicity, as the sum of indi-
vidual contributions from its translational, rotational, vibrational, and electronic energy
modes. The external or translational mode specifies the kinetic energy of the molecule’s
center of mass. In comparison, the internal energy modes reflect any molecular motion with
respect to the center of mass. Hence, the rotational mode describes energy stored by molec-
ular rotation, the vibrational mode energy stored by vibrating bonds, and the electronic
mode energy stored by the motion of electrons within the molecule. By combining pre-
dictions from quantum mechanics with experimental data obtained via spectroscopy, it
turns out that we can evaluate the contributions from each mode and thus determine the
microscopic properties of individual molecules. Such properties include bond distances,
rotational or vibrational frequencies, and translational or electronic energies. Employ-
ing statistical methods, we can then average over all particles to calculate the macroscopic
properties associated with classical thermodynamics. Typical phenomenological properties
include the temperature, the internal energy, and the entropy.

Figure 1.2 summarizes the above discussion and also provides a convenient road map
for our upcoming study of statistical thermodynamics. Notice that the primary subject of
this book plays a central role in linking the microscopic and macroscopic worlds. More-
over, while statistical thermodynamics undoubtedly constitutes an impressive application
of probability theory, we observe that the entire subject can be founded on only two major
postulates. As for all scientific adventures, our acceptance of these basic postulates as



1.3 Why Statistical Thermodynamics? * 3

Quantum Mechanics Statistical Thermodynamics Classical Thermodynamics

e Properties of individual e Two postulates e Properties of an assembly
atoms or molecules e Probability theory of atoms or molecules

® Microscopic ® Macroscopic

e Discrete e Continuous

Figure 1.2 Flow chart for statistical thermodynamics.

objective truths rests solely on their predictive power; fortunately, the plethora of resulting
predictions invariably comports well with experimental observations in classical thermo-
dynamics. Therefore, despite its analytical nature, the study of statistical thermodynamics
is well worth the effort as the final results are indeed quite practical. In fact, as we will see,
much of classical thermodynamics ultimately rests on the conceptual bridge provided by
statistical thermodynamics, a bridge linking the real world of compressors and gas turbines
to the quantized world of ultimate uncertainty and molecular behavior.

1.2 A Classification Scheme for Statistical Thermodynamics

The framework of statistical thermodynamics can be divided into three conceptual themes.
The first is equilibrium statistical thermodynamics with a focus on independent particles.
Here, we assume no intermolecular interactions among the particles of interest; the result-
ing simplicity permits excellent a priori calculations of macroscopic behavior. Examples
include the ideal gas, the pure crystalline metal, and blackbody radiation. The second theme
is again equilibrium statistical thermodynamics, but now with a focus on dependent par-
ticles. In this case, intermolecular interactions dominate as, for example, with real gases,
liquids, and polymers. Typically, such intermolecular interactions become important only at
higher densities; because of the resulting mathematical difficulties, calculations of macro-
scopic properties often require semi-empirical procedures, as discussed in Chapters 19
and 20.

The third conceptual theme might be labeled nonequilibrium statistical thermodynam-
ics. Here, we are concerned with the dynamic behavior that arises when shifting between
different equilibrium states of a macroscopic system. Although time-correlation methods
presently constitute an active research program within nonequilibrium statistical thermo-
dynamics, we focus in this book on those dynamic processes that can be linked to basic
kinetic theory. As such, we will explore the molecular behavior underlying macroscopic
transport of momentum, energy, and mass. In this way, kinetic theory can provide a deeper
understanding of the principles of fluid mechanics, heat transfer, and molecular diffusion.
As we will see in Part Five, nonequilibrium statistical thermodynamics also provides an
important path for the understanding and modeling of chemical kinetics, specifically, the
rates of elementary chemical reactions.

1.3 Why Statistical Thermodynamics?

While the above classification scheme might please the engineering mind, it does little
to acquaint you with the drama and excitement of both learning and applying statistical
thermodynamics. Yes, you will eventually be able to calculate from atomic and molecular
properties the thermodynamic properties of ideal gases, real gases, and metals. Examples
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might include equations of state, measurable properties such as specific heats and the
internal energy, and also ephemeral properties such as the entropy and free energies.
And yes, you will learn how to calculate various transport properties, such as the thermal
conductivity and the diffusion coefficient. Furthermore, with respect to chemical reactions,
you will eventually be able to determine equilibrium constants and estimate elementary
rate coefficients.

While these pragmatic aspects of statistical thermodynamics are important, the real
drama of the subject lies instead in its revelations about our natural world. As you work
through this book, you will slowly appreciate the limitations of classical thermodynamics.
In particular, the first, second, and third laws of thermodynamics should take on a whole
new meaning for you. You will understand that volumetric work occurs because of micro-
scopic energy transfers and that heat flow occurs because of redistributions in molecular
population. You will realize that entropy rises in isolated systems because of a fundamen-
tal enhancement in molecular probabilities. You will also appreciate in a new way the
important underlying link between absolute property values and crystalline behavior near
absolute zero.

Perhaps more importantly, you will come to understand in a whole new light the real
meaning of thermodynamic equilibrium and the crucial role that temperature plays in
defining both thermal and chemical equilibrium. This new understanding of equilibrium
will pave the path for laser-based applications of statistical thermodynamics to measure-
ments of both temperature and species concentrations, as discussed in Chapter 11. Such
optical measurements are extremely important to current research in all of the thermal
sciences, including fluid mechanics, heat transfer, combustion, plasmas, and various aspects
of nanotechnology and manufacturing.

In summary, the goal of this book is to help you master classical thermodynamics from
amolecular viewpoint. Given information from quantum mechanics and spectroscopy, sta-
tistical thermodynamics provides the analytical framework needed to determine important
thermodynamic and transport properties associated with practical systems and processes.
A significant feature of such calculations is that they can bypass difficult experimental
conditions, such as those involving very high or low temperatures, or chemically unstable
materials. More fundamentally, however, a study of statistical thermodynamics can pro-
vide you with a whole new understanding of thermodynamic equilibrium and of the crucial
role that entropy plays in the operation of our universe. That universe surely encompasses
both the physical and biological aspects of both humankind and the surrounding cosmos.
As such, you should realize that statistical thermodynamics is of prime importance to all
students of science and engineering as we enter the postmodern world.



PART ONE

FUNDAMENTALS OF STATISTICAL
THERMODYNAMICS






2 Probability and Statistics

In preparation for our study of statistical thermodynamics, we first review some fundamen-
tal notions of probability theory, with a special focus on those statistical concepts relevant
to atomic and molecular systems. Depending on your background, you might be able to
scan quickly Sections 2.1-2.3, but you should pay careful attention to Sections 2.4-2.7.

2.1 Probability: Definitions and Basic Concepts

Probability theory is concerned with predicting statistical outcomes. Simple examples of
such outcomes include observing a head or tail when tossing a coin, or obtaining the
numbers 1, 2, 3, 4, 5, or 6 when throwing a die. For a fairly-weighted coin, we would, of
course, expect to see a head for 1/2 of a large number of tosses; similarly, using a fairly-
weighted die, we would expect to get a four for 1/6 of all throws. We can then say that
the probability of observing a head on one toss of a fairly-weighted coin is 1/2 and that
for obtaining a four on one throw of a fairly-weighted die is 1/6. This heuristic notion of
probability can be given mathematical formality via the following definition:

Given N; mutually exclusive, equally likely points in sample space, with N, of these
points corresponding to the random event A, then the probability P(A) = N,/ N;.

Here, sample space designates the available N; occurrences while random event A denotes
the subset of sample space given by N, < N;. The phrase mutually exclusive indicates
that no two outcomes can occur simultaneously in a single sample space; this criterion is
obviously required if we are to convert our heuristic understanding of chance to a well-
defined mathematical probability.

As a further example, for a standard deck of playing cards, we have 52 points in sample
space, of which four represent aces. Hence, the probability of drawing a single ace from a
well-mixed deck is P(A) =4/52 =1/13, where the event A designates the random drawing
of an ace. Visually, the relation between event A and sample space can be described by a
so-called Venn diagram, as shown in Fig. 2.1. Here, sample points resulting in event A fall
within the area A, while those not resulting in event A fall elsewhere in the surrounding
box, whose total area represents the entire sample space. Hence, assuming a uniform point
density, we find that the ratio of the cross-hatched area to the total area in Fig. 2.1 provides
a visual representation of P(A). Similarly, from the viewpoint of set theory, we observe

7
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Figure 2.1 Venn diagram representing that portion of sam-
ple space which corresponds to random event A.

that for a fairly-weighted die the random event of obtaining an even number E = {2, 4, 6}
from within the entire sample space S = {1, 2, 3,4, 5, 6} clearly occurs with probability
P(A)=1)2.

Our notion of probability becomes more complicated if we consider two different
random events, A and B, which can both occur within a given sample space. On this
basis, we may define the compound probability, P(AB), which represents events A and B,
and also the fotal probability, P(A+ B), which represents events A or B (including both).
From the viewpoint of set theory, P(A B) is called the intersection of A and B (AN B), while
P(A+ B)islabeled the union of A and B (AU B). Pictorial displays of the (a) intersection
and (b) union of A and B are given by the two Venn diagrams shown in Fig. 2.2.

If the events A and B are mutually exclusive, a single trial by definition permits no
overlap in sample space. Therefore, P(AB) = 0 so that

P(A+ B) = P(A) + P(B), 2.1)

as displayed by the Venn diagram of Fig. 2.3(a). As an example, the probability of picking a
king (K) or a queen (Q) from a single deck of playing cards is given by the total probability
P(K + Q) = P(K) + P(Q) = 2/13. In comparison, the probability of picking a king from
one deck and a queen from a different deck is P(KQ) = (1/13)%. In the latter case, we
have two different sample spaces, as indicated by the Venn diagram of Fig. 2.3(b), so that
the events are now mutually independent. Hence, in general, the compound probability
becomes

P(AB) = P(A)- P(B). (2.2)

In summary, Eq. (2.1) defines two mutually exclusive events within a single sample space,
while Eq. (2.2) defines two mutually independent events within two different sample

//’—‘_‘”.”»\\\
>

(a) (b)
Figure 2.2 Venn diagrams representing (a) P(AB) and (b) P(A + B).
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(a) (b)
Figure 2.3 Venn diagrams describing (a) mutually exclusive and (b) mutually independent
events.

spaces. Equations (2.1) and (2.2) can, of course, be extended to more than two events,
e.g.,

P(A+ B+ C)= P(A)+ P(B)+ P(C) Mutual Exclusivity (2.3)

P(ABC) = P(A)- P(B)- P(C) Mutual Independence. (2.4)

EXAMPLE 2.1
Five people are arranged in a row at random. What are the probabilities that two particular
people will be (a) next to each other and (b) separated by one person between them?

Solution

We first recognize that randomly arranging two previously chosen people with three other
people in a row is no different than randomly choosing these same two people after the
arrangement. Because choosing two people at random from among five available people
represents two mutually independent events, the compound probability with no further
information is (1/5)(1/4). However, if we now specify that these two people are either next
to each other or one person apart, we must account for the fact that there are many ways
of achieving either specification, each of which will enhance the previously unconstrained
compound probability. As for many probability analyses, a combination of visual and
conceptual approaches often constitutes the most fruitful tactic for solving the problem.

(a) Visualization indicates that for five people in a row, four possible pairs of people can
exist next to each other. Conceptually, the persons comprising each pair can also be
switched, thus giving eight independent ways of obtaining two people next to each
other among five people in a row. Hence, the final probability that two people will
be next to each other when five people are arranged in a row at random must be

(1/5)(1/4)(8) = 2/5.

ARRRRARARA

(a) (b)

Possible pairs of people for (a) two people next to each other and (b) two people one
person apart.
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(b) Similarly, for two people separated by another person, a combined visual and con-
ceptual analysis gives a final probability of (1/5)(1/4)(3)(2) = 3/10. Here, three pairs
of people are possible one person apart and the individuals comprising each pair can
again be switched.

Suppose instead that the five people are arranged in a circle. You should be able to convince
yourself that the probability for two people to be either next to each other or separated
by another person is now always 1/2.

2.2 Permutations and Combinations

We now apply probability theory to a sequence of distinguishable objects. Consider, for
example, an urn containing four marbles labeled A, B, C, and D, respectively. Our aim is
to randomly select marbles from the urn without replacement. The first marble chosen can
be any of four possibilities, the second can be any of the three remaining possibilities, the
third chosen must be one of the two remaining possibilities, and the fourth can only be one
possibility. Hence, the number of ways that the four sequential but independent choices
can be made mustbe 4-3-2-1=24. These 24 possible ways of randomly selecting the four
original marbles can be taken as the number of possible arrangements or permutations of
any single sequence of the four marbles, e.g., ACDB. If, on the other hand, the marbles
were not labeled, then the 24 possible rearrangements would be irrelevant as the marbles
would be indistinguishable. In this case, the 24 permutations would become only one
combination. Moreover, only a single collection or combination of the four marbles would
exist, even if labeled, if we simply chose to disregard any ordering of the random objects.

This distinction between permutations and combinations can be pursued further by
considering the number of ways by which we can choose M items from a sample of N
available objects without replacement, in one case including and in the other case excluding
the effect of labeling or ordering. The objects, for example, could be M marbles chosen
from an urn containing N marbles, or M cards chosen from a deck of N cards. Following the
procedure outlined in the previous paragraph, the number of permutations is P(N, M) =
N(N—-1)---(N—M+1)or

N!

P(N, M) = m

(2.5)

which is defined as the number of permutations of N objects taken M at a time. We note,
by the way, that P(N, M) = N! when M = N, so that Eq. (2.5) requires that we define
0r=1.

In comparison, the number of combinations represents all the different subsets contain-
ing M items that can be sampled from N distinct objects. Here, the particular arrangement
of M objects within a subset is irrelevant; thus, the number of combinations can be obtained
from the number of permutations of Eq. (2.5) via division by the number of permutations,
M, for the subset of M distinct objects. Hence, C(N, M) = P(N, M)/ M! or

N!

CIN-M) = 53 ar

(2.6)
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which is defined as the number of combinations of N objects taken M at a time. We note
that C(NV, M) can also be interpreted as the number of different arrangements of N objects
when M of these objects are of one distinct type and (N — M) are of a second type. This
interpretation of C(N, M) will be employed in Section 2.4, when we consider the binomial
distribution.

EXAMPLE 2.2

You wish to choose three marbles at random from an urn containing four marbles labeled
A, B, C,and D.

(a) Determine the number of permutations and combinations for the above scenario.
(b) Identify explicitly each combination and permutation for the three chosen marbles.

Solution
(a) The number of permutations when letting N =4 and M =3 is
N! 4!
P(NM)= —— = — =24,
( ) (N=M)! 1!

Similarly, the number of combinations is
N! 4
(N—-M!M' 113

(b) The four combinations are ABC, ABD, ACD, and BCD. Each of the four combinations
can be permuted 3! = 6 ways, for a total of 24 permutations. Consider, for example,
the ABC combination, which offers the following six permutations: ABC, ACB, BAC,
BCA, CAB, and CBA.

C(N, M) =

2.3 Probability Distributions: Discrete and Continuous

You are no doubt familiar with the concept of a grade distribution as a way of reporting
results for a course examination. Consider, for example, the simplified distribution of
test scores shown for a class of 20 students in Table 2.1. If we convert the number of
students associated with each test score to an appropriate fraction of students, we obtain

Table 2.1. Simplified grade distribution

Number of Fraction of
students students Test scores
1 0.05 100
2 0.10 90
4 0.20 80
6 0.30 70
4 0.20 60
2 0.10 50
1 0.05 40
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0.35

0.30 77
0.25

R
a0l 0

% Figure 2.4 Histogram representing Table 2.1.

Fraction of Students

the histogram shown in Fig. 2.4. This histogram is an example of a discrete probability
distribution, for which

> P(x)=1 (2.7)

In other words, the number of students obtaining each grade, x;, has been normalized so
that the sum over all probabilities or fractional numbers of students, P(x;), is unity.
For any discrete distribution, the mean may be defined as

X =(x)= Z P(x;) x; (2.8)

while the variance or mean-square deviation is
0'2 = ((xi — 2)2)’ (29)

where both the overbar and the brackets denote an average or expected value. The square
root of the variance, o, is commonly called the standard deviation; it provides a measure
of the width for the probability distribution. Expanding Eq. (2.9) leads to

o2 = (xl2 —2kx; + )22) = (xlz) -7,

so that the variance can be expressed as the mean of the square minus the square of the
mean. Hence, the standard deviation can be written as

o=yx2-x2 (2.10)

where
=)= P(x)x. (2.11)

We now consider a more realistic distribution of test scores for a group of 400 students
rather than 20 students. In this case, we might expect Table 2.1 to contain all possible
integer grades between 40 and 100. Hence, the histogram of Fig. 2.4 would approach a
more continuous distribution, as displayed by the probability density function, f(x), in
Fig. 2.5. Normalization would now be given by

/f(x)dx =1
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f)
f)

Figure 2.5 Continuous distribution function.

dP(x) = f(x)dx

dx X

when integrated over all possible values of x. Therefore, the probability density function
itself does not represent a probability; rather, the probability must be evaluated from
knowledge of f(x) via integration. As an example, the probability of achieving values of
x between a and b would be obtained from

Pla<x<b)= fbf(x) dx. (2.12)

Similarly, the cumulative distribution function is

e
F0 = [
so that Eq. (2.12) can be expressed as
P(a <x <b)= F(b)— F(a).

Finally, for any function of x, H(x), the expected value becomes
(H(x)) = /H(x)f(x) dx (2.13)

so that f(x) represents a statistical weighting function for H(x). Hence, for H(x) = x,
(H(x)) represents the mean, in analogy with Eq. (2.8). Similarly, for H(x) = (x — %),
(H(x)) represents the variance, in accord with this same statistical parameter for a discrete
distribution.

2.4 The Binomial Distribution

The binomial distribution is of fundamental importance in probability theory, as it describes
quite simply any sequence of experiments having two possible outcomes. As an example,
consider the tossing of an unfairly-weighted coin, for which the two outcomes are either
a head or tail. Suppose that the probability of obtaining a head is p, while that for a tail is
q =1 — p.Now, for a sequence of N tosses, the probability of M heads and (N — M) tails
in a particular sequence is pMgN=M, as each toss is an independent event in a new sample
space. However, because M heads and (N — M) tails can be achieved in more than one
way, we must determine the number of possible sequences of heads and tails if we wish to
determine the final probability. But the number of possible sequences is just the number
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of ways N total objects can be arranged into M identical objects of one type and (N — M)
identical objects of a second type. This description defines the number of combinations of
N objects taken M at a time, C(N, M), as specified by Eq. (2.6). Hence, the probability of
tossing M heads and (N — M) tails regardless of order becomes

B(M) = C(N, M)pMg™="

or

N!

BOM) = 74 (N — M)!

pMA - p)¥ M, (2.14)
where B(M) represents the well-known binomial probability distribution. This discrete
distribution can be interpreted in many different ways. For example, the probabilities p
and (1 — p) can indicate the chances of success and failure or right and left steps of a
random walk, as well as of heads and tails in the tossing of a coin. Therefore, in general, N
always represents the total number of repeated trials in any binary sequence.

EXAMPLE 2.3
Determine the probability that, in six throws of a fairly-weighted die, the side with four
pips will land upright at least twice.

Solution

The probability of landing a four on any throw is 1/6 (success) and thus the probability of
not landing a four on any throw is 5/6 (failure). Consequently, the probability that four
pips will not appear (M = 0) in six throws (N = 6) must be

B(0) = ﬁ (%)0 (%)6 ~ 0.335.

Similarly, the probability that four pips will appear once (M = 1) in six throws is

B(1) = % (%) (2)5 ~ 0.402.

As B(0) and B(1) represent mutually exclusive events, the probability from Eq. (2.3) that
four pips will appear at least twice in a sequence of six throws must be

P(M>2)=1-P(M<2)=1-[B00)+ B(1)]
or

P(M>2)=1-1[0.335+0.402] = 1 — 0.737 = 0.263.

Employing Egs. (2.8) and (2.10), we may show that the mean and standard deviation
for the binomial distribution are given by (Problem 1.3)

M= Np (2.15)
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and

o =,/Np(l - p). (2.16)

Hence, for a fairly-weighted coin (p = %), the mean number of heads is M = N/2, as
expected. The standard deviation is o = +/N/2, so that 6/M = 1/+/N and thus the rel-
ative width of the binomial distribution always narrows with an increasing number of
trials.

2.5 The Poisson Distribution

While the binomial distribution holds for any finite number of repeated trials, physical
processes involving large numbers of particles, such as in statistical thermodynamics, imply
N — oo. For such circumstances, the binomial distribution can be simplified to two more
familiar distributions, one discrete and the other continuous. We now proceed with these
simplifications by first assuming p — 0, which we will find leads to the Poisson distribution.
This distribution is particularly applicable to photon-counting processes, for which the total
number of photons counted, N — oo, while the possibility of observing any single photon,
p— 0.
We begin by expressing the binomial distribution, Eq. (2.14), as

NI(N-1)---(N-M+1) (M)M(l_p)N—M’

M! N

B(M) =
where the mean 1 = M = Np from Eq. (2.15). We then have

: NM M N B
_ N (= _ -2 1_ /p
Nim_ BOM) = 54 (N) (1=p)7 = =P
From the fundamental mathematical definition of the quantity, e = 2.71828, it can be
shown that

lim (1 — p)/P =e 1.
p—0

Hence, for N — oo and p — 0, the binomial distribution becomes the discrete Poisson
distribution,
€_M[LM

PO = =41

(2.17)

Because P(M) is based on B(M), the standard deviation for the Poisson distribution
can be obtained from Eq. (2.16) by invoking p — 0, thus giving

o =VNp= 1k (2.18)

as can also be demonstrated (Prob. 1.4) from direct application of Eq. (2.10). We thus find,
from Eq. (2.18), that a greater mean value implies a broader range of expected outcomes
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when the physical system of interest follows Poisson statistics. Employing Eq. (2.17), we

also note that

P(M+1)  p
P(M) ~ M+1

which indicates a rapid drop in probability for the Poisson distribution as M — oo. Never-
theless, the Poisson distribution generally remains a good approximation to the binomial
distribution for © = Np <« JN.

2.6 The Gaussian Distribution

When the number of trials N — oo, but p is not small, the binomial distribution becomes
the continuous Gaussian distribution rather than the discrete Poisson distribution (p — 0).
The Gaussian distribution is particularly applicable to various diffusive processes, for which
the total number of molecules N — oo.
We begin by applying the natural logarithm to the binomial distribution, Eq. (2.14),
thus obtaining
In B(M) = In {

N!
M! (N — M)! } +in{pg™ ),

where ¢ = 1 — p. Employing Stirling’s approximation (Appendix D.2),
1
InN!'=NInN—- N+ 3 In(27 N),

we may eventually show that

In B(M) = —% In {ZNTM(N— M)} +In [%]M +In [N]iqM}NM' (2.19)

We now define
y=M—-M=M-— Np (2.20)

so that

and

N-M y

Substitution then gives for the first term of Eq. (2.19),

i V== fim N(F+p) (a-3) =M G2D
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as y/N scales with the relative width of the binomial distribution, which we previously
found to display a 1/+/N dependence. For the remaining two terms,

o [%}M =~ Ml [Nﬂp} = —(y+ Np)In [1 + Nip}

N—M
In Nq
N-—M

—(N - M)In [N];qM} =—(Ng—y)In |:1 — Niq] .

Employing the logarithmic series, In(1 & z) ~ 4 z — z?/2 for |z| < 1 at moderate values of
p, we subsequently find to second order in y,

Np" 1 y?
lim In| 22| ~_-2 _ y (2.22)
N—oo M 2 Np
N—M 2
1
fim In | 4 ~y— 2 (2.23)
N—o0 N-M 2 Nq

Substituting Egs. (2.21), (2.22), and (2.23) for each of the three terms of Eq. (2.19), we
obtain

. 1 y: /1 o1
im In B(y) = —3 n@xNpa) - 2 (5 + ).

which results in the Gaussian distribution,

G(y) =

2
\/Z;qu exp (— 5 ;{ pq) . (2.24)
From Eq. (2.16),

0% = Npq,
so that, defining z = y/o, we obtain finally the familiar form of the continuous Gaussian
distribution,

G(z) =

«/21_710 exp (—%2) . (2.25)

For a continuous distribution, the discrete variable M must be replaced by its continuous
analog x so that, from Eq. (2.20), z = (x — u) /o where again u = Np. Note that G(z) is
symmetrical about z because of its dependence on z2, unlike many cases for the discrete
binomial or Poisson distributions. Equation (2.25) also indicates that the peak value for
G(z) is always 1/+/270.

In general, the Gaussian distribution can be shown to be a satisfactory approximation
to the binomial distribution if both Np > 5 and Ng > 5. If the Gaussian distribution holds,
the probability for a specified range of the independent variable x can be determined from

X2
P(xi <x<x)= / G(x) dx,

or since z = (x — u)/o, we have by substitution,

1 2 Z2
P(zi<z<zn)= «/T/ exp 5 dz. (2.26)
T Jz
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Equation (2.26) represents the most convenient method for calculating probabilities when
the physical system of interest follows Gaussian statistics.

EXAMPLE 2.4
Verity by direct calculation that the mean and variance of the Gaussian distribution are
equivalent to x and o2, respectively.

Solution

The Gaussian distribution is given by Eq. (2.25) where z = (x — ) /o. Direct calculation
of the mean and variance requires application of Eq. (2.13).

(a) For the mean,

f:/xG(x)dx:\/%/Z(u+az)exp<—%z>dz=\/%/:,uexp<—zz—2>dz

~ 21 /Ooe ( Z2>d 21 [(2n)1/2i|
X = —— X _— 1= — = s
V27 Jo P\™2 2 2 H

where the final Gaussian integration has been performed by using Appendix B.
(b) For the variance,

1P = / (x — ) Glx) dx =

o2

V2r

/_Z 2G(z)dz

- 202 o0 2 262 T1
(x — %) = —;7 /0 Zexp (—%) dz = —(2% [Z (871)1/2} =2,

where the Gaussian integration has been evaluated by using Appendix B.

2.7 Combinatorial Analysis for Statistical Thermodynamics

We have previously indicated that quantum mechanics ultimately predicts discrete energy
levels for molecular systems. As we will see later, each such level is actually composed of
a finite number of allowed energy states. The number of energy states per energy level is
called the degeneracy. For our purposes, we can model each energy level of energy, ¢;,
as an independent bookshelf holding a specified number of baskets equal to the value of
the degeneracy, g;, as shown in Fig. 2.6. The height of each individual shelf represents its
energy. The equivalent containers denote potential storage locations for the molecules of
the thermodynamic system at each energy level.

For statistical purposes, we will eventually need to know the distribution of molecules
among these energy states, as discussed further in Chapter 3. We now move toward this
goal by considering the number of ways that N objects (molecules) can be placed in
M containers (energy states) on a single shelf (energy level). Before we can make such
combinatorial calculations, however, we must introduce two other important features of
quantum mechanics, the details of which we again defer to later discussion (Chapter 5).
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First, because of the so-called uncertainty \ / \ / \ / \ /
principle, we can never determine the exact posi-  ¢; AV A Wy A iy A
tion and momentum of atomic or molecular par-
ticles. You may recall from your undergraduate W
chemistry that the motion of electrons within £ A\
atoms or molecules is often described in terms Figure 2.6 Bookshelf model for energy level
of an electron cloud. This cloud analogy reflects ¢/, with degeneracy g; = 4.
the probabilistic nature of fundamental atomic
particles; for this reason, such particles are
labeled indistinguishable. In contrast, the motion of larger bodies such as billiard balls or
planets can be determined precisely by solving the equations of classical mechanics. Such
bodies can obviously be tracked by observation; hence, in comparison to atomic particles,
classical objects are labeled distinguishable.

The second important feature of quantum mechanics required for statistical calcula-
tions concerns the existence of potential limitations on the population within each energy
state. We will show in Chapter 5 that some atomic or molecular particles are inherently
limited to one particle per energy state. Other particles, in comparison, have no limit on
their occupancy. For proper statistical calculations, we must account for both of these cases,
as well as for objects that can be either distinguishable or indistinguishable.

2.7.1 Distinguishable Objects

Combinatorial analyses for distinguishable objects encompass three significant cases. Each
case can be considered by posing and answering a different fundamental query.

1. In how many ways may N identical, distinguishable objects be placed in M different
containers with a limit of one object per container?

The limitation of one object per container requires N < M. The first object may be
placed in any of M available containers, the second in (M — 1) available containers,
and so on. Hence the number of ways for this case becomes

Wi=MM-1)(M-2)---(M—N+1)

or

M!

W= mr

(2.27)

2. In how many ways may N identical, distinguishable objects be placed in M different
containers such that the ith container holds exactly N; objects?

The total number of permutations for N objects is N! However, within each container,
permutations are irrelevant as we are concerned only with their number rather than
their identity. Hence, the number of permutations, N!, overcounts the number of ways
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by the number of permutations, N;!, for each container. Therefore, the number of ways
is

(2.28)

3. In how many ways may N identical, distinguishable objects be placed in M different
containers with no limitation on the number per container?

Because no limit exists, each object can be placed in any of the M containers. Therefore,

W = MV, (2.29)

2.7.2 Indistinguishable Objects

Combinatorial analyses for indistinguishable objects encompass two rather than three
cases of significance. Each case can again be considered by posing and answering a funda-
mental query.

4. In how many ways may N identical, indistinguishable objects be placed in M different
containers with a limit of one object per container?

A similar query for distinguishable objects previously led to Eq. (2.27). For indistin-
guishable objects, however, any rearrangement among the N objects is unrecognizable.
Hence, W, overcounts the number of ways for indistinguishable objects by a factor of
N! Therefore,

M!

Wi=Ni (M—N)!I'

(2.30)

5. In how many ways may N identical, indistinguishable objects be placed in M different
containers with no limitation on the number per container?

This fully unconstrained case (indistinguishable objects, no limitation) mandates a
totally different approach from that used for W,. We begin by initially assuming distin-
guishable objects labeled 1,2, 3, ..., N. Let us now arrange these N objects in a row,
with the M containers identified and separated by partitions. As an example,

1,2,3 14,5|6]...] N—1,N

specifies that objects 1, 2, and 3 are in the first container, objects 4 and 5 are in the
second container, object 6 is in the third container, and so on. Now, regardless of their
actual arrangement, the maximum number of rearrangements among the N objects
and M — 1 partitions is (N + M — 1)! However, interchanging the partitions produces
no new arrangements; thus, we have overcounted by a factor of (M — 1)! Similarly,
because the N objects are actually indistinguishable, we have again overcounted by a
factor of N!, as in query 4. Therefore, the number of ways for this case becomes

_(N+M-1)

W= i (2.31)
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The combinatorial analyses conducted for Cases 3-5 will prove to be of most interest to
us for practical calculations. As we will see in the following chapter, Eq. (2.29) corresponds
to Boltzmann statistics, Eq. (2.30) corresponds to Fermi-Dirac statistics, and Eq. (2.31)
corresponds to Bose—Einstein statistics.

EXAMPLE 2.5

Determine the number of ways of placing two balls in three numbered containers for (a)
Boltzmann statistics, (b) Fermi—Dirac statistics, and (c) Bose—Einstein statistics. Construct
a table that identifies each of the ways for all three cases.

Solution
(a) For Boltzmann statistics, the balls are distinguishable with no limit on the number per

container. Hence, from Eq. (2.29),

Wy = MN =32=09.

Employing closed and open circles to identify the two distinguishable balls, these nine
distributions can be identified as follows:

Way  Container 1  Container 2  Container 3

[ e}

®O

[ Je]

O e O e

O 001N N AW~

e O e O

(b) For Fermi—Dirac statistics, the balls are indistinguishable, but with a limit of one ball
per container. Therefore, Eq. (2.30) yields

M| 3!

W = = :
T NI(M—N)! 21!

=3.

If only closed circles are used to enumerate the indistinguishable balls, these three
distributions are as follows:

Way  Container 1  Container 2  Container 3

W N =
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(c) For Bose-Elinstein statistics, the balls are indistinguishable, with no limit on the number
of balls per container. Hence, using Eq. (2.32), we have

(N+M—-1) 4
5: g
V= NiM—1)r ~ 22

These six distributions are as follows:

= 6.

Way  Container 1  Container 2  Container 3

NN R W
[
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Probability Theory and Statistical
Mathematics (Chapter 2)

1.1

1.2

1.3

Ignoring leap years, calculate the probability that, among 25 randomly chosen peo-
ple, at least two have the same birthday.

Hint: Consider the probability that everyone has a unique birthday.

Assuming that the inherent ratio of male to female children is unity, determine the
following probabilities for a family of six children.

a. The four oldest children will be boys and the two youngest will be girls.

b. Exactly half the children will be boys.

c. All six children will be of the same sex.

d. A second girl is born last.

Consider the probability function for the binomial distribution,

B(M) — M_N—-M

M (N—myP T

where N and p are specified, and the probability g = 1 — p.
a. Show that the distribution is properly normalized.

b. Verify that the mean M = Np.

c. Show that the standard deviation o = \/m

d. The fluctuation is defined as the ratio of the standard deviation to the mean.
Determine the fluctuation of the binomial distribution for p = 0.5. What happens
to the fluctuation for large values of N? What are the physical implications of
this result when considering the thermodynamic properties of an ideal gas?

Hint: Recall that, for arbitrary values of p and q, the binomial theorem gives
N

> BM)=(p+q)"

M=0
so that, for any value of s,

N
> sMB(M) = (sp+ q)".
M=0
The trick now is to differentiate with respect to s.
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14

1.5

1.6

The binomial distribution

B(M) = V(1 — p)NH

M (N—my?

describes the probability of placing M identical particles into N equivalent physical

sites, with a limit of one particle/site if the probability of a specificsite being occupied

is p.

a. Using Stirling’s formula, show that for N > M so that p <« 1, the binomial dis-
tribution becomes the Poisson distribution

P(M) = %e”‘,
where © = Np.
Hint: See Appendix B.
b. Verity (i) that the Poisson distribution is properly normalized, (ii) that its mean
M = p, and (iii) that its root-mean-square deviation o = /.

c. The number of ideal-gas molecules expected in a given volume is described by
the Poisson distribution since a finite number of molecules can be distributed in
a spatial region offering an infinite continuum of positions. Calculate the mean
and root-mean-square deviation for the number of molecules in a volume of 1
cm? at a pressure of 1 bar and a temperature of 273 K. What are the implications
of your result?

Consider the probability function for the binomial distribution

B(M) = C(N, M) pMq™ ™,
where C(N, M) = N! / M!(N — M)! is the number of combinations of N objects
taken M at a time, and the probability g =1 — p.

a. Verify the recursive relation,
N-M
Bm+1) = N =M (3) B(M).
(M+1) \¢q
b. Prove that the probability of obtaining a specific number of heads when tossing
a fairly-weighted coin is given by the binomial distribution.
c. Using the recursive relation developed in part (a), determine the probabilities
of obtaining 0 to 12 heads in 12 tosses of a fairly-weighted coin.
d. Evaluate the probability of obtaining 6 heads in 12 tosses by applying Stirling’s
formula to B(M).

The Gaussian and Poisson distributions are both related to the fundamental bino-
mial distribution,

B(M) = M1 - p)

M (N—m)?
which represents the probability of achieving M successes out of N trials given a
probability p of success for any single trial.

a. Develop an expression for a Gaussian distribution with the same mean and
standard deviation as the binomial distribution.
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1.9

1.10

d.

c.
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. If the mean u = Np = 15, where p = 0.5, calculate the probabilities P(M) given

by the Poisson distribution for 0 < M < 30.

. Recalculate the probabilities of part (b) by utilizing the Gaussian distribution.

Display your results for both the Poisson and Gaussian distributions on a single
plot.

Repeat parts (b) and (c) for p = 0.1.

Discuss the implications of your comparative plots.

A fairly-weighted coin is tossed 20 times.

a.

Prove that the probability for a specific number of heads is given by the binomial
distribution.

. Calculate the probabilities for each of the possible numbers of heads.
. Recalculate the probabilities in part (b) by invoking a Gaussian distribution.

. Display your results from parts (b) and (c) on a single plot. Discuss the implica-

tions of your comparison.

The binomial distribution for a very large number of trials, N, in which the prob-
ability of success p, does not become small can be represented by a Gaussian
distribution having the same mean and standard deviation as the binomial
distribution.

a.

Provide an expression for the probability of achieving M successes in N trials
for such a Gaussian distribution. Check the suitability of your Gaussian approx-
imation to the binomial distribution by evaluating the probability of obtaining
23 heads in 36 tosses of a coin by both methods.

. Develop an expression in terms of the error function (Appendix B) for the

probability of finding any Gaussian variable to within + ko of its mean value.
Evaluate this probability for k = 1,2, and 3. Finally, demonstrate the utility of the
Gaussian approximation by calculating the probability of obtaining 23 or more
heads in 36 tosses. Note how tedious this calculation would have been if you had
used the binomial distribution!

The probability density function for the Rayleigh distribution is given by

f(x) = Cxe™ /%

where a > 0 and x > 0.

a.
b.

C.

Evaluate the constant C.
Determine the mean value .

Evaluate the standard deviation o.

Hint: See Appendix B.

The probability density function for the Laplace distribution is given by

fx) = Cem,

where a > 0 and —o00 < x < o0.



26 * Probability Theory and Statistical Mathematics (Chapter 2)

1.11

1.12

1.13

1.14

1.15

a. Evaluate the constant C.
b. Calculate the probability that x > 1/2.

c. Determine the standard deviation (o).

The probability that a monatomic particle will travel a distance x or more between
collisions is given by Ce=*/* where C and A are constants.

a. Show that the probability distribution function f(x) = A"le™*/*.
b. Determine ¥ and o.

c. What fraction of the molecules has x > 2A?

Determine the number of ways of placing three balls in three numbered boxes for
each of the following cases.

a. The balls are distinguishable with a limit of one ball per box.

b. The balls are distinguishable with no limit on the number per box.
c. The balls are indistinguishable with a limit of one ball per box.

d. The balls are indistinguishable with no limit on the number per box.
Construct four tables showing all possible distributions for each case.

A sum we will deal with often is
o0

(2] + 1) e*BJ(./Jrl)’
J=0

where B is a positive constant.
a. Approximate this sum by assuming that J is a continuous variable.
Hint: Define a new variable K = J(J + 1).

b. Using the Euler-MacLaurin summation formula (Appendix D.3), derive
Mulholland’s expansion

> 1 B B?
27 1 —BJ(J+1)=_ 1 - - .
]:0( +1)e IR

A rifleman’s shots on a target are distributed with a probability density f(x, y) =
Ce™, where r = (x% + y2)!/2 is the distance from the center of the bulls-eye, mea-
sured in centimeters. Given that a particular shot is at least 1 cm high, determine
the probability that it is also at least 1 cm to the right.

Hint: See Appendix B.
Let f(x, y) be a joint probability density function, i.e., f(x, y) dx dy is the proba-

bility that X lies between x and x + dx and Y lies between y and y + dy. If X and
Y are independent, then

f(x,y)dxdy = fi(x) fo(y)dxdy.
Therefore, if W = X + Y, show that
W=X+Y
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and that

W—Wp = (X—XP+ (Y—VP
In other words, if X and Y are independent, the mean and variance of their sum is
equal to the sum of their means and variances.

Gaussian integrals appear often in statistical thermodynamics and particularly in
kinetic theory. Consider the zeroth order Gaussian integral Iy(«) and the gamma
function I'(x):

Io(a)=/ e dx F(x):/ t*le'dt.
0 0

a. Evaluate [j(«) by squaring it, i.e.,

o0 o0 2 5
Ig = / / e e dxdy,
o Jo

and transforming to polar coordinates.

b. Demonstrate the following results for the gamma function:
OHra=1
2) T(x+1) =x(x)
(3) T'(n+ 1) = n! for n an integer.
c. Show thatI'(1/2) = /7.
d. Verify the following standard expression for the nth order Gaussian integral:

o —ax? 1 n+1
In((>t)=/0 x'e "dx:za(n+1)/2F( 5 >

Use this expression to evaluate the Gaussian integrals for n = 0 — 5. Compare
your results to those tabulated in Appendix B.







3 The Statistics of Independent
Particles

Now that we have reviewed the essentials of probability and statistics, we are mathemat-
ically prepared to pursue our primary goal, which is to understand at a basic statistical
level the fundamental laws and relations of classical thermodynamics. To avoid unnec-
essary complications, we will begin by evaluating the macroscopic properties of simple
compressible systems composed of independent particles. The most important thermody-
namic systems of this type are those describing the behavior of ideal gases. Recall that all
gases behave as independent particles at sufficiently low density because of their weak
intermolecular interactions combined with their extremely short-range intermolecular
potentials. Such gaseous systems constitute a propitious place to begin our study of statis-
tical thermodynamics because by invoking the assumption of independent particles, our
upcoming statistical analyses can be based rather straightforwardly on probability theory
describing independent events, as summarized in Chapter 2.

While considering assemblies of independent particles, we will pursue new insight with
respect to three basic concepts important to classical thermodynamics. First, we will seek a
whole new statistical understanding of entropy. Second, we will develop a related statistical
definition of thermodynamic equilibrium. Third, in so doing, we will gain new perspective
concerning the significance of temperature in properly defining thermal equilibrium. Once
we understand these three major concepts, we will be in a position to develop statistical
expressions allowing us to evaluate the thermodynamic properties of an assembly from
the quantum mechanical properties of its individual particles. In essence, by statistically
averaging over a sufficient number of particles, perhaps 10'°-10%, we will be able to
calculate typical thermodynamic properties such as the specific heat at constant pressure,
the internal energy or enthalpy, the entropy, and the Gibbs free energy. Such calculated
properties are tabulated for selected gaseous species in Appendix E. These compilations
should prove helpful as you will be able to compare your calculations to those listed in
the tables, thus eventually developing full confidence in your understanding of statistical
thermodynamics.

Before proceeding, however, you should carefully examine whether or not our pre-
liminary discussion in this chapter might have already stirred uncertainty regarding your
knowledge of undergraduate thermodynamics. While such hesitancy would be unsurpris-
ing, nevertheless now is the best time to evaluate honestly your understanding of the impor-
tant concepts and relations of classical thermodynamics. To guide you in this endeavor, a

29
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& g2 =5
& g =1 Figure 3.1 Example energy-level diagram.
) 8= 3

summary of the most important results from classical thermodynamics that you will need
for your study of statistical thermodynamics is provided in Appendix F. You should review
this material immediately to make sure that you have the required background for this text-
book. If necessary, you should also refresh your knowledge of classical thermodynamics
by selectively re-reading your undergraduate textbook on the subject.

3.1 Essential Concepts from Quantum Mechanics

In preparation for our study of elementary statistical thermodynamics, we recapitulate and
expand somewhat on those essential notions from quantum mechanics required for our
upcoming statistical analyses. To avoid unnecessary complications, the background needed
to derive or fully understand the following four conceptual presumptions is deferred for
now to Chapter 5.

The first concept is that energy for a single atom or molecule is always quantized, as
implied by the three discrete energy levels designated ¢y, €1, and &; in the energy-level
diagram of Fig. 3.1. As discussed previously in Chapter 1, quantization is suggested by the
discrete lines appearing in both atomic and molecular spectra. The second essential concept
is that the available energy levels are not necessarily equally probable. This statement is
in accord with the different number of energy states associated with each energy level, as
described by the degeneracies, gy, g1,and g, in Fig. 3.1. We will find in Chapter 5 that each
energy or quantum state is defined by its own unique set of so-called quantum numbers.
This unique specification at either the atomic or molecular level suggests that each energy
state, rather than each energy level, can be considered equally likely, as discussed more
fully in Section 3.3.

Returning to our discussion in Chapter 2, the third essential concept is that most
particles are indistinguishable rather than distinguishable owing to the probabilistic nature
of matter at atomic dimensions. From a different perspective, the uncertainty principle
suggests that molecules can be counted but not discerned because their momentum and
position cannot be specified simultaneously. If, however, atoms are aligned structurally
either within or on the surface of a crystalline material, for example, then discernment of
particular atoms becomes possible, thus making the particles distinguishable. The fourth
and final concept concerns the possible number of particles permitted per energy state. For
some particles, such as protons and electrons, only one particle is allowed per energy state.
Other particles, such as photons, display no limit on the number allowed per energy state.
For simplicity, the former particles are called fermions while the latter are called bosons.

In summary, then, the crucial information needed from quantum mechanics to make
statistical thermodynamic calculations is the energy, ¢;, and the degeneracy, g;, corre-
sponding to the jth energy level of the relevant atom or molecule. In addition, for sta-
tistical purposes, we must know whether the particle of interest is (1) distinguishable or
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indistinguishable and (2) fermion or boson. The procedures for determining ¢;, g;, and
the particle type will be discussed at length in Chapters 5-7.

3.2 The Ensemble Method of Statistical Thermodynamics

The most general statistical procedure for calculating thermodynamic properties is called
the ensemble method, as developed by the American engineer and scientist J. Willard
Gibbs (1839-1903). The Gibbs approach works for both dependent and independent par-
ticles, thus making it very powerful for realistic thermodynamic systems. Unfortunately,
the ensemble method, while powerful, is quite abstract and often obfuscates the learning
process for novices. Indeed, the ensemble method is typically more appreciated by those
who already understand statistical thermodynamics!

Accordingly, while certainly exploiting the Gibbs method, our main focus in this book
will be on the more restrictive Maxwell-Boltzmann (M-B) method, which presumes an
isolated system of independent particles. Fortunately, despite the inherent lack of breadth
of the M-B approach, many practical systems can, in fact, be modeled as if they were
composed of independent particles. Examples include not only the ideal gas, but also
electrons, radiation, and the crystalline solid. In addition, pedagogically, the M—B method
is more intuitive and thus it furnishes a necessary foundation for fully appreciating the
rigorous beauty of the Gibbs method.

Nevertheless, despite the intrinsic utility of the M—B method, conceptual clarity testifies
that the basic postulates of statistical thermodynamics are best expressed in terms of the
ensemble method. For this reason, we begin our study with the rudiments of the ensemble
approach, thus developing a solid theoretical foundation for our exploration of statistical
thermodynamics. We then shift to the M—B approach in preparation for model develop-
ment and actual computations of thermodynamic properties. By introducing the ensemble
method at this juncture, we proffer an additional advantage — a contextual understanding
of the inherent presumptions underlying the M-B approach to statistical thermodynam-
ics. From a practical viewpoint, the resulting insights also build a stronger framework for
our eventual exploitation of the ensemble method, as pursued more fully in Chapters 18
and 19.

With this strategy in mind, we begin by defining an ensemble as follows.

An ensemble is a theoretical collection of a very large number n of systems, each of
which replicates the macroscopic thermodynamic system under investigation.

As we will see in Chapter 18, there are three main types of ensembles, depending on what
type of macroscopic system is being replicated to create the ensemble. The microcanoni-
cal ensemble is composed of n isolated systems (N, V, U), for which the total number of
particles, N, the volume, V, and the internal energy, U, are the replicated thermodynamic
properties. The canonical ensemble is composed of 1 closed, isothermal systems (N, V, T),
for which the total number of particles, the volume, and the temperature, 7, are the inde-
pendent thermodynamic parameters. Finally, the grand canonical ensemble is composed
of n open, isothermal systems (u, V, T), for which the chemical potential, x, the volume,
and the temperature are the constant independent variables.

In general, an ensemble is really a supersystem composed of 7 replicated thermody-
namic systems, such as a room, a piston—cylinder assembly, or a nozzle. To ensure proper
replication, no mass or energy can be permitted to cross the overall boundary of the
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Each replicated macro-
scopic member of the
Thermal insulation provides ensemble is a closed,
a heat bath of constant isothermal system at
temperature to ensure —», constant N, V, and T.
isothermal conditions for
each member of the ensemble.

A

Figure 3.2 Diagram for the canonical ensemble; the entire ensemble is an isolated
supersystem.

constructed supersystem. Hence, the entire ensemble, no matter what type, must always
be isolated. As an example, Fig. 3.2 demonstrates the construction of an isolated supersys-
tem for the canonical ensemble.

We may now link the M-B and Gibbs approaches by first recalling that the M-B
method requires an isolated system containing N independent particles. If we consider
the canonical ensemble of Fig. 3.2, this condition can be assured by artificially restricting
each member of the ensemble to a single particle. In this way, the supersystem of the
ensemble method becomes the thermodynamic system of the M-B method. The particles
are guaranteed to be independent because each particle is associated with an independent
member of the ensemble. The M-B system is guaranteed to be isolated because the con-
structed supersystem is isolated by definition. The result is that the number of independent
particles, N, becomes equal to the number of replicated macroscopic systems, 7.

3.3 The Two Basic Postulates of Statistical Thermodynamics

Now that we have linked the M-B and Gibbs approaches, we are ready to introduce the
two basic postulates of statistical thermodynamics. These basic postulates are formally
expressed in terms of ensemble theory. Hence, after presenting and discussing the postu-
lates, we will convert them to an equivalent form suitable for application when using the
M-B method. You should understand from the outset that these two postulates cannot be
proved; their truth lies solely in the efficacy with which they can eventually provide both
a deeper understanding of classical thermodynamics and correct calculations of thermo-
dynamic properties.
The two basic postulates of statistical thermodynamics can be stated as follows:

1. The time average of a system thermodynamic variable is equal to its ensemble average,
which is the average over the instantaneous values of the variable in each member of
the ensemble as n — oo.

2. For an isolated thermodynamic system, the members of the ensemble are distributed
with equal probability over the possible system quantum states defined by specification
of N, V,and U.

The first postulate claims that for any thermodynamic variable the average determined
by sampling each member of the ensemble at a single moment in time is equivalent to
that found by statistically analyzing a time series of that variable when obtained from
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one member of the ensemble. Stated more succinctly, this so-called ergodic hypothesis
simply posits an equivalency between temporal and ensemble averages. The condition,
n — oo, ensures that all possible system quantum states are accounted for by the members
of the ensemble. On this basis, the second postulate claims that each member of the
ensemble becomes equally likely for an isolated thermodynamic system. The system must,
of course, be isolated to avoid any interactions with the environment that would perturb the
number or identity of system quantum states. Notice that the second postulate, dubbed
the principle of equal a priori probability, inherently comports with the microcanonical
ensemble. As we will see in Chapter 18, the microcanonical and canonical ensembles
generally provide the most useful connections between the M-B and Gibbs methods of
statistical thermodynamics.

3.3.1 The M-B Method: System Constraints and Particle Distribution

Recall that the M-B method presumes an isolated system of independent particles. For an
isolated system, the total mass and energy of the system must remain constant. Hence, we
have two system constraints that can be expressed as

N = Z N; = constant
j

E = Z Nje; = constant,
i

where N; is the number of particles occupying the jth energy level with energy, ;. Express-
ing the total number of particles, N, and the total energy, E, in terms of summations over all
possible energy levels inherently implies independent particles. We also note that the total
system energy, E, must, of course, be equivalent to the macroscopic internal energy, U.

The specification of the number of particles, N;, within each energy level, with its
respective energy, ¢;, is called the particle distribution. The ratio, N;/N, indicates either
(1) the fraction of total particles in the jth energy level or (2) the probability that a single
particle will be in the jth energy level. Many distributions are, of course, possible, and these
distributions vary continuously with time because of particle collisions. However, consider-
ing the vast number of possible distributions, temporally averaging over all of them would
be an overwhelming task. Fortunately, however, we know from classical thermodynamics
that properties such as the internal energy have a well-defined value for an isolated system,
thus suggesting that a most probable distribution might define the equilibrium state for
a system containing a large number of atoms or molecules. We will pursue this strategic
point further in Section 3.4.

3.3.2 The M-B Method: Microstates and Macrostates

We have seen in the previous section that a particle distribution is ordinarily specified by
the number of particles in each energy level, N;(e;). Because of its importance for the
M-B method, this particle distribution is called a macrostate. We could, of course, con-
sider more directly the influence of degeneracy and specify instead the number of distinct
particles in each energy state, N;(g;). This more refined distribution is called a microstate.
Clearly, for each separate macrostate, there are many possible microstates owing to the
potentially high values of the degeneracy, g;. Hence, the most probable distribution of
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particles over energy levels should correspond to that macrostate associated with the
greatest number of microstates.

Based on the above notions of microstate and macrostate, we may recast the two
basic postulates of statistical thermodynamics in forms suitable for application to the M-
B method. Therefore, for an isolated system of independent particles, we now have the
following:

1. The time average for a thermodynamic variable is equivalent to its average over all
possible microstates.

2. All microstates are equally probable; hence, the relative probability of each macrostate
is given by its number of microstates.

In making the above transformations, we have associated the microstate of the M-B
method with the system quantum state of the Gibbs method, as both reflect a distri-
bution over energy states. Hence, for the ergodic hypothesis, the ensemble average over
all possible system quantum states is replaced by the analogous average over all possible
microstates. Similarly, if each system quantum state is equally likely, then every microstate
must also be equally likely. As a result, the most probable macrostate must be that having
the largest number of microstates.

EXAMPLE 3.1

Consider an isolated system of independent particles with the following allowed energy
levels and associated degeneracies: g9 = 0, go = 1561 = 1, g1 = 2;62 = 2, g» = 3. If the sys-
tem holds only two particles and the total energy is two units, determine (a) the number
of macrostates, (b) the number of microstates for distinguishable particles, and (c) the
number of microstates for indistinguishable particles. For simplicity, assume no limit on
the number of particles per energy state.

Solution

(a) If only two independent particles are available, they must be distributed among the
three allowed energy levels either with one particle at &9 = 0 and the other at ¢, =2
or with both at ¢ = 1. Indeed, given two particles, these two particle distributions
represent the only ways by which the total energy can be two units. Therefore, this
isolated system contains only two macrostates.

(b) The following table identifies the possible microstates for each macrostate when the
particles are distinguishable. Macrostate #1 has six microstates and macrostate #2 has
four microstates. Hence, the total number of microstates is 10. In this case, macrostate
#1 is the most probable macrostate.

Macrostate #1 Macrostate #2
o o
&gy=2 . O 8 =3
@ S,
=1 o S 05 §1=2
o—+—@ | o8
f0=0 o600 0@ g1
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(c) For indistinguishable particles, the distinguishable open and closed circles are irrele-
vant. Hence, the number of microstates in both macrostate #1 and macrostate #2 is
three, for a total of six microstates.

3.4 The Most Probable Macrostate

We have previously hypothesized that thermodynamic properties can be evaluated by
considering only the most probable macrostate, i.e., the most probable distribution of
particles over energy levels. Surprisingly enough, we can actually demonstrate that a large
majority of all possible microstates is affiliated with the most probable macrostate. This
remarkable inference is conveniently validated by example in the remainder of this section.
More generally, ensemble theory will be employed in Chapter 18 to show rigorously that
this conclusion stems from the large number of particles in a typical macroscopic system.
On this basis, thermodynamic properties such as the temperature are always well defined,
with little or no observable fluctuations in any measurable time series.

To demonstrate the statistical power of the most probable macrostate, we shall formu-
late a sufficiently generic case, identifying each possible macrostate and then determining
the associated number of microstates per macrostate. To ensure realistic magnitudes for
the statistical calculations, we assume distinguishable particles with no limit on the number
of particles per energy state. For clarity of presentation, we initially choose N = 6 parti-
cles distributed into M = 2 nondegenerate energy levels. To investigate the influence of
large numbers, we subsequently consider N = 10?* particles so as to model a macroscopic
thermodynamic system.

We begin by determining the number of possible particle distributions or macrostates,
W,., which is equivalent to the number of ways that N indistinguishable objects can be
placed in M different containers with no limitation on the number of objects per container.
Indistinguishability is temporarily presumed here because we are only concerned with the
number of objects in each container and not their order of placement. We thus have, from
Eq. (2.31),

M—1)!
w, — N+ M-D
NI (M —1)!
so that, for M = 2,
Wn=N+1. (3.1)

Hence, given N = 6, we find that W,, = 7; these seven macrostates identify six particles
distributed between two energy levels as follows: {0, 6}, {1, 5}, {2, 4}, {3, 3}, {4, 2}, {5, 1},
and {6, 0}.

Next, we determine the number of possible arrangements for a given particle distribu-
tion, or the number of microstates per macrostate, W, which is equivalent to the number
of ways that N distinguishable objects can be placed in M different containers such that
N; objects occupy the ith container. Employing Eq. (2.28), we have

N!

Wao=—; ,
[1 3!
i=1




36 * The Statistics of Independent Particles

so that, for each of the above macrostates, we obtain W;{0, 6} = W;{6,0} =1, Wy{1, 5} =
Wa{5,1} = 6, W, {2, 4} = W, {4, 2} = 15, and W,{3, 3} = 20. Hence, we find that the number
of microstates associated with the most probable macrostate, W,,,, is 20. Similarly, the total
number of microstates, W, is given by 2(1 + 6 + 15) + 20 = 64.

We can independently determine the total number of possible arrangements or
microstates because this tally is equivalent to the number of ways N distinguishable objects
can be placed in M different containers with no limitation on the number per container.
Hence, from Eq. (2.29), the total number of microstates is

wW=mN (3.2)

sothat W = 2° = 64, in agreement with our previous calculation. In summary, then, we find
that W = 64, W,,, = 20, and thus that the mean number of microstates W=W/W, ~9.
Consequently, comparing these three statistics, we may write the expected result for any
N > M;i.e.,

W > W, > W. (3.3)

Let us now consider a very large number of particles, say N = 10%. For M = 2, the
total number of microstates and the mean number of microstates can be expressed as

2N
N+1’
where we have employed Egs. (3.1) and (3.2). Therefore,

w=2N W=

InW = NIn2~ 7.0 x 10?2
InW=NIn2-In(N+1)~7.0 x 10? - 53.

Remarkably, almost no difference arises between In W and In W for large N. Consequently,
using Eq. (3.3), we have for a very large number of particles

InW>~InW,,~InW, (34)
so that
In W,
=1. 3.5
N1—I>lc1>o InW (3-5)

Equation (3.5) indicates that for macroscopic thermodynamic systems almost all
microstates are associated with the most probable macrostate. Hence, the only significant
particle distribution is that which is most probable. As indicated previously, this result
can be validated in a rigorous fashion via ensemble theory, although the statistical proof
from ensemble theory is also suggested by the binomial distribution. In particular, from
Egs. (2.15) and (2.16),

o _VNp(-p) 1 (3.6)
1 Np VN
for a fairly-weighted coin, and thus
lim < =o. (3.7)

The significant conclusion from both Egs. (3.5) and (3.7) is that utilizing the most proba-
ble distribution of particles over energy levels is essentially equivalent to averaging over
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all microstates because those microstates associated with the most probable macrostate
invariably account for nearly all possible microstates. Therefore, from the perspective of
classical thermodynamics, the most probable particle distribution must represent the equi-
librium particle distribution!

3.5 Bose-Einstein and Fermi-Dirac Statistics

We now proceed to identify mathematically the most probable macrostate for an iso-
lated system of independent particles by investigating thoroughly both Bose—Einstein and
Fermi-Dirac statistics. Bose—Einstein statistics describe the behavior of indistinguishable
particles with no limit on the number of particles per energy state. Such particles are called
bosons. In comparison, Fermi—Dirac statistics describe the behavior of indistinguishable
particles with a limit of one particle per energy state. These particles are called fermions.
For each particle type, we derive a general expression for the number of microstates per
macrostate. We then determine the extremum for this expression, including constraints
imposed by an isolated system, so as to identify the most probable particle distribution.
The mathematical procedure that we will employ is called the method of Lagrange multi-
pliers, which is discussed in detail in Appendix D.1.

3.5.1 Bose-Einstein Statistics

For each case, we begin by deriving an expression for the number of microstates per
macrostate, which represents the total number of ways an arbitrary particle distribution
can arise when accounting for all possible energy levels. Let us first consider one energy
level. The number of ways in which N; bosons in a single energy level, ¢;, may be dis-
tributed among g; energy states is equivalent to the number of ways in which N; identical,
indistinguishable objects may be arranged in g; different containers, with no limitation on
the number of objects per container. Hence, employing Eq. (2.31), we have

(Nj+gi— 1!
Nil (gj = D!~

Because each energy level represents an independent event, the total number of ways of
obtaining an arbitrary particle distribution becomes

(Nj+g; =1
Wgg = HW ]_[ N (g]f_ o (3.8)

In other words, Wi identifies the generic number of microstates per macrostate for Bose—
Einstein statistics.
Taking the natural logarithm of Eq. (3.8), we obtain

W; =

InWpr =) {In(N; +g;)! — InN;! —Ing;!},
j

where we have neglected the unity terms since g; > 1. Applying Stirling’s approximation,
i.e,In Nl = NIn N — N (Appendix D.2), we find that

InWge =) {(Nj +g,)In(N; +¢;) — NjInN; — g, Ing;)
j
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or

anBE=Z{leng’;j ! +gjln%}. (3.9)
J

3.5.2 Fermi-Dirac Statistics

We again develop an expression for the number of microstates per macrostate, but this
time for fermions. The number of ways in which N; fermions in a single energy level, ¢;,
may be distributed among g; energy states is equivalent to the number of ways in which
N; identical, indistinguishable objects may be arranged in g; different containers, with no
more than one object per container. Hence, employing Eq. (2.30), we have

W — 8!
] — ’
N (g — N))!
where the N;! term in the denominator accounts for particle indistinguishability. The total
number of ways of obtaining an arbitrary particle distribution then becomes

gj!
Wep=[[wW:, =]]——2 3.10
e U ! U Nl (gj — Nj)! 3.10)

so that Wrp denotes the generic number of microstates per macrostate for Fermi—Dirac
statistics.

Taking the natural logarithm of Eq. (3.10), we obtain
InWrp =Y {lng;! —InN;! —In(g; — N))!}.

j
Applying Stirling’s approximation (Appendix D.2), we find that

InWep =) {g;Ing; — NjInN; — (g; — Nj)In(g; — N)))
j

or

1nWFD=Z{Nj1ng’N ’—g,-ln%}. (3.11)
7 j j

EXAMPLE 3.2

A thermodynamic assembly consists of five independent particles having access to two
energy levels. A particular particle distribution for this system and the associated degen-
eracies for each energy level are as follows: (1) My =2, g1 =4; (2) N, =3, g» = 6. Deter-
mine the number of microstates for this macrostate if the particles are (a) bosons and (b)
fermions.

Solution
(a) For bosons, the number of ways that a single energy level can be constructed is

W Ni+g =D
TN (g - !
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Thus, for each energy level, W; = 5!/(2!3!) = 10 and W, = 8!/(3!5!) = 56. As a result,
the number of microstates for this macrostateis W = W; x W, = 560.
(b) For fermions, the number of ways that a single energy level can be constructed is
8!
Wi=——">"———
"7 Ni! (gj — N))!

Hence, for each energy level, Wi = 4!/(2!12!) =6 and W, = 6!/(3!3!) =20. Conse-
quently, the number of microstates for this macrostate is W = W; x W, = 120.

3.5.3 The Most Probable Particle Distribution

Equations (3.9) and (3.11) can easily be combined into one expression for both Bose—
Einstein and Fermi-Dirac statistics:

In W{gg} = Z {Nj In Ei N ! :i:gj In &i ' / }, (3.12)
] j

8j
where the upper sign (+) refers to Bose—Einstein statistics and the lower sign (—) refers
to Fermi-Dirac statistics. For simplicity of nomenclature, from here on we will omit the
combined BE-FD subscript; our convention will be that the upper sign always applies to
Bose—Einstein statistics and the lower sign always applies to Fermi—Dirac statistics.

The most probable particle distributions for Bose—Einstein and Fermi-Dirac statistics
can now be determined by maximizing Eq. (3.12) subject to the two constraints

> Nj=N (3.13)
J

Y Nje; =E. (3.14)
J

Equations (3.13) and (3.14) reflect the constant (E, V, N) conditions for an isolated system,
as required by the M-B method of statistical thermodynamics. Employing the Lagrange
method of undetermined multipliers (Appendix D.1), we first expand Eq. (3.12) and then
differentiate the result with respect to N; to find the most probable distribution of N;
among its allowed energy levels. The step-by-step outcome is

InW=>"{N;In(g; = N;) - NjInN; £ g;In(g; + N;) ¥ g;Ing)
j

dinW = Z{ln(gj +N;) £ g :l:]Nj — InN; -1+ . :l:le}dNi
]
dinW =Y {In(g; £ N;) — In N;} dN;, (3.15)

]

where g; and ¢; are taken as constants during the differentiation. From quantum mechanics,
it turns out that the degeneracy, g;,is simply aninteger and the level energy, ¢;, is a function
only of the total volume, V, which is, of course, constant for an isolated system. These two
strategic points will be dealt with more thoroughly when we consider quantum mechanics
in Chapter 5.
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Equations (3.13) and (3.14) are now differentiated to account for the imposed con-
straints during the optimization process. The results are

> dN; =0 > ejdN; =0. (3.16)
J J

Introducing multiplied unknowns into Egs. (3.16), we then subtract both expressions from
Eq. (3.15) to guarantee independent values of N;. We thus obtain

Y {in(g; = Nj) = InN; — o« — Be;}dN; =0, (3.17)
i

where the unknowns « and g are the so-called Lagrange multipliers, and the entire expres-
sion is set equal to zero to identify the most probable macrostate.
As discussed in Appendix D.1, the requirement specified by Eq. (3.17) can be achieved
for all j only if
In ]T/] =a + Be;.

Hence, the most probable distribution among energy levels becomes

8
N, = . 3.18
" exp(a+ Bej) 1 (3.18)

Equation (3.18) thus defines from a molecular viewpoint the specific condition ensuring
thermodynamic equilibrium for a macroscopic system of independent particles.

3.6 Entropy and the Equilibrium Particle Distribution

The most probable particle distribution of Eq. (3.18) is still incomplete as we need expres-
sions for the Lagrange multipliers, « and 8. To proceed further, we must now develop
a primal correspondence between statistical and classical thermodynamics. This corre-
spondence requires that we relate the macroscopic definition of entropy to a probabilistic
description of microscopic particle behavior.

3.6.1 The Boltzmann Relation for Entropy

Our strategy involves seeking a relation between the entropy and the total number of avail-
able microstates describing an isolated thermodynamic system. Because each microstate
is equally likely, a macrostate becomes more probable upon being affiliated with a greater
number of microstates. For this reason, the total number of microstates, W, is often called
the thermodynamic probability.

The relation between entropy and thermodynamic probability was discovered by the
Austrian physicist Ludwig Boltzmann (1844-1906) through a simple thought experiment
involving the concept of an irreversible process. Consider the expansion of a gas within a
partitioned chamber that is isolated from its environment, as shown in Fig. 3.3. Suppose
that chamber A originally contains a gas while chamber B is under vacuum. When the
valve is opened and the gas expands into the vacuum, the entropy, S, must increase owing
to the irreversibility of the process. On the other hand, from a microscopic perspective,
the thermodynamic probability must also increase as the final state of the system must be
more probable than its initial state. Hence, we can hypothesize that S = f(W).
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Figure 3.3 Isolated system containing two chambers A and B with
valve in separating partition.

The functional form involved in the proposed relation can be discerned by considering
two independent subsystems, A and B, again as in Fig. 3.3. Because entropy is additive and
probability is multiplicative for independent entities, we may assert that

Sap=Sa+ Sp Wap = Wy - Wp.

Only one function can convert a multiplicative operation to an additive operation. Hence,
we postulate that the entropy is related to the total number of microstates through the
Boltzmann relation,

S=klnW, (3.19)

where the constant of proportionality, k, is called Boltzmann’s constant. As we will dis-
cover, Eq. (3.19) has received extensive confirmation in the scientific literature; in fact, the
resulting statistical calculations, as performed later in this book, comport beautifully with
both experimental behavior and thermodynamic measurements.

3.6.2 |ldentification of Lagrange Multipliers
Equation (3.5) implies that Eq. (3.19) can be represented by
S = kln W, (3:20)

so that a general expression for the entropy can be derived from Eq. (3.20) by employing
Eq. (3.12) with the most probable distribution, as given by Eq. (3.18). We begin by rewriting
Eq. (3.12) as

j i '

8j

Now, invoking the most probable distribution, from Eq. (3.18) we obtain

g]]T] = exp(a + Be;). (3.22)
j

Manipulation of Eq. (3.22) gives
N; -
? = [exp(a + Be;) F1I 7,
j

which upon re-multiplication with Eq. (3.22) produces

812N 1 exp(—a — el (3:23)

j
Substitution of Eqgs. (3.22) and (3.23) into Eq. (3.21) leads to
In W, = Z {Nj(a+ Bej) F gjIn [1 Fexp(— a — Be))]}, (3.24)

]
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whereupon Egs. (3.20) and (3.24) give, after substitution from Egs. (3.13) and (3.14),

S=kPBE+aN)Fk) g/In[lFexp(—a— pe))]. (3.25)
J

We can now evaluate the Lagrange multipliers, @ and 8, by comparing Eq. (3.25) to its
classical analog from Appendix F, i.e.,

1 P
dS(E.V.N) = —dE+—dV - %dN, (3.26)

where U = E and P is the pressure for this single-component, isolated system. Applying
partial differentiation to Egs. (3.25) and (3.26), we find that (Problem 2.1)

<8S> 1
0E),y T

(38),, =
2} =L cke
ON)gy T

Therefore, the Lagrange multipliers, & and 8, become

1
-
@ == (3.28)

Hence, while g is related solely to the temperature, « is also influenced by the chemical
potential. Substituting Egs. (3.27) and (3.28) back into Eq. (3.25), the entropy can now be
expressed as

S = E_T'uN:Fka:gjln{leeXp |:— <8jk_T'u>]}. (3.29)

From Eq. (3.26), a final partial differentiation with respect to the volume, V, ultimately
gives the pressure,

¢
P=-) N (L . 3.30
S (5, 330

3.6.3 The Equilibrium Particle Distribution

Having obtained equations for the Lagrange multipliers, « and S, we may now obtain
a final expression for the equilibrium particle distribution. Substituting Egs. (3.27) and
(3.28) into Eq. (3.18), we find that, for either Bose—Einstein or Fermi-Dirac statistics,

8

N Sl — w R T (31
Notice that the macroscopic variables, 1 and T, entered into the equilibrium particle dis-
tribution only after the Lagrange multipliers were evaluated by relating microscopic to
macroscopic thermodynamics through the Boltzmann relation. Hence, parameters such
as the temperature are in actuality statistical concepts that can be defined only for an
assembly of particles. In other words, for independent particles, temperature is a macro-
scopic property that arises only after a statistical averaging process that occurs through
application of the M-B method of statistical thermodynamics.
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EXAMPLE 3.3

A well-known professor at Purdue University has discovered a new fundamental particle
labeled the boileron. The number of ways by which N; boilerons in energy level, ¢;, can
be distributed among its g; energy states is found to be

1 g! 7T
Vi=Nile -~y
Ni! [ (g — N))!

The energy of an isolated assembly of boilerons is fixed, but the total number of these
strange particles is not conserved because of mysterious interactions with the walls of the
enclosure. Using the methods of statistical thermodynamics, develop an expression for the
equilibrium particle distribution for Purdue boileronsif g; > N; andif § can be assumed,
as usual, tobe 1/kT.

Solution
The number of microstates per macrostate for Purdue boilerons is obviously

RS 8! ’
W=l | )

We now use the method of Lagrange multipliers. We first take the logarithm of the above
expression to obtain

InWpz =3 {2Ing;! —2In(g; — Nj)! —In N;!}.
i

Applying Stirling’s approximation, we find that
InWp =) {2gIng; - 2(g; — Nj)In(g; — N;) = N;In N; — N}.
J

We now take the derivative of the above expression, thus obtaining

dInWg=> {2In(g; — N;) —InN;}dN;.
i

Introducing the Lagrange multiplier, 8, and a differentiated form of the energy constraint
from Eq. (3.16), we have
dInWg = {2In(g; — N;) — InN; — Be;}dN; =0
i

at the extremum condition. Hence, we require

- _ N:)?
7(g] N] ]) :,68]

In

Applying the condition g; > N;, we obtain the equilibrium particle distribution,
N; = g7 exp(—¢;/kT).

Problems enhancing your understanding of this
chapter are combined with those for Chapter 4
in Problem Set I1.






4 Thermodynamic Properties
in the Dilute Limit

In the previous chapter, we employed the Maxwell-Boltzmann method of statistical ther-
modynamics to investigate Bose—Einstein (B-E) and Fermi-Dirac (F-D) statistics for an
isolated system of independent particles. The result for the number of microstates per
macrostate was found to be

gi £ N; gi £ N;
an:Z{len ]Nj ]igjln# , 4.1)
j
where the upper sign refers to B-E statistics and the lower sign to F-D statistics. Subse-
quently, application of the method of Lagrange multipliers to Eq. (4.1) led to an associated
expression for the equilibrium particle distribution, i.e.,

8j
N; = , 4.2
I Sxplle; — W/RTTF 1 (42)

where again the upper sign refers to bosons and the lower sign to fermions. In this chapter,
we develop simplified expressions based on Egs. (4.1) and (4.2) that hold for both B-E and
F-D statistics in the so-called dilute limit. The resulting equilibrium particle distribution
provides the statistical foundation for the definition of the molecular partition function
and consequently for the development of general thermodynamic expressions governing
the properties of the ideal gas.

4.1 The Dilute Limit

The only difference between B-E and F-D statistics is the limitation on the number of
particles per energy state, i.e., no limit for bosons and a limit of one particle per state
for fermions. If, however, few particles were actually available as compared to energy
states, then the B-E and F-D distributions should collapse to the same result as it would
be rare to have an energy state occupied by more than one particle. This condition,
given by g; > N;, is called the dilute limit. At this limit, the first and second terms of

45
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Eq. (4.1) become, respectively,

In <& + 1) ~In (&>
Nj N;
m<hb4>:iJ,
8 8j
where the logarithmic expansion In(1 + x) >~ x has been used to linearize the second term
(Appendix B). Therefore, in the dilute limit, Eq. (4.1) becomes, uniquely,

_ , 8j
mW@L_E;A@PnRE+1} (4.3)
Consequently, for g; > N;, we find that the number of microstates per macrostate is
g
WpL = 1_[ N;j!’ (4.4)
j

as could be proven by taking the logarithm of Eq. (4.4) and employing Stirling’s approxi-
mation (Appendix D.2) so as to recapture Eq. (4.3).

4.2 Corrected Maxwell-Boltzmann Statistics

For comparative purposes, it is instructive at this point to consider the evolution of statisti-
cal thermodynamics from the perspective of classical rather than quantum mechanics. From
this viewpoint, classical particles were assumed to be distinguishable rather than indistin-
guishable, with no limit on the number of particles per energy state. Historically, their statis-
tics were independently investigated by James Clerk Maxwell (1831-1879) and Ludwig
Boltzmann (1844-1906) before the advent of quantum mechanics. For this reason, such par-
ticles are said to follow Maxwell-Boltzmann (M-B) statistics, and may be called boltzons.

We begin as usual by developing an expression for the number of microstates per
macrostate. Specifically, for classical particles, the number of ways in which N; boltzons
in a single energy level, ¢;, may be distributed among g; energy states is equivalent to
the number of ways in which N; identical, distinguishable objects may be arranged in g;
different containers, with no limitation on the number of objects per container. Hence,
employing Eq. (2.29), we have

Nv
Wi=g;"

so that the total number of ways of obtaining an arbitrary particle distribution for distin-
guishable particles, when considering all possible energy levels, appears to be

wo=TTw =]1s;" (4.5)
] ]

In comparison to our previous analyses for bosons and fermions, however, we recognize
that, for distinguishable particles, a new microstate is formed when particles are exchanged
among energy levels. To account for this classical complication, we must determine the
number of possible particle distributions for distinguishable particles. This quantity is
equivalent to the number of ways that N identical, distinguishable objects may be arranged
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among available shelves (energy levels) such that N; objects occupy the jth shelf, i.e., from
Eq. (2.28),
N!

W= — .
TN
j

(4.6)

Therefore, multiplying Eqgs. (4.5) and (4.6), we obtain the number of microstates per
macrostate for M-B statistics,
g
Wiup = N[

A

4.7)

If we now compare Eq. (4.7), based on classical M-B statistics for distinguishable par-

ticles, with Eq. (4.4), based on the dilute limit for indistinguishable particles, we note that
Wup

Owing to the transparency of Eq. (4.8), the dilute limit is often referred to as corrected
Maxwell-Boltzmann statistics. In hindsight, we note that division by N! in Eq. (4.8) ac-
counts quite simply and directly for the reduced number of available permutations when
distinguishable particles are replaced by indistinguishable particles. Unfortunately, the
excess factor of N! in Eq. (4.7) produced great confusion in the nineteenth century
because this oversight led to an incorrect expression for the entropy of an ideal gas, as
discussed further in Section 4.4.

4.3 The Molecular Partition Function

As might be expected from the previous section, corrected M-B statistics also leads to
a unified expression for the most probable particle distribution. Indeed, if we invoke
gj > N;, Eq. (4.2) becomes

€
N; =g, exp< kT]>' (4.9)

Equation (4.9) represents the equilibrium distribution in the dilute limit, as portrayed by
Fig. 4.1 through comparisons with Eq. (4.2) for both B-E and F-D statistics. Notice that
the B-E and F-D cases are equivalent and thus g; > N; only when &; > . Because ¢/ is



48  Thermodynamic Properties in the Dilute Limit

always positive, the dilute condition clearly applies when p < 0. Such negative chemical
potentials are characteristic of ideal gases.

Given Eq. (4.9), we next explore some important features of the equilibrium particle
distribution for corrected M-B statistics. In particular, we may write

Njexp (_kiT) = g;exp (—;—]T) . (4.10)
Now, summing over all j, from Eq. (4.10) we obtain
Ne WK = 7, (4.11)
where we have defined the dimensionless molecular partition function,

Z=Y g I/H. (4.12)
J

The partition function is the most important quantity in statistical thermodynamics. As
we will discuss shortly, it indicates how particles in an assembly are partitioned among the
various energy levels of an atom or molecule. The partition function can also, of course,
be calculated by summing over energy states rather than energy levels, i.e.,

Z= " exp(—&;/kT), (4.13)

where each energy level is now represented by g; terms of the same energy, ¢;. As
Egs. (4.12) and (4.13) are equivalent, the use of one rather than the other is solely a
matter of convenience for a particular application. Although introduced here for indistin-
guishable particles in the dilute limit, the molecular partition function defined by Eq. (4.12)
also works for distinguishable particles, as shown by Problems 2.3 and 2.5. More robust
forms of the partition function can also be developed using ensemble theory, as discussed
in Chapter 18.

The physical significance of the partition function can be understood by dividing
Eq. (4.10) by Eq. (4.11) to obtain

N; _ g
— =2 4.14
N 7 (4.14)
so that for two energy levels, identified as j and k, we have
Ni _ 8
— = ==exp[—(g; —ex)/ kT . 4.15
N, = S expl—(e; — e0)/KT] (415)

Equation (4.14) represents the fractional population or the probability that a single atom
or molecule resides in a particular energy level for either corrected or uncorrected M-B
statistics. For this reason, Eq. (4.14) is often called the Maxwell-Boltzmann distribution.
Similarly, Eq. (4.15) represents the ratio of particle populations between two different
energy levels for bosons or fermions in the dilute limit.

A significant observation from Eq. (4.14) is that the population fraction for the jth
energy level is given by the jth term in the molecular partition function divided by the
partition function itself. Hence, for a given Z, the jth term in the molecular partition
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function represents the relative probability that a single particle will actually be in the jth
energy level. From another perspective, at infinite temperature, Eq. (4.12) becomes

which signifies the total number of energy states available to the particle assembly. Hence,
the exponential factor for each term in the partition function represents a weighting mul-
tiplicand that accounts for the influence of temperature on the accessibility of each energy
level. In this sense, the partition function indicates not only the effective number of energy
states available to the particle assembly but also the partitioning of population among
the available energy levels, as determined by both the number of energy states and their
accessibility through the temperature of the thermodynamic system.

4.3.1 The Influence of Temperature

The importance of temperature to the equilibrium particle distribution can be further
explored for two energy levels by casting Eq. (4.15) in the form

gkN; £j — &k
1 =- , 4.16
! (ngk) kT (410)

where (¢; — &) > 0. Hence, at thermal equilibrium,

N; N;
lim (g"—f) —0  lim (&> —1,
T—0 g]Nk T—o00 ngk

so that, as temperature rises, the population shifts dramatically from predominance within
lower energy levels to randomization among all energy levels. In other words, a greater
temperature means enhanced particle energy and thus, from Eq. (4.16), more access to
higher energy levels, as shown schematically in Fig. 4.2.

Continuing our thermal analysis, consider next the application of Eq. (4.15) to two
energy levels, each containing a single energy state. If the energy of the ground state is ¢.,
the population in the ith energy state, when fractionally compared to that in the ground
state, is

]Vi & — &

— = - , 4.17

v e (-1 @17)
where (e; — e,) > 0. Hence, at thermodynamic equilibrium, the population of any upper

or excited energy state can never exceed that of the ground state. Consequently, a so-called
population inversion is always indicative of a nonequilibrium process. Subsequent
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relaxation to the equilibrium distribution predicted by Eq. (4.14) invariably occurs through
removal of excess energy from higher energy states via collisions or radiation, as discussed
further in Chapter 11.

Presuming thermal equilibrium, we observe from Egs. (3.14) and (4.17) that,as T — 0,
E — Ne, because all particles following corrected M-B statistics are required to be in
their ground state at absolute zero. Hence, a value of ¢, must be specified to evaluate
any properties involving the internal energy. Most often, we stipulate ¢, = 0, which is
equivalent to making all energy calculations relative to a zero of energy at absolute zero.
This methodology ensures consistency with measured values of energy, which must also
be taken relative to some arbitrary zero of energy. A similar procedure can, in fact, be
used for bosons, fermions, or boltzons so that, in general, U = 0 at T = 0. In Chapter 13,
we will show that the thermodynamic probability of a perfect crystalline solid is unity at
absolute zero. Hence, from Eq. (3.19), we may also assume that § =0 at 7= 0. On this
basis, all thermodynamic properties should vanish at absolute zero.

4.3.2 Criterion for Dilute Limit
Recall that the dilute limit is defined by g; > N;; hence, from Eq. (4.9), we have

expl(e; — i)/ kT] > 1.

However,exp(e;/kT) > 1so that the dilute limit is absolutely ensured if exp(—u/kT) > 1.
Consequently, Eq. (4.11) indicates that

% =exp(—u/kT) > 1. (4.18)

Because of the ease with which the partition function can be calculated, Eq. (4.18) consti-
tutes a very general and convenient criterion for establishing the dilute limit. In particular,

for the ideal gas, this inequality is nearly always satisfied as u© < 0.

EXAMPLE 4.1

A dilute system at thermodynamic equilibrium consists of 50 independent, indistinguish-
able particles. Each particle has three energy levels of energy 0, ¢, and 2¢, with degeneracies
of 300, 600, and 1200, respectively. The system is at a constant temperature 7' = ¢/ k, where
k is Boltzmann’s constant.

(a) Calculate the molecular partition function for this thermodynamic system.

(b) How many particles are in each energy level?

(c) Using Boltzmann’s relation, determine the entropy of this system.

Solution
(a) The molecular partition function for this dilute thermodynamic system is

Z="7 gjexp(—e;/kT)
J

= 300 4+ 600 exp(—e/kT) + 1200 exp(—2¢/kT).
Given that T = ¢/ k, we obtain

Z =300 + 600e~" 4 1200e~2 = 300 + 221 + 162 = 683.
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(b) The number of particles in each energy level is given by Eq. (4.14). Hence,
No = (300/683)N ~ 22, where N = 50. Similarly, Ny = (221/683)N >~ 16 and N, =
(162/683)N ~ 12.

(c) For particles in the dilute limit, Boltzmann’s relation when using Eq. (4.3) becomes

. . ' 8j
S_kanDL_ij:N, {mﬁj +1}.
Thus, we obtain for the entropy,
S = k{22 [In(300/22) + 1] + 16 [In(600/16) + 1] + 12 [In(1200/12) + 1]}.

Evaluation then gives S = 221k, where k = 1.38 x 10723 J/K.

4.4 Internal Energy and Entropy in the Dilute Limit

In general, we know from classical thermodynamics that once we have two independent
properties for a single-phase thermodynamic system, we can calculate all of the remaining
properties. In this section, we develop general expressions for two such properties in the
dilute limit, the internal energy and the entropy. In the following section, we then derive
in a more straightforward fashion expressions for all of the remaining thermodynamic
properties.

The important result from this upcoming development is that properties such as the
internal energy and entropy can always be expressed in terms of the molecular partition
function. Hence, knowledge of Z will inevitably permit calculation of all thermodynamic
properties. More specifically, we recall from quantum mechanics that ¢; is a function of
only the volume of a particle assembly. Therefore, from Eq. (4.12), the natural independent
variables for the partition function must be temperature and volume. On this basis, we
expect that the temperature and volume will likewise be primary independent variables
for all thermodynamic properties in the dilute limit.

Recall from Chapter 3 that

U=E= Z Njg; (4.19)
]

S:k(ﬂU—l—aN)q:ngjln{lq:exp[—a— Beil}, (4.20)
J

where the Lagrange multipliers « = —pu/kT and g = 1/kT. We may now develop an
expression for the internal energy by substituting Eq. (4.14) for the equilibrium particle
distribution into Eq. (4.19). The result is

N e
U=— Ej gjeje ik,
But from Eq. (4.12),

0Z 1 e
(), s B
]
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hence, the previous expression becomes

NKT? (02
v=7(57)
\4

Z \oT
or
aln Z
U=nNk1? (22 (421)
aT ),

Equation (4.21) is our desired expression for the internal energy, both for corrected
and uncorrected M-B statistics (Problem 2.3). Because the molecular partition function
depends solely on temperature and volume, we immediately recognize that the natural
independent variables for the internal energy are N, T, and V,i.e., UN, T, V).
Turning now to the entropy, we have from Eq. (4.20) when substituting for « and g,
U uN

S = T :Fka:gjln{leexp[(M— &)/ kT)}.

In the dilute limit, we note from Eq. (4.9),
expl(n — )/kT)] < 1.

so that by linearly approximating the logarithmic expansion (Appendix B), we obtain

FhY giIn{l Fexp[(u— &))/kTI ~ k) gjexp[(n — &;)/kT]
j J

= ke"/*" Z = kN,
where we have invoked the partition function via Egs. (4.11) and (4.12) to get the amazingly
simple result, kN. On this basis, the entropy in the dilute limit can be written as

s )

which can be converted to
U V4
S=—=+4+kN|In|— 1 422
r (i) ] 62
after eliminating the chemical potential using Eq. (4.11). Alternatively, substituting
Eq. (4.21) into Eq. (4.22), we produce our desired expression for the entropy,

S:Nk[T(a;nTZ>v+ln(£>+1] (4.23)

As might be expected, Eq. (4.22) can also be derived through a direct statistical analysis
of corrected M-B statistics (Problem 2.4). The significant implication is that, for indistin-
guishable particles in the dilute limit, the natural independent variables for the entropy,
as for the internal energy, are N, T, and V. Hence, given these parameters, Eq. (4.23) con-
firms our prior supposition that the molecular partition function is the key quantity when
calculating U and S, and thus all thermodynamic properties.

Finally, from Eq. (4.8), we find, after using Stirling’s approximation (Appendix D.2),

In WDL =1In WMB — (NlIlN— N),
so that, from the Boltzmann relation,

Sus = Sp.+ kN(In N — 1). (4.24)
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Therefore, substituting Eq. (4.22) into Eq. (4.24), we find that the entropy for an assembly
of distinguishable particles can be represented by the simpler expression,

U
S§= = +kNInZ, (4.25)

which explains the persistent miscalculation of entropy for the ideal gas before the devel-
opment of quantum mechanics (Problem 2.5). Equations (4.22) and (4.25) differ solely
because of the factor of N!in Eq. (4.8); this factor, you recall, accounts for the enhanced
permutations when determining the thermodynamic probability for distinguishable as
compared to indistinguishable particles in the dilute limit.

4.5 Additional Thermodynamic Properties in the Dilute Limit

Having established Eqs. (4.21) and (4.23) for the internal energy and entropy, respectively,
we may now derive additional expressions in terms of Z(7, V) for all other thermodynamic
properties by invoking standard relations from classical thermodynamics (Appendix F).
Beginning with Eq. (4.11), we can express the chemical potential in the dilute limit as

Z
=—kTIn({—]. 4.26
p= -kt (%) (4.26)
From classical thermodynamics, G = u N, so that the Gibbs free energy becomes
G =—NkT In z (4.27)
= ~ ) .
Recall that the Helmholtz free energy is defined as A= U — T'S; thus, from Eq. (4.22),
Z
A= NKT [m <_) + 1} | (428)
N
From classical thermodynamics, G = H — T'S; hence, from Egs. (4.22) and (4.27),

H=U + NKT. (4.29)

Substituting Eq. (4.21) into Eq. (4.29), the enthalpy can then be expressed as
9lnZ
H=Nkr| T Z22) 1. (4.30)
aT ),

We, of course, also recall that H = U + PV, and thus, from Eq. (4.29),

PV = NkT, (4.31)

which is just a molecular version of the ideal gas equation of state! We obtained this
remarkable result because the ideal gas is the prototype for independent but indistin-
guishable particles in the dilute limit. Furthermore, we anticipated this outcome when we
previously commented that ideal gases typically bear large negative chemical potentials,
thus automatically satisfying our criterion for the dilute limit, i.e., Eq. (4.18). We conclude,
therefore, that all expressions derived for thermodynamic properties in the dilute limit
must apply to ideal gases.
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Now, for such gases, the macroscopic equation of state is PV = nRT, where n is the
number of moles and R is the universal gas constant. Comparing this classic equation of
state to Eq. (4.31), we immediately recognize that

nR R
k= NNy (4.32)
where N4 is Avagadro’s number. Hence, we have shown that Boltzmann’s constant, which
was initially introduced to link quantitatively thermodynamic probability to the entropy,
can also be interpreted as simply the universal gas constant divided by Avagadro’s number.
In other words, Avagadro’s number represents a kind of universal scaling factor relating
microscopic and macroscopic thermodynamics!

Because the dilute limit automatically implies ideal gases, we are finally in a position
to complete our development of statistical expressions for the various thermodynamic
properties in the dilute limit. In particular, we recall from classical thermodynamics that the
specific heats, at constant volume and constant pressure, respectively, can be expressed as

H H
o=(57), o-(7),-(57),
aT ), oT ), \aT ),

where the Cp identity holds because enthalpy is a function only of temperature for ideal
gases. Employing the indicated partial derivatives, plus Eqgs. (4.21) and (4.30), we thus

obtain
9, (dInZ
Cy = Nk| =12 (L2 (4.33)
aT oT )|,
9 _,(dlnZ
Cp = Nk{| —=T? 11. 4.34
r= i[5 (57), +1} 39
EXAMPLE 4.2

A dilute system at thermodynamic equilibrium consists of 50 independent, indistinguish-
able particles. Each particle has three energy levels of energy 0, ¢, and 2¢, with degeneracies
of 300, 600, and 1200, respectively. The system is at a constant temperature T = ¢/ k, where
k is Boltzmann’s constant.

(d) Determine the internal energy for this thermodynamic system.

(e) Calculate the entropy directly from the partition function.

(f) Evaluate the Helmholtz free energy of the system.

Solution

This problem is a continuation of Example 4.1, for which we have already calculated the
partition function and the number of particles in each energy level.

(d) The internal energy can be obtained from Eq. (4.19), i.e.,

N
U= ZNfo = ?Zgjgj exp(—sj/kT).
J J

Therefore, U =22-0+16-¢ + 12 - 2 = 40¢.
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(e) The entropy can be calculated from the partition function by using Eq. (4.22). Hence,
for T =¢/k,

U Z 683

Consequently, S = 40k 4+ 181k = 221k, in agreement with part (c).
(f) The Helmholtz free energy is defined by A= U — T'S. Hence, we have

A= 40e — (¢/k)(221k) = —181e.

4.6 The Zero of Energy and Thermodynamic Properties

We have previously indicated that thermodynamic properties are normally calculated by
presuming that the energy of the ground state e, = 0. However, it is of interest to ascertain
if any of our property expressions are in actuality independent of this arbitrary choice for
&,. Such properties would then become a robust test of the predictive value of statistical
thermodynamics.

As we will learn in Chapter 7, we can always measure via spectroscopy the difference
in energy between two energy levels; thus, we invariably know

;= ¢} — &.
Therefore, employing Eq. (4.12), we may now define an alternative partition function,

7 = ng exp(—¢/kT) = Zexp(e./kT). (4.35)
J

Using Egs. (4.19) and (4.31), we find that for the internal energy,

dln 7’ &
= NkT? °
v=nr|(F7), + 1]

9ln Z'
U—NsO:NkT2< 1 ) .
14

or

oT

Hence, we have shown that any calculation of the internal energy produces a ground-state
energy, Ne,, which we must arbitrarily set to zero to generate thermodynamic property
tables.

In comparison to the internal energy, some special properties might exist that are not
affected by our arbitrary choice of a zero of energy. Consider, for example, the specific heat
at constant volume, which we may investigate by substituting Eq. (4.35) into Eq. (4.23). In

this case, we obtain
] oln 7z’ £
Cy = Nk— | T? =
Y aT[ ( o7 )*k}v

9 dlnZ'
Cy = Nk| —T? )
Y [aT (aT )L
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Similarly, for the entropy, we have from Eq. (4.23),

dln Z’ & A
S=Nk|T Lo im ()41
[ (aT )ﬁm*“( N )*]

dln Z’ 4
=Nk|T 1 — 1].
S [ ( a7 >V+“<N>+ ]

We note that for both of these cases, the ground state energy has no influence on the
calculation of thermodynamic properties. Indeed, the derived expressions for the specific
heat at constant volume and the entropy are the same whether the partition function is
Z or Z'. More generally, we find that the ground-state energy affects calculations of U,
H, A, and G, while it does not affect calculations of Cy, Cp, and S. This important result
provides the rationale for focusing on specific heats and the entropy when experimentally
assessing the validity of statistical calculations for thermodynamic properties (Lewis and
Randall, 1961).

4.7 Intensive Thermodynamic Properties for the Ideal Gas

We showed in Section 4.5 that independent, indistinguishable particles in the dilute limit
ultimately prescribe ideal gas behavior. Hence, when calculating ideal gas properties, we
need only apply the various thermodynamic expressions derived in Sections 4.4 and 4.5.
These inherently microscopic properties can be converted to more useful macroscopic
properties by employing Eq. (4.32). The resulting classical thermodynamic expressions for
the intensive molar properties of the ideal gas can then be cast in dimensionless form as
follows:

§%==T(8;;Z>V (4.36)
%:T(ag;z)vﬂ (4.37)
L. [m (%) T 1} (4.38)

£%=—4n<§> (4.39)

%:7(3£F)V+m<§)+1 (4.40)
SH)

InZ
& _ | p(in +1. (4.42)
R |lar' \31 ),
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We note that all of the above thermodynamic properties are functions of the molecular
partition function through In Zrather than through Z directly. This feature will play a very
important role in our future calculations of ideal gas properties. We also note that any such
calculations will require only three functional forms of In Z, namely,

| 4 dlnZ ?InZ

“<N> ( 0T )V ( o7 >v'

Finally, evaluation of these functional forms requires that we know the degeneracies, g;,
and the energy levels, ¢;, for the atom or molecule of interest. For this purpose, we now
turn to quantum mechanics and spectroscopy (Chapters 5-7). Once we have learned how
to determine both g; and ¢;, we will come back to Eqgs. (4.36)—(4.42), as these expressions

can eventually be used to calculate the thermodynamic properties of ideal gases and their
mixtures (Chapters 8-10).







PROBLEM SET II

Statistical Modeling for Thermodynamics
(Chapters 3-4)

2.1

2.2

We have shown that the entropy for Bose—Einstein and Fermi-Dirac statistics is
given by
S(E,V.N)=k(BE+aN) Fk)_g;In(l Fe e ),
i
where N =3}, Njand E=}_; N;¢;. Similarly, from classical thermodynamics,
1
T

j2
dS(E.V.N) = =dE+—dV - %dN

for a single-component system.
a. Prove that g = 1/kT.
b. Prove that o = —u/kT.

c. Show that the pressure is given by

P==3 Ni(@/0V)g -
J
d. We will soon demonstrate that the internal energy is independent of volume
whereas the translational energy ¢;, = C;V~2/3, where C; is a constant for
each translational energy level. Utilizing this information, show that
2
PV = < E,,
3 1
where E,, is the translational portion of the total energy (external plus internal)
for the particle assembly.

e. Is this result limited to the dilute limit? Does it assume independent
particles? Why should the pressure be related only to the translational energy?
Explain.

We have shown that the entropy for Bose-Einstein and Fermi-Dirac statistics is
given by

S(E.V.N)=kBE+aN)Fk)_ g;jn(lFe e ),
j

where N=) N;and E =) Njs;.
J i
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2.3

a. Assuming that 8 = 1/kT, show that

A(T,V,N) = —aNKT + kTZ g In(1 F e~%e*/kT),
i

. Confirm that 8 = 1/kT by showing that S = —(d A/3T)v. n.

c. Employing A(T, V, N), prove that « = —u/kT.

. Using A(T, V, N), show that the pressure is given by

P = —ZNj(aej/BV)T,N.
J

. We will soon demonstrate that the internal energy is independent of volume

whereas the translational energy ¢;, = C; V23 where C ; 1s a constant for

each translational energy level. Utilizing this information, show that
2
PV = Er.

where F,, is the translational portion of the total energy (external plus internal)
for the particle assembly.

. Is this result limited to the dilute limit? Does it assume independent particles?

Why should the pressure be related only to the translational energy? Explain.

Classical Maxwell-Boltzmann statistics considers particles to be distinguishable
with no limit on the number of particles in each energy state. A physical example
is a solid composed of localized atoms at distinguishable lattice sites. The thermo-
dynamic probability in this case is given by

N/
8

Wyp = N! 1_[ AR
!

J

where Nj is the number of particles and g; is the degeneracy of the jth energy level.

a.

Using the methods of statistical thermodynamics, show that the equilibrium par-
ticle distribution is

N; = gje e 5.

. Defining the molecular partition function Z= 3, g je ¢, show that

S=Kk(BE+ N 2).

. Using classical thermodynamics, verify that § = 1/kT. Hence, show that the

Helmbholtz free energy for classical Maxwell-Boltzmann statistics becomes
A= —NkTIn Z.

Compare this expression with that for corrected Maxwell-Boltzmann statistics.
Explain the difference.

. Beginning with the equation for Helmholtz free energy derived in part (c), show

that the chemical potential and pressure for a classical gas can be expressed as

in Z
iw=—kTnZ p=nNkT (22 .
v ),
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e. Write comparable expressions for u and P for a gas following corrected Maxwell—
Boltzmann statistics. Explain any agreement or disagreement with the expres-
sions of part (d).

The thermodynamic probability for corrected Maxwell-Boltzmann statistics is
given by

g
Wems = | | 24
U Nt

where N; is the number of particles and g; is the degeneracy of the jth energy
level.

a. Using the methods of statistical thermodynamics, show that the equilibrium par-
ticle distribution is

Ny =gje e .
b. Defining the molecular partition function Z= 3, g; eP¢i, show that
Z
S:kﬂE+kN[ln(N> +1}.

c. Employing the Helmholtz free energy and presuming that g = 1/kT, verity

that
p— Nkt (202
v ),

Classical Maxwell-Boltzmann statistics considers particles to be distinguishable
with no limit on the number of particles in each energy state. A physical example
is a solid composed of localized atoms at distinguishable lattice sites. The thermo-
dynamic probability in this case is given by

N;
8

W= T4,
1

i
where N; is the number of particles and g; is the degeneracy of the jth energy
level.

a. Using the methods of statistical thermodynamics, show that the equilibrium par-
ticle distribution is

N; =gje e P,
b. Defining the molecular partition function Z = )" i 8i eP¢i, show that
S=k(BE+ Nln 2).

c. Using classical thermodynamics, verify that § = 1/kT. Hence, the entropy for
classical Maxwell-Boltzmann statistics becomes

S=l—7],+kNan.

Compare this expression with that for corrected Maxwell-Boltzmann statistics.
Explain the difference.
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2.6

2.7

Statistical Modeling for Thermodynamics (Chapters 3-4)

d. Show that the probability of a particle being in the ith energy state is given by

Pi _ ﬁ _ e—s,/kT’
N Z

/KT

where the partition function Z= )", e™*

e. Demonstrate that the entropy can be directly related to the probabilities P of
the various energy states accessible to the system, i.e.,

S=-kN ) PInP.
i
Discuss the significance of this result.

Consider a simplified system having four energy levels of relative energy 0, 1, 2,
and 3. The system contains eight particles and has a total relative energy of six.
Determine the thermodynamic probability for every distribution consistent with
the above constraints given the following system characteristics.

a. The energy levels are nondegenerate and the particles obey Maxwell-Boltzmann
statistics.

b. Each energy level has a degeneracy of six and the particles obey either (i)
Maxwell-Boltzmann or (ii) corrected Maxwell-Boltzmann statistics.

c. Each energy level has a degeneracy of six and the particles obey either Bose—
Einstein or Fermi-Dirac statistics.

d. Comment on your calculations for parts (b) and (c).

The translational partition function for a monatomic ideal gas can be shown to be

27 mkT\>"?

so that the criterion for the dilute limit becomes

2rmkT\>"? [V > 1
h? N ’

where m is the molecular mass, k is Boltzmann’s constant, / is Planck’s constant,
T is the temperature, V is the volume, and N is the number of particles in the gas
assembly.

a. Consider helium gas at room temperature (300 K) and pressure (1 atm). Show
that the dilute limit is satisfied.

b. Consider the conduction electrons in metallic sodium at room temperature. As
a first approximation, interactions between these electrons can be neglected so
that they can be treated as an ideal gas. By assuming one conduction electron
per sodium atom, show that the dilute limit is not satisfied. What are the major
differences between the electron case and the helium case that preclude the
dilute limit for the former?

c. The criterion for the dilute limit can also be expressed as

V»M
N 9
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where A = (h?/2m mkT)Y?. Demonstrate that A is essentially equivalent to a
thermal de Broglie wavelength for the particle. Discuss in a succinct paragraph
the physical implications of the above inequality.

The translational partition function for a monatomic ideal gas can be shown to be

2emkT\>?
=\ )V

so that a suitable criterion for the dilute limit becomes

2emkT\>? (V
h? N
a. Consider neon at a pressure of 1 atm. Determine the temperature above which
the above criterion holds.

b. Similarly, for argon at 300 K, determine the pressure below which the criterion
for the dilute limit is satisfied.

c. The criterion for the dilute limit can also be expressed as
%4
— > 10A%,
N

where A = (h?/2rmkT)"/?. Demonstrate that A is essentially equivalent to a
thermal de Broglie wavelength for the particle. Discuss in a succinct paragraph
the physical implications of the above inequality.

We have shown that, for Bose—Einstein and Fermi-Dirac statistics,
_ In| &L . N
an{f_g} = Z{N, ln[Nj :I:l] +g;ln [u < }}
j
a. Prove that, for any given macrostate,
In WBE > In WCMB > In WF]_).

b. What are the implications of part (a)?

To illustrate the order of magnitude of the fluctuations in a macroscopic system,
consider N distinguishable particles, each of which can be with equal probability in
either of two available states; e.g., an “up” and a “down” state.

a. Determine the total number of microstates and the entropy of this N-particle
system.

b. What is the number of microstates for which M particles are in the “up” state?
Hint: Recall the binomial distribution.

c. The fluctuation in the number of particles M is given by o/ M, where o is the
standard deviation and M is the mean number of particles in the “up” state.
Develop an expression for o/ M.

d. Consider a macroscopic system for which N = 6.4 x 10> spatially separated
particles. Calculate the fluctuation for this system. What are the implications of
your result?
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2.11

2.12

2.13

2.14

2.15

A thermodynamic system consists of N independent, distinguishable particles. Each
particle has four energy levels at 0, ¢, 2¢, and 3¢, respectively. The system is in
thermal equilibrium with a heat reservoir of absolute temperature 7' = ¢/ k, where
k is Boltzmann’s constant.

a. If the energy levels are nondegenerate, calculate the partition function, the inter-
nal energy, the entropy, and the Helmholtz free energy of the system.

b. Repeat part (a) if the energy levels at 0, ¢, 2¢, and 3¢ have degeneracies of 1, 2,
4, and 4, respectively.

a. Demonstrate that the average energy per particle, , in the dilute limit is given
by

= 1 —¢&;/ kT
8=2;gj8]’€ il .

b. By differentiating the above equation with respect to temperature, show that the
root-mean-square deviation, o,, for the particle energy is

o, = [kT?¢,]"?
where ¢, = (0g/9T)y is the mean specific heat per particle at constant volume
(J/K).
c. Evaluate the fractional root-mean-square deviation, o, /&, for a monatomic gas.
What are the physical implications of your evaluation?

An insulated vessel contains a partition that separates one volumetric region filled
with a monatomic gas from another region at vacuum. The partition is broken
and the gas is permitted to fill the entire volume of the vessel. If the translational
partition function of a monatomic gas can be taken as

7 27 mkT\*? v
7w ) v
show that the microscopic expression derived for the net entropy change during
this expansion process is the same as that expected from classical macroscopic
thermodynamics.

The most probable distribution for a thermodynamic assembly is usually taken to
be much more likely than any other distribution differing from it by even a small
amount. Given an isolated system containing N particles, consider a distribution d
for which N; = Nj,,, + 8N;, where the variation [§N;| < Njpp.

a. Demonstrate that the entropy in the dilute limit for any such distribution
must be less than that corresponding to the most probable distribution.
Hint: Start your analysis with Eq. (4.3).

b. Consider one mole of gas having a distribution d in which [§N;|/Nju, =107
for every level j. Calculate the ratio of thermodynamic probabilities, W/ W,,,,,
and also the corresponding difference in entropies. What physical implications
can be deduced from these particular calculations?

A thermodynamic system consists of N independent, distinguishable particles. Each
particle has three energy levels at 0, ¢, and 2¢, with degeneracies of 1, 3, and 5,
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respectively. The system is in thermal equilibrium with a heat reservoir of absolute
temperature T = ¢/ k, where k is Boltzmann’s constant.
a. Calculate the partition function for this system.

b. What fraction of the particles resides in each energy level?
c. Determine the average particle energy and the associated mean particle entropy.

d. Atwhat temperature would the population of the energy level having 2¢ be equal
to that at ?

Paramagnetism can occur when some atoms in a crystalline solid possess a magnetic
dipole moment owing to an unpaired electron with its associated orbital angular
momentum. For simplicity, assume that (1) each paramagnetic atom has a magnetic
dipole moment p and (2) magnetic interactions between unpaired electrons can
be neglected. When a magnetic field is applied, the magnetic dipoles will align
themselves either parallel or antiparallel to the direction of the magnetic field. If
the magnetic moment is parallel to a magnetic field of induction B, the potential
energy is —u B; when the magnetic moment is antiparallel to B, the potential
energy is +u B.

a. Prove that the probability for an atomic magnetic dipole moment to point parallel
to the magnetic field is given at temperature 7 by

Po=(1+e>)"!
where x = uB/kT. Give a physical explanation for the value of P, as T — 0
and as T — oo.
Hint: Determine the partition function for the system.

b. Show that, for N independent magnetic dipoles, the mean effective magnetic
moment parallel to the magnetic field is

m = Nu tanh (x).
c. Demonstrate that the mean magnetic moment at high temperatures and/or weak
magnetic fields (x « 1) is proportional to 1 / T. This is Curie’s law.

d. Show that the contribution from paramagnetism to the internal energy of a
crystalline solid is U = —mB. Determine this paramagnetic contribution at 7 =
0o. Why should this result have been expected?

e. Develop an expression for the entropy of this paramagnetic system.
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5 Basics of Quantum Mechanics

We found in the previous chapter that the molecular partition function is required to
determine the thermodynamic properties of an ideal gas. To evaluate the partition func-
tion, specification of pertinent energy levels and degeneracies is necessary. Such knowledge
demands that we investigate at least the rudiments of quantum mechanics, and especially
those quantum concepts required for subsequent applications to statistical thermodynam-
ics. For this reason, we concentrate in the next few chapters on the Schrodinger wave equa-
tion, whose various solutions provide the ¢;’s and g;’s needed for the eventual calculation
of thermodynamic properties. Depending on your academic background, you might thus
consider reviewing classical mechanics (Appendix G) and operator theory (Appendix H)
in preparation for your upcoming study of quantum mechanics.

We begin this chapter with a historical review of the developments leading to the for-
mulation of quantum mechanics, subsequently focusing on the Bohr model for atomic
hydrogen and the de Broglie hypothesis for matter waves. We then introduce the
Schrodinger wave equation, the basic postulates of quantum mechanics, and salient insights
from these postulates germane to the development of statistical thermodynamics. We
next apply the Schrodinger wave equation to the translation energy mode of an atom or
molecule. This application conveniently explains both quantum states and quantum num-
bers, including their relation to our previous notions of microstate and macrostate. We
end this chapter by discussing the Heisenberg uncertainty principle, including its utility in
defining indistinguishability and symmetry conditions for multiparticle systems.

5.1 Historical Survey of Quantum Mechanics

In most branches of physics, we explore the early work of various researchers to become
familiar with those inductive processes leading to a final elegant theory. For example, study-
ing the various laws of electricity and magnetism primes us for the acceptance of Maxwell’s
equations; similarly, applying the first and second laws of thermodynamics to heat engines
prepares us for a postulatory approach to classical thermodynamics (Appendix F). Unfor-
tunately, for quantum mechanics, the final postulates are so abstract that little relation
apparently exists between them and those experimental results which eventually led to
their formulation during the first quarter of the twentieth century. Nonetheless, given
proper perspective, the development of quantum mechanics actually followed a path
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typical of the evolution of any fundamental scientific theory. The following is a summary
of some of these developments.

In 1900, the German physicist Max Planck (1858-1947) showed that the classical theory
of oscillating electrons could not explain the behavior of blackbody radiation. Performing a
thermodynamic analysis of available results at low and high wavelengths, Planck developed
a general expression for emissive power that conformed to experimental data at both
wavelength limits. Upon further investigation, he found that quantization of energy was
required to derive his empirical relation between the emissive power of a blackbody and
the frequency of its emitted radiation. In particular, he postulated that the microscopic
energy, ¢, emitted at a given frequency, v, was proportional to that frequency, so that

& =nhv,

where 7 is an integer and the proportionality constant, /4 (J-s), is now known as Planck’s
constant.

In 1905, Albert Einstein (1879-1955) published an explanation of the photoelectric
effect, which occurs when electrons are ejected from a metallic surface as a result of being
bombarded with ultraviolet radiation. Following Planck’s lead, Einstein suggested that the
incident radiation behaves, not as a classical electromagnetic wave, but as distinct entities
or photons, with each photon having energy

& = hv. (5.1)

Hence, when ultraviolet light strikes a surface, the maximum kinetic energy of the escaping
electrons should become

T, = hv — @,

where the work function, ®, represents the minimum energy required to remove electrons
from the surface of a particular material. Good agreement was eventually found between
this relation and experimental data, thus verifying that the maximum kinetic energy, 7,,,
depends linearly not on emissive power but on its frequency.

While the corpuscular theory of light, as proposed by Isaac Newton (1642-1727), had
been around for a long time, the subsequent investigations of Thomas Young (1773-1829)
and Augustin Jean Fresnel (1788-1827) had shown that both diffraction and interference
phenomena could be explained beautifully by modeling light as a traveling wave. The
astonishing demonstration by James Clerk Maxwell (1831-1879) that light behaved as
an electromagnetic wave strongly reinforced this viewpoint. Hence, Einstein’s concept of
the photon was actually quite revolutionary since the wave model of light, as originally
developed by Christian Huygens (1629-1695), was at that time the generally accepted
paradigm of classical physics.

Despite his ground-breaking work on blackbody radiation, Planck himself contended
that the emitted photons should ultimately coalesce into a classical wave. However, when
Einstein calculated Planck’s constant using the photoelectric effect, he found excellent
agreement with Planck’s original value based on blackbody radiation. Einstein’s seminal
work thus suggested for the first time the so-called wave—particle duality of light: electro-
magnetic radiation can behave sometimes as a wave and sometimes as a particle. When
the particle nature of light dominates, radiation is discrete rather than continuous so that,
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following Eq. (5.1), the material emitting or absorbing light undergoes a distinct change
in energy mirroring that for a single photon, i.e.,

Ag = hv. (5.2)

In 1911, Ernest Rutherford (1871-1937) suggested that the atom is composed of a
central nucleus with orbiting electrons. This model was immediately questioned since it
could not be reconciled with another basic concept of classical physics: an orbiting electron
should radiate, thereby gradually losing energy and thus prompting its eventual collapse
into the nucleus. Fortunately, the Danish physicist Niels Bohr (1885-1962) provided an
explanation for Rutherford’s modelin 1913. Building on Einstein’s work, he postulated that
the electrons actually orbit at fixed radii and that discontinuous transitions between orbits
occur only when photons are absorbed or emitted by the atom. This model, as discussed
in Section 5.2, offered the first comprehensive explanation for the known spectrum of
atomic hydrogen. The amazing agreement between model and experiment proved to be
extremely significant, as much of the early work on quantum theory arose from the inability
of classical physics to explain various spectroscopic observations.

Subsequently, the American physicist Arthur Compton (1892-1962) found that he was
unable to explain classically the results of his 1922 experiments on x-ray scattering. How-
ever, by invoking Einstein’s quantum model for x-rays and assuming that each photon
interacted with a single electron, he was able to verify the experimental change in wave-
length, X, upon scattering as

h
AA = 1-—
<m3c> (1 —cos 0),

where m, is the mass of the electron, c is the speed of light, and 6 is the scattering angle.
This succinct result provided further evidence for the particle nature of light and thus for
an inherent wave—particle duality.

In 1924, the French physicist Louis de Broglie (1892-1985) proposed in a remarkable
doctoral thesis that wave—particle duality should be as true for matter as for light. Invoking
so-called matter waves, as discussed in Section 5.3, de Broglie predicted that electrons
passing through a thin metallic sheet should exhibit a diffraction pattern similar to that for
light waves. This suggestion was experimentally confirmed in 1927, leading to Nobel prizes
ten years later for G. P. Thompson (1892-1975) in England and C. J. Davisson (1881-1958)
in the United States. An interesting sidelight here is that J. J. Thomson (1856-1940), G. P.
Thomson’s father, received the Nobel prize for physics in 1906 after identifying electrons
as fundamental particles, while his son received the identical award in 1937 for showing
that these same particles can also act as waves.

As indicated by the above summary, quantum concepts were amazingly successful at
explaining significant experimental results at the turn of the twentieth century. However,
the resulting patchwork theory simply linked quantum ideas to well-accepted aspects
of classical physics. While this loose framework provided a fruitful venue for inventive
physicists, its arbitrariness proved distasteful to those who sought rigorous theories. Hence,
various investigators pursued a more basic formulation that could be applied in a self-
consistent manner while still explaining the major effects of quantization. In the end, the
most successful theories were developed by the German physicist Werner Heisenberg
(1901-1976) and by the Austrian Erwin Schrodinger (1887-1961).
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/ Plate Figure 5.1 Sketch of spectrograph for determin-
m ‘ ing the spectrum of atomic hydrogen.
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In 1925, Heisenberg introduced his matrix mechanics. He summarily rejected descrip-
tions in terms of classical physics and based his theory completely on selected observable
properties of discrete systems. This new approach was rapidly improved and applied to
several outstanding research problems. In 1926, Schrodinger set forth the basis for his
wave mechanics, which is commonly known today as quantum mechanics. Schrodinger
was a mathematical physicist who had done extensive work on eigenvalue problems. The
matter waves proposed by de Broglie inspired him to formulate quantum theory in terms
of a wave analysis. Schrodinger was later able to show that his wave mechanics gave the
same results as Heisenberg’s matrix mechanics.

Following Schrodinger’s original work, many physicists and chemists struggled to refine
the underlying structure of quantum mechanics. Nevertheless, the fundamental postulates
introduced in Section 5.5 remain as a set of rules that cannot be proven, but only disproven.
In other words, they cannot be understood as following from experiments or theorems in
a logical way; instead, the postulates must be taken as a basic set of conjectures which
can be justified only by their continual correctness in predicting the observed behavior of
matter at the atomic or molecular level.

Slit

5.2 The Bohr Model for the Spectrum of Atomic Hydrogen

We now investigate the failure of classical mechanics and the success of quantum mechan-
ics by specifically considering in some detail Bohr’s model for the hydrogen atom. At the
turn of the last century, much experimental work had been completed on the spectroscopy
of atomic hydrogen. Typically, an emission spectrum was obtained on a photographic plate
by using a hydrogen discharge lamp as the source of radiation. The resulting spectrograph
of Fig. 5.1 was the forerunner of today’s modern spectrometer, which employs a grating
rather than a prism and a photomultiplier tube or photodiode array rather than a photo-
graphic plate. A schematic representation of the resulting spectrum for atomic hydrogen
is shown in Fig. 5.2. Three series of lines can be observed, one each in the ultraviolet,
visible, and infrared regions of the electromagnetic spectrum. Each series of lines displays

912A 1216 A 3647 A 6563 A 8206 A 18760 A

Lyman Series (ultraviolet) Balmer Series (visible) Paschen Series (infrared)

Figure 5.2 The three series of lines in the spectrum of atomic hydrogen as displayed on a
logarithmic wavelength scale.
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Figure 5.3 Schematic for Bohr model of the hydrogen atom.

a characteristic reduction in line spacing and thus a denser spectral region at lower wave-
lengths. The lower and upper limits for each spectral family range from 912 to 1216 A for
the Lyman series, from 3647 to 6563 A for the Balmer series, and from 8206 to 18,760 A
for the Paschen series.

At this juncture, we introduce a convenient spectral definition delineating relative
energy differences called the wave number, i.e.,

Ae v 1

P inirinby (5.3)
where we have made use of Eq. (5.2) and recognized that the wavelength A = ¢/v. The
utility of wave number units (cm~!), which indicates the number of vacuum wavelengths
in one centimeter, is obvious from Eq. (5.3), in that discrete energy changes are directly
related to the inverse of the measured spectral wavelength. Employing this definition, the
discrete wavelengths of all spectral lines in Fig. 5.2 can be empirically correlated via the
Rydberg formula,

v

1 1

Vnm = RH (W - ﬁ) s (54)
where m=1,2,3,...is an index representing the Lyman, Balmer, and Paschen series,
respectively, whilen = m+ 1, m+ 2, m+ 3, ... identifies the spectral lines for each series.
An adequate theory for the spectrum of atomic hydrogen must reproduce Eq. (5.4), includ-
ing the Rydberg constant, Ry = 109,678 cm™!, which is one of the most precise physical
constants in all of science. Indeed, the accurate reproduction of Ry accounts for the suc-
cess of the Bohr model, which ultimately invoked energy quantization because of the two
integers, m and n, in Eq. (5.4).

We initiate our discussion of the Bohr model by classically analyzing the stable circular
motion of a single electron about a stationary nucleus of opposite charge, as shown in
Fig. 5.3. Applying Newton’s second law, a stable orbit is achieved by satisfying

2 2

e mev
—F, —

)

4rre r? r

where F, is the electrostatic force and v?/r is the centripetal acceleration. We thus obtain
for the kinetic energy of the electron,
1 ) e?

1, = Emev

where m, is the electron mass, v is its velocity, e its charge, r its radius, and ¢, is the

permittivity of free space. Now, for a conservative system (Appendix G), —F, = aV,/dr;

thus, the potential energy of an electron orbiting about a proton can be determined from
roe? dr e’

v, = / __ (5.6)

o dme, r? dre.r

(5.5)

Sme.r’
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Combining Egs. (5.5) and (5.6), we can express the total energy of the electron as

e2

e=1T+V.e=—

8re.r (57)
Therefore, we find that the classical energy of the electron for atomic hydrogen is inversely
proportional to its radius. Unfortunately, as indicated previously, classical electromagnetic
theory indicates that an accelerating charge must emit radiation, similar to the electrons
within a radio antenna. As an orbiting electron is continually accelerating, its total energy
must drop and thus, according to Eq. (5.7), the electron should eventually spiral into the
nucleus. This scenario is obviously contrary to experimental evidence, so that classical
physics proves to be totally inadequate for predicting stable orbits of the hydrogen atom.

Refuting classical physics, Bohr courageously advocated two original postulates, which
can be stated as follows. First, the electron is assumed to move in specific orbits about the
nucleus, for which the orbital angular momentum, L, is quantized according to

L=myvr =nh n=1,273,... (5.8)

where # = h/2n. Second, the electron may emit or absorb energy only by undergoing a
transition to an orbit of lower or higher energy, respectively. Hence, according to Eq. (5.3),
the resulting energy shift in wave number units becomes

En — Em
Vi = s 5.9
D P (5.9)

where ¢, and ¢, denote the electronic energies associated with higher and lower orbits,
respectively. Notice that the first postulate permits only discrete orbits while the second
postulate permits only discrete wavelengths. The two postulates taken together simply
deny continuous emission of electromagnetic radiation despite ongoing acceleration of
the electron.

The allowed orbits can now be determined by combining Egs. (5.5) and (5.8); i.e.,

1 1 nh\? e’
T = — 2 = — = .
¢ T pfMev = oM (mer> 8me.r

Hence, if we solve for r, the allowed orbital radii become

de h?
r= n

s n=1,273,.... (5.10)

Similarly, substituting Eq. (5.10) into Eq. (5.7), we find the allowed orbital energies to be

mee* 1
on = 82k 2’ G-1)
or, in wave number (cm™!) units,
4
. &n mee® 1
e 512
"= e 82ch3 n? (5-12)

where the negative values of energy indicate that the electron is bound to the nucleus.
These energy values are obviously quantized through the integer n, which is called the
electronic quantum number. Both the orbital radius and energy increase with the square of
this quantum number. Hence, the lowest electronic energy occurs for n = 1. This minimum
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n Energy (cm1)
oo 109,743

i 102,884
3 97,549

Paschen (m = 3)

5 vV VvV v
Balmer (m =2)

82,307

1 A 4 A 4 y A 4 0

Lyman (m =1)

Figure 5.4 Energy-level diagram and emissive transitions for the hydrogen atom.

energy is designated as the electronic ground state. Higher energies (n > 1) are associated
with less stable orbits, which are thus called excited electronic states.

We may now substitute Eq. (5.11) into Eq. (5.9) for two different energy levels, thus
duplicating the requisite form for the Rydberg formula, i.e.,

mee* 1 1
bim==—7=|—S——51- 5.13
g 82ch? (m2 n2> (5-13)
Comparing Egs. (5.4) and (5.13), we conclude that the Rydberg constant is given by

mee*

 8e2chd’

Ry (5.14)
from which we find that R; = 109,743 cm ™!, in excellent agreement with the experimental
value of 109,678 cm~!. As we will see in Chapter 6, even better agreement is obtained by
using a center-of-mass coordinate system, that is, by not assuming that the nucleus is
stationary. In general, despite its rather ad hoc linkage between classical and quantum
concepts, the Bohr model proved to be incredibly successful. It provided for the first time
a robust explanation for the existence of stable electronic orbits in an atom. Moreover,
its predictions were in remarkable agreement with the experimental spectra for atomic
hydrogen.

We close our presentation of the Bohr model by pointing out that the discrete energies
predicted by Eq. (5.12) can be conveniently displayed on an energy-level diagram, as shown
in Fig. 5.4. Such diagrams are a common feature of atomic and molecular spectroscopy,
especially as applied to statistical thermodynamics. For convenience, energy-level diagrams
traditionally incorporate wave number units and the ground-state energy is always set to
zero; thus, for atomic hydrogen, 109,743 cm~! must be added to each energy calculated
from Eq. (5.12), as shown in Fig. 5.4. Note that as n — oo the energy levels merge toward
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the continuum. Consequently, the condition n = co corresponds to the ionization energy
for atomic hydrogen. In other words, the electron becomes completely removed from the
atom, thereby giving continuous rather than discrete radiation. Figure 5.4 also displays the
emissive transitions corresponding to the Lyman (m = 1), Balmer (m = 2), and Paschen
(m = 3) series of spectral lines, with each family representing all transitions between the
allowed sequence of higher energy levels and a specific lower level for atomic hydrogen.
Therefore, the reduction in spacing at lower wavelengths for each series in the spectrum
(Fig. 5.2) corresponds to an accelerating movement toward the continuum at higher orbital
energies.

EXAMPLE 5.1
Using the Bohr model for atomic hydrogen, determine (a) the radius of the first allowed
Bohr orbit and (b) the speed of the electron in this same orbit.

Solution
(a) From Eq. (5.10), the radius of the first Bohr orbit (n = 1) can be determined from
TN eh?
ao = = s
m,e? Tmee?

where we have used the common notation, a., for the first Bohr orbit. On this basis,
we obtain

(8854 x 1072C2/J - m)(6.626 x 107 T - 5)’
© 7(9.109 x 1073 kg)(1.602 x 1077 C)2

Hence, a, = 52.9 pm, which is equivalent to 0.529 A.
(b) Given the first Bohr radius from part (a), the speed can be determined most directly
from Eq. (5.8). For n = 1, we thus have

h 6.626 x 10737 . s
) — =
2rmea,  2m(9.109 x 107 kg)(5.29 x 10-11 m)

Hence, the speed of the electron is nearly 1% that of the speed of light.

=529 x 10" m.

=2.19 x 10°m/s.

5.3 The de Broglie Hypothesis

When Einstein modeled radiation as photons, he essentially postulated that light can act as
a particle as well as a wave. In an analogous fashion, de Broglie suggested that matter can
act as a wave as well as a particle. In other words, he postulated that wave—particle duality
should hold for both matter and electromagnetic radiation. Therefore, for macroscopic
systems, light and matter would display their traditional wave and particle properties,
respectively. In contrast, for microscopic systems, light would behave as a particle while
matter would behave as a wave.

From classical electromagnetic (or special relativity) theory, the linear momentum
carried by a beam of parallel light is

p="2. (5.15)
C
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where ¢ is the energy of the beam and c is the speed of light. Substituting Eq. (5.1) into
Eq. (5.15), we find that, for a single photon,

h h
_w_ (5.16)

p c A

where we have again recognized that Av = c. Therefore, according to Eq. (5.16), the wave-
length of an electromagnetic wave can be linked to its momentum, although the latter

concept is normally associated with particles. Similarly, de Broglie reasoned, the momen-
tum of a particle, as imaginatively affiliated with “matter waves,” can be linked in a reverse
manner to the wavelength via a simple transformation of Eq. (5.16) to

= ﬁ (5.17)
p
Because Planck’s constant is miniscule (h = 6.6261 x 10734 J . s), Eq. (5.17) suggests
that a large mass will always produce matter waves having a wavelength much too small to
affect the dynamics of classical mechanical systems. In a similar fashion, fundamental par-
ticles are more likely to be associated with much larger wavelengths approaching atomic
dimensions; in this case, the behavior of the particle will be strongly influenced by its accom-
panying wave characteristics. For this reason, the prediction of particle behavior within
atomic and molecular systems requires a probabilistic rather than deterministic approach,
particularly when evaluating particle location or momentum. Such behavior comports well
with our previous notion that fundamental particles are normally indistinguishable.
We end our introduction to matter waves by pointing out an important relation between
de Broglie’s hypothesis and the Bohr model for atomic hydrogen. Combining Egs. (5.8)
and (5.17), we obtain
h 2nr

A= = —
mev n

)

so that the wavelength of a matter wave affiliated with any electronic orbit of atomic
hydrogen must be an integer fraction of its orbital circumference. In short, the assigned
wavelength will conform to an electronic orbit only if its associated matter wave remains
in phase around the nucleus. This phase condition avoids destructive interference, which
would ultimately destroy any matter waves inherently prescribing electronic behavior at
atomic dimensions.

EXAMPLE 5.2
Calculate the de Broglie wavelength for (a) a golf ball with a mass of 0.04 kg traveling at
35 m/s and (b) an electron in the first Bohr orbit of atomic hydrogen.

Solution
(a) The linear momentum of the golf ball is

p=mv = (0.04kg)(35m/s) = 140N -s.
Hence, the de Broglie wavelength for the golf ball becomes

—34
Ao _6626x 107 s
) 140N -s
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which is obviously much smaller than its size. Consequently, matter waves can have no
influence on golf dynamics, which will thus be controlled by classical mechanics.

(b) Employing the results from Example 5.1, we find the momentum of an electron at the
first Bohr radius to be

p=mv = (9.109 x 1073 kg)(2.19 x 10°m/s) = 1.99 x 107N - 5.

Hence, the de Broglie wavelength becomes

_h6.626x107*] -5
p 1.99%x10"2#N-s

=333x10"""m.

In this case, the de Broglie wavelength is 3.33 A, which is comparable to the first Bohr
diameter of 1.06 A. Therefore, we must expect quantum effects for atomic hydrogen,
as we have already discovered from our study of its emission spectrum.

5.4 A Heuiristic Introduction to the Schrédinger Equation

We know from standard electromagnetic theory that macroscopic radiation can be mod-
eled successfully via a classical wave equation. If, for atomic dimensions, matter behaves
as a wave, should not a similar wave formulation hold for matter displaying microscopic
behavior? Indeed, if an analogous expression could be developed for matter waves, might
we then have a consistent rubric for quantum behavior, unlike the partly classic and partly
quantum tactic used to model atomic hydrogen? By fostering such queries, de Broglie’s
hypothesis eventually set the stage for the mathematical prowess of Erwin Schrodinger
(1887-1961). The resulting Schrodinger wave equation is now considered to be a fun-
damental law of quantum mechanics, similar to the primary laws of classical mechanics,
thermodynamics or electromagnetics. Hence, our upcoming presentation should not be
considered a derivation of the Schrodinger wave equation, but rather a heuristic rationale
for its formulation. As for other fundamental laws in science, its truth must rest solely on
its ultimate capability for both explaining and predicting experimental behavior.

Since we have presumed an analogy between matter waves and electromagnetic waves,
we begin by considering the wave equation for electromagnetic radiation in a homoge-
neous, uncharged, and nonconducting medium. For a single Cartesian dimension, the
electric field, E, is governed by

3E 19°E

ax2 V2 a2
where Vv is the wave velocity and ¢ is the time. Schrodinger reasoned that this wave equation
should apply to matter waves if account is taken of the potential energy of the particle. On
this basis, he defined a wave function, ¥, for matter waves in analogy to E, so that

PV 1 °w

ax2 2 a2

Depending on the specific boundary conditions, many solutions are possible for this
one-dimensional wave equation. For simplicity, however, we consider only the well-known
solution given by

(5.18)

W(x,t) = Ce'kven, (5.19)
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where C is a constant and the negative sign indicates wave propagation in the positive
x-direction. From wave theory, the propagation number, k, is related to the wavelength,
A, by

2
k=" 5.20
i (520)
and, similarly, the angular velocity, w, is related to the frequency, v, by
®=2mv. (5.21)
Because the wave velocity v = v, from Egs. (5.20) and (5.21) we also have
®
= —. 5.22
v=" (522)

We can verify Eq. (5.19) by employing the method of separation of variables. Assuming a
solution of the form W(x, t) = X(x)T(¢) and substituting into Eq. (5.18), we find that

X T

i, (5.23)

X 2T
where the equivalence between the spatial and temporal expressions mandates that both
sides of Eq. (5.23) be given by the same constant, here introduced as —k>. Both ordinary
differential equations can then be solved to obtain the following specific solutions for X (x)
and T (¢), as can be verified by direct substitution in Eq. (5.23):

X = Ae™ T = Be ™,

Here, A and B are constants, thus establishing the solution for W(x, ¢) given by Eq. (5.19).
Employing the Hamiltonian formulation of classical mechanics, we recall that the total
energy for a particle moving in a conservative system is (Appendix G)
2
e=H=T+v=2L 1V, (5.24)
2m

where the potential energy, V, is independent of time. Now, for matter waves, Eq. (5.20)
can be expressed via Eq. (5.17) as

2rp p
k=" _2 5.25
where we have again defined # = h/2n. Solving Eq. (5.24) for the momentum and sub-
stituting into Eq. (5.25), we find on substitution for the propagation number in Eq. (5.23)

that the spatial portion of the wave equation becomes
X+ [2m(e = V)/#*] X =0,

so that after rearrangement

h* ..
——X+ VX =¢eX.
2m

Multiplying the previous expression by the time-dependent portion, T(¢), we obtain for
matter waves
h* 3>
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We now take the temporal derivative of Eq. (5.19) and multiply by i#, thus obtaining
A

however, from Egs. (5.1) and (5.21),

h
£= 5 2nv) = ho, (5.27)
so that
v
ih— =W, (5.28)
ot
Substituting Eq. (5.28) into Eq. (5.26), we obtain
n 0*w W
————+ V¥ =ih—
2m 9x? * ot
for matter waves in any single Cartesian direction. More generally, of course,

n? oW (r,t
e+ vy ) = in 2D
2m ot

where r designates the vector location for any coordinate system. For simplicity, however,
we may define the so-called Hamiltonian operator,

N I
H=——V 1% 5.30
2m Y (5-30)

, (5.29)

so that the time-dependent Schrodinger wave equation becomes
N o
HY =ih—.
ot

We emphasize again that the previous heuristic development does not constitute a
proof for the Schrodinger wave equation but instead a rationale for its formulation. Ulti-
mately, its veracity depends solely on its utility and versatility when addressing atomic
or molecular dynamics. Fortunately, the Schrodinger wave equation in its many mani-
festations has proven to be extremely robust in nearly all real-world applications. For
this reason, the advent of Schrodinger’s famous equation signifies the real beginning of
quantum mechanics as a viable field of enquiry and application in physics, chemistry, and
engineering.

5.5 The Postulates of Quantum Mechanics

Any scientific equation is useless if it cannot be interpreted properly when applied to
physical problems. The Schrédinger wave equation was initially plagued by this impasse
owing to difficulties in assigning a practical meaning to the wave function. Defining W(r, )
as the amplitude of matter waves was just too vague and did not offer a clear link between
model and experiment. While Schrodinger himself suggested various probabilistic inter-
pretations, it was the German physicist Max Born (1882-1970) who ultimately realized
that multiplication of the wave function by its complex conjugate defined a probability
density function for particle behavior. From a more general perspective, we now know
that the wave function itself offers no real insight and that physical meaning only comes
when the wave function is operated on by various mathematical operators. This viewpoint
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coalesced to pragmatic orthodoxy during the 1930s, thus paving the path for many robust
applications of quantum mechanics.

The general procedures for identifying and assessing solutions to the Schrodinger wave
equation are delineated most concisely by the following set of four basic postulates. As
indicated previously, the efficacy of these postulates rests mainly on their continuing success
in solving and interpreting many real-world problems in quantum mechanics since the
1930s. The four postulates are presented herewith in a form sufficient for our study of
statistical thermodynamics.

1. The state of any quantum mechanical system can be specified by a function, ¥ (r, t),
called the wave function of the system. The quantity W*W dr is the probability that the
position vector r for a particle lies between r and r + dr at time ¢ within the volume
element dr.

II. For every dynamic variable, A, a linear Hermitian operator, A, can be defined as
follows:

(a) If Aisr; ort, the operator is multiplication by the variable itself;

(b) If Ais p;, the operator is — i%d/dr;;

(c) If A is a function of r;, t, and p;, the operator takes the same functional form as
the dynamic variable, with the operators multiplication by r;, multiplication by ¢,
and — ihd/dr; substituted for r;, ¢, and p;,respectively;

(d) The operator corresponding to the total energy is i%9/9t.

II1. If asystem state is specified by the wave function,¥(r, t), the average observable value
of the dynamic variable A for this state is given by

[ AV dt
A= ————. 5.31
( [ dr (5:31)
IV. The wave function, W (r, t), satisfies the time-dependent Schrodinger wave equation
N ov(r,t
AV(r,t) = ih#, (5.32)

where the Hamiltonian operator, H, corresponds to the classical Hamiltonian, H =
T +V, for which T and V are the kinetic and potential energies, respectively.

Implementing these four postulates requires some additional understanding, which
we now pursue at some length. First, postulate I interprets W*W as a probability density
function (PDF), thus indicating that this quantity must be real, positive, and normalizable.
The real and positive conditions are automatically satisfied since the product of any variable
with its complex conjugate is real and positive. More importantly, the usual normalization
condition for any PDF,

/\Il*\lldt =1, (5.33)

requires that the wave function be well behaved, that is, continuous, single-valued, and
finite. To simplify nomenclature, volume integrals in quantum mechanics are generally writ-
ten utilizing the formalism of Eq. (5.33), for which the denoted single integration over all
space symbolizes the usual triple integration for any three-dimensional coordinate system.
Cartesian coordinates, for example, would require the volume element, dt = dx dy dz,
with all subsequent integrations occurring over the region defined by finite values of W*W.
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Postulate II implies that all mathematical transformations in quantum mechanics
involve linear Hermitian operators. Linear operator theory and the important character-
istics of Hermitian operators are discussed extensively in Appendix H. In summary, given
two different wave functions, W; and W, a linear operator, A, always obeys the rule

A{WU + Wy} = AV, + A,.

Hermitian operators, moreover, prove to be most significant when applied to eigenvalue
problems, as defined by

AV = a W, (5.34)

where the wave function, W, is an eigenfunction and a is its associated eigenvalue. As we
will show momentarily, the Schrodinger wave equation is actually a disguised eigenvalue
problem. Consequently, all wave functions are in reality eigenfunctions of the Schrodinger
equation. For Hermitian operators, eigenfunctions always form a complete orthonormal
set and eigenvalues are always real (Appendix H). As a result, the normalization condition
of Eq. (5.33) is essentially guaranteed by the Hermitian nature of all quantum mechanical
operators.

Postulate II also defines a relation between linear Hermitian operators and dynamic
variables. As we have already seen, this association comes from applying the wave equation
to matter waves via the de Broglie hypothesis. However, constructing an unequivocal
operator for a given dynamic variable is not always as simple as implied by this postulate. In
particular, difficulties arise because multiplication is inherently commutative for dynamic
variables but often not so for linear Hermitian operators (Appendix H). As shown in
Section 5.8, this lack of commutation is ultimately responsible for the probabilistic nature
of quantum mechanics.

Postulate I1I relates mean physical observations to both the PDF defined by postulate
I and the linear Hermitian operator defined for a particular dynamic variable by postulate
II. Based on Eq. (5.31), the resulting formalism requires that the Hermitian operator,
A, operate on W and not on W*. In essence, mean observable values are determined by
weighing the dynamical variable with its probability of occurrence at each possible location
in the physical system. As for all statistical variables, the mean is also characterized by an
associated standard deviation. However, for a linear Hermitian operator satisfying Eq.
(5.34), we observe that

_ [VYravdr

A= T~

where the denominator is, of course, unnecessary for a previously normalized wave func-
tion. In this case, we note that the mean collapses to an eigenvalue of its associated
Hermitian operator. As a result, the physical observable must be both real and discrete; in
other words, it has a guaranteed physical meaning but without a standard deviation. Such
behavior constitutes the genesis for quantization in quantum mechanics.

Finally, postulate I'V identifies Eq. (5.32) as the fundamental law of quantum mechanics.
As indicated previously, this expression, known as the time-dependent Schrodinger wave
equation, is in reality an eigenvalue problem. Notice from postulate II that the operator
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corresponding to the total energy is i#d/dt, as previously suggested by Eq. (5.28). Hence,
Eq. (5.32) can also be written as

HY(r,t) =e¥(r,t),

so that the energy, ¢, denotes an eigenvalue for the Schrodinger wave equation. On this
basis, we immediately recognize that the Schrodinger wave equation inherently offers the
discrete energies expected by quantum mechanics. We are thus on our way to calculating
the energy levels needed for statistical thermodynamics!

EXAMPLE 5.3

Consider a particle contained within a three-dimensional quantum mechanical system.
Assuming Cartesian coordinates, determine (a) the operator corresponding to the z-
component of its angular momentum and (b) an expression for the mean value of this
component of angular momentum.

Solution
(a) The classical angular momentum is defined by

i j k
L=rxp=|x y 2z |,
Px Py Dz

so that its z-component is L, = xp, — yp,. Hence, from postulate II,

R d 0
L,=—ih <x— — y )
ay

(b) The mean value for the z-component of angular momentum can be obtained from
postulate III by implementing Eq. (5.31). Assuming a normalized wave function, we

have
(Lz) :/\D*izllldr = /// UL W dx dy dz.

Hence, substituting for I.;, we may evaluate the mean value of its z-component from

v v
——zh///W*( 8——y%—)afxdydz.

5.6 The Steady-State Schrodinger Equation

We have shown that the Schrédinger wave equation can be cast as an eigenvalue problem
for which the eigenfunctions constitute a complete orthonormal set of basis functions
(Appendix H) and the eigenvalues designate the discrete energies required for statistical
thermodynamics. The prediction of energy levels using the Schrodinger wave equation
suggests an affiliation with the classical principle of energy conservation. We may verify this
conjecture by considering a conservative system, for which the potential energy is a function
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only of Cartesian position (Appendix G). From Eq. (5.24), the relevant Hamiltonian can
be expressed as

1
Hzﬁ(p§+p§+p§)+V,

so that, from postulate II, the analogous operator H becomes

. IO R n?
A=(Gh) —(—+-—+— V=—-oV4V,
(i) 2m (3x2+8y2+822>+ 2m +
thus confirming Eq. (5.30). Notice that because the potential energy is a function only of
position, its operator is simply multiplication by V. Invoking the operational analog to the

identity, H = ¢, postulate 11(d) produces the expected Schrodinger wave equation,

h? L 0w(r, )
V() + VO =i (5.35)

Therefore, we have shown that Eq. (5.35) embodies conservation of energy for a single
particle in an atomic or molecular system.

5.6.1 Single-Particle Analysis

For applications to statistical thermodynamics, the most important objective when solving
the Schrodinger wave equation is to predict steady-state expectation values for various
particle properties. For this purpose, temporal information is clearly irrelevant. Hence, we
now separate the temporal from the spatial portion of the wave function by again using
separation of variables, so that

w(r, 1) =y r)T(). (5.36)
where v (r) is the steady-state wave function. Upon substituting Eq. (5.36) into Eq. (5.32)
and rearranging, we obtain
Hy (r) . 1 dT(t)
= = /(’
w(r) T(¢) dt
for which « is the separation constant. Solving for the temporal portion of Eq. (5.37), we

obtain T(¢) = exp(—iwt), where w = «/h. But from Eq. (5.27), ¢ = k = hw, so that, from
Eq. (5.36),

(5.37)

W(r,t) = y(r)exp(—iet/h). (5.38)
Consequently, the spatial portion of Eq. (5.37) becomes
Ay (r) = ey (r), (5.39)

so that, substituting the Hamiltonian operator of Eq. (5.30) into Eq. (5.39), we obtain
h2
- VX + VY =ey (5.40)
2m

for any single atomic or molecular particle. Equation (5.40) is known as the steady-state
Schrodinger wave equation. We observe that ¥ (r) represents an eigenfunction for the total
energy operator, [, and the desired steady-state energy, ¢, is its associated eigenvalue.
Since the Hamiltonian operator is Hermitian, the predicted energies will be physically
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realistic. Therefore, solutions to Eq. (5.40) will produce the discrete energy values required
for applications to statistical thermodynamics.

For completeness, we must determine the average observable value for any dynamic
variable under steady-state conditions. Substituting Eq. (5.38) into Eq. (5.31), we may
cancel all temporal exponential functions so that

_ @A dr
REGIGIE

Hence, we have shown that the average observable value of any dynamic variable which
is explicitly independent of time can be expressed solely in terms of the steady-state wave
function, ¥ (r). Equation (5.41) is the master expression for calculating expectation val-
ues in steady-state systems. As an example, for the Hamiltonian operator, H, Eq. (5.41)
becomes

(A)

(5.41)

Sy () Ay (r)dr
= e dr
so that, from Eq. (5.39),
_ [vr0ey(rydr
) = T rewnd ~ (542)

Therefore, as expected, the Hamiltonian undergoes quantization, thus providing discrete
particle energies for atomic or molecular systems. Notice, by the way, that H is the total
energy operator only for steady-state systems. For time-dependent systems, we must still
use ihd/dt as the total energy operator.

5.6.2 Multiparticle Analysis

For a multiparticle system composed of N independent particles, Eq. (5.35) becomes

/RN | oW
_ — VW + VU = ih— 5.43
2 ; m; P ! at’ ( )
so that, at steady state,
1,
1

i=1
In a similar fashion, the Hamiltonian operator can be separated into a sum of terms,
N .
A=AV +AP +...+ AM=3"A", (5.45)
i=1

such that A® contains only the coordinates of the ith particle. Consequently, the operator
HA® can be used to obtain the wave function, v/(r;), for this particle by solving

AOy(r) =Dy (r). (5.46)

Similarly, the overall wave function for the system, v (r), must satisfy Eq. (5.39).
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Now, for N independent particles, we may presume that the overall wave function,
¥ (r), can be expressed as the continued product of single-particle wave functions, ¥ (r;),
so that

N
V() =) yr) - yry) =[] v (5.47)
L

]

Substituting Egs. (5.45) and (5.47) into Eq. (5.39), we obtain

N N
[Z ﬁ@} []‘[ w(r,)} =ey(r). (5.48)
j=1

i=1

Because H ¥ contains no coordinates other than those for the kth particle, the only term
that it affects when operating on the overall wave function is ¥ (ry). Hence, we may write

g ® 1_[ I/f(l‘j) — 1_[ 1/,(,.j)} s(k)I//(rk) = g(k)w(r),
j

J#k
where we have invoked Eq. (5.46). Substituting this result into Eq. (5.48) gives

N
[ZS“’} U (r) = ey (r).
i=1

Therefore, Eq. (5.47) has been verified, as we have previously shown in Chapter 3 that the
total energy for a system of independent particles is equivalent to the sum of energies for
each particle, i.e.,

N
&= Ze(i). (5.49)

This scenario corresponds, of course, to that for the ideal gas.

5.7 The Particle in a Box

The famous particle in a box represents the simplest quantum mechanical problem; more-
over, it conveniently demonstrates the many interesting effects of quantization. The solu-
tion is also very important to statistical thermodynamics as it predicts the allowed energy
levels for the translational mode of any atom or molecule. For this problem, we assume a
single free particle of mass m, which is constrained to translate in a cubical box of length
L. To ensure that the particle has free access to any internal location, we assign a constant
potential energy, V' = 0, inside the box. To keep the particle within the box, we also stip-
ulate that outside the box V = oco. Because particle migration cannot occur beyond the
box, the PDF, ¢*¢, must be nil in this region; thus, we may further assume that the wave
function is identically zero external to the box.

Employing Eq. (5.40) we may write the steady-state Schrodinger wave equation for
this foundational problem as

"2 <32¢ 92y azw)_w

2m \ax?2 | 9y2 | 9z
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for which the boundary conditions are

¥ (0,y,2) =¢(x,0,2) =¢¥(x,y,0) =0
V(L. y,2) =¢(x, L,z2) =¢(x,y, L) =0.

Upon successive application of the separation-of-variables method, i.e.,

Y(x, y. 2) = Y1(0)¥3(y. 2) = Y1(x)v2(y)¥3(2), (5.50)
we eventually obtain for each of the three coordinate directions,
dzwi 2m .
P + ﬁ&% =0 i=1,2,3, (551)

where x; = x, x; =y, and x3 = z. Similarly, the total energy becomes
E=¢&1+¢& + &3, (5.52)

as anticipated for three independent translational energies in the x-, y-, and z-directions.
The general solution to Eq. (5.51) is

y; = Asin[(2me;/h*)'/*x;] + Bcos [(2me; / h*)'/*x;] (5.53)
so that, with boundary conditions given by
vi(0)=0  ¥i(L)=0,
we find that B = 0 and that
Qme; /W) L=nmnm  n=1,2,3,.... (5.54)

The remaining constant, A, can be evaluated using the normalization condition, so that
L L
/ Vi dx; = A2/ sin®(myx; /L) dx; =1,
0 0

from which we obtain A = (2/L)"*. Hence, upon rearranging Egs. (5.53) and (5.54), the
eigenfunction and eigenvalue for any single coordinate direction can be expressed as

v = (2/L)"?sin(n;mx; /L) (5.55)
h* n?
& =g T3 (5.56)

where we have invoked % = h/2x. Therefore, substituting Eq. (5.55) into Eq. (5.50) for
each coordinate direction, we obtain the overall wave function for the three-dimensional

box,
Vo= (8/L3)1/2 sin (nlzx) sin (nzzy> sin (HSZZ) ) (5.57)

Similarly, substituting Eq. (5.56) into Eq. (5.52) for each coordinate direction yields the
total translational energy,

h2

Etr
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where we have introduced the volume, V = L?, and the integers, n, n,, and n3 are the
three translational quantum numbers for the problem. Equation (5.58) is the most signif-
icant result from the above analysis; indeed, you should anticipate multiple implementa-
tions of this expression once we return to statistical thermodynamics.

We now make five important observations regarding the above solution to the steady-
state Schrodinger wave equation. First, we note that three quantum numbers are generated
when solving the particle in a box; moreover, instead of being introduced in an ad hoc
fashion, these quantum numbers arise naturally from the mathematics of the problem.
From a classical perspective, translational motion in a three-dimensional box is similarly
characterized by three degrees of freedom (Appendix G). This concurrence is actually a
general result of quantum mechanics: one quantum number always originates from each
classical degree of freedom. Therefore, as might be expected, each quantum number must
be specified to identify the complete state of an atomic or molecular system.

Second, we find from Eq. (5.58) that more than one combination of the three trans-
lational quantum numbers yields the same total energy. This feature is a common occur-
rence in quantum mechanics and gives rise to the distinction between microstates and
macrostates in statistical thermodynamics. From the viewpoint of quantum mechanics, the
number of independent eigenfunctions corresponding to a given eigenvalue is called the
degeneracy. As an example, for the particle in a box, the same total energy is obtained for
quantum numbers (nq, 1y, n3) equal to (2, 1, 1), (1,2,1), and (1, 1, 2), respectively; thus,
in this case, the degeneracy is three. More generally, however, every unique combination of
quantum numbers represents an independent eigenstate for the problem. Therefore, from
the perspective of statistical thermodynamics, each energy level is defined by its eigenvalue
while each energy state is defined by its eigenstate.

Third, for the particle in a box, we notice that the controlling mathematics gives rise to
several distinct constants, namely A, B, and ¢;. Such constants are pervasive in quantum
mechanics and are typically evaluated by invoking normalization and boundary conditions.
Among these parameters, the eigenvalues, ¢;, are of special importance as they provide
the discrete energy levels required for statistical thermodynamics. When solving for the
translation energy, we found, in particular, that discreteness arose from implementation
of a second boundary condition for the problem. More generally, we deduce that math-
ematical boundaries of this type invariably constitute the locus for quantization in both
atomic and molecular systems.

Fourth, from Eq. (5.58), we observe that

h2
Er X 8mV2/37
so that the translational energy is inherently miniscule owing to its dependence on the
square of Planck’s constant. For this reason, the kinetic energy of any particle appears
continuous rather than discontinuous regardless of its mass or volume. Therefore, spec-
troscopic evidence for quantization must come from the internal energy modes of atomic
or molecular systems.
Fifth, and perhaps most important, because each of the three translational quantum
numbers can range from unity to infinity, the number of eigenstates accessible to the
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translational energy mode is simply overwhelming.
Hence, even for macroscopic systems containing a huge
number of particles, the vast majority of available energy
states will be unoccupied in any realistic situation. To
prove this assertion, we represent each possible energy
state by its own unit cube in three-dimensional, quantum-
number space; i.e., with the three quantum numbers, 7,
ny, and ns, as coordinates. Figure 5.5 displays the positive
octant of quantum-number space, including a single unit
cube at the origin. Because each cube corresponds to an
eigenstate of the system, one cube must exist per unit
volume of quantum-number space.

According to Eq. (5.58), the possible combinations  Figure5.5 Quantum numberspace
of quantum numbers providing the same translational for the translational energy mode.
energy, &,, must lie on the surface of a sphere with radius
n= (n% + n3 + n3)'/? in quantum-number space. Because the three translational quantum
numbers must be positive, the number of quantum states, M,, associated with ¢ < g, is
equivalent to the volume within this space defined by the positive octant of a sphere.
Therefore, from Eq. (5.58), we have

which gives
M, = 4?” (i-’f)g/z ve)l?. (5.60)
Differentiating Eq. (5.60), we obtain the associated PDF,
D(g,) de, = 27 (2}%)3/2 Ve, *de,, (5.61)

which can be interpreted as the number of eigenstates per unit energy in the range &, to
& + de,. For simplicity in nomenclature, this important PDF is often labeled the density of
states; the implicit understanding is that Eq. (5.61) considers only translational eigenstates.
Despite the obvious restriction, we will later find significant uses for this expression in both
statistical thermodynamics and kinetic theory.

Given the previous development, we are now in a position to demonstrate the incred-
ible paucity of occupied translational energy states. For this purpose, we consider a cubic
centimeter of gaseous H; at a temperature of 298 K. Employing Eq. (5.60), we find that the
number of quantum states for which &, < &, = 1.5kT is given by M, = 4.0 x 10?*. How-
ever, from the ideal gas law, the number of hydrogen molecules is only N = 2.5 x 10"’
at atmospheric pressure. Hence, for this conservative case, we have over 10° transla-
tional energy states per molecule! From the perspective of statistical thermodynam-
ics, this remarkable result essentially guarantees that any gas will satisfy the dilute
limit.
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EXAMPLE 5.4
Consider a free particle translating within a one-dimensional box of length L. Determine
the average observable steady-state energy within this one-dimensional box.

Solution
The mean expectation value for any dynamic variable under steady-state conditions is
given by Eq. (5.41). Hence, for Cartesian coordinates, the steady-state energy becomes

(H) = [y*Hydxdydz
~ [y*¥dxdydz
For a free particle (V = 0), the Hamiltonian operator of Eq. (5.30) becomes
- h?
H=—-—V?
2m
so that
n [y*V2ydxdydz
e .

" 2m [yrydxdydz

From Eq. (5.55), the normalized wave function for a one-dimensional box along the x-

coordinate is
v = 2\ sin (mrx)
\L L/
Hence, the mean energy becomes

n e dy R (2 /nwN\2 [ ., nmx
o A de_%<z> () /0 sin” (=)

Evaluating the integral, we obtain

h*  nr\2 (L h* n?
(H)= 71—+ (_) ) T8Iz
4r?mL \ L 2 8m L
Therefore, as expected, the mean particle energy for a one-dimensional box is identical to

its energy eigenvalue, as previously identified by Eq. (5.56). This result comports with our
general expectation from quantum mechanics, as indicated by Eq. (5.42).

5.8 The Uncertainty Principle

The probabilistic nature of quantum mechanics indicates that a fundamental uncertainty
must exist in the natural world at the atomic level. Consider, for example, the problem of
using light to measure the position of an electron. If we wish to know its location to within
a specified uncertainty, we must monitor the electron with radiation having a sufficiently
small wavelength. Unfortunately, any transferred momentum owing to interaction with
light will displace this electron. In other words, the measurement process itself leads to
an inherent uncertainty in the position of the electron. To maintain accuracy, we might
choose to use light having an even smaller wavelength. However, according to de Broglie’s
hypothesis, p = h/x; hence, greater photon momentum would cause the electron to suffer
an even larger displacement.
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For this reason, modern microscopy has replaced photons with electrons, thus further
upgrading ultimate precision. Indeed, by switching to electrons, finer matter waves can
be produced by simply enhancing particle momentum. Employing this strategy, electron
microscopy can typically produce images with accuracies approaching 500 pm. The down-
side is that metallic spray coatings are needed to stabilize many imaged objects to com-
pensate for this higher momentum. We thus conclude that, even for electron microscopy,
there is no free lunch!

By conceptually analyzing the above measurement process, the German physicist
Werner Heisenberg (1901-1976) was eventually able to propose his famous uncertainty
principle, which to this day remains a foundational precept in quantum mechanics. The
Heisenberg uncertainty principle basically places a limit on the precision with which two
dynamic variables, whose quantum mechanical operators do not commute, can be mea-
sured in any practical system. We may develop the principle by considering two arbitrary
operators, Aand B, associated with two dynamic variables, A and B, whose commutator
is given by (Appendix H)

[A Bl= AB—- BA=iC. (5.62)
The commutator can be generated by beginning with the root-mean-square deviation for

both dynamic variables, which is denoted for A by

172

AA=[((A=(A))] (5.63)

Employing normalized wave functions for both dynamic variables, Egs. (5.31) and (5.63)
together give

AAAB=| | v*(A— (A))*Wdr - V(B — (B))*Wdr 1/2. (5.64)
|/ |1/ )

Because A and B are quantum mechanical operators, they are unequivocally Hermitian
operators; thus, (A) and (B) must be real numbers whose operators satisfy the definition
of any Hermitian operator, as given by (Appendix H)

/ g Dfdr = / (Dg)* fdr. (5.65)
If we apply this definition to Eq. (5.64), letting D = A— (A), g = W,and f = (A— (A))¥,
while similarly D = B — (B), g = ¥, and f = (B — (B))¥, we obtain
1/2
AAAB = {/ [(A—(A)¥] (A - (A)Wdr /[(B —(B)¥]"(B - (B)¥dr } .
(5.60)
Employing the well-known Schwartz inequality, which states that for any two well-
behaved functions, f; and f,

/f1*f1df /fz*fzdf =

2

’

[ £ e
we can express Eq. (5.66) as the inequality
[1A= (anwrs - Bywar

AAAB > . (5.67)
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In addition, for any complex number Z = X+ Y, we have
zZ-7Z*
2i

bl

|1Z]| = |Y|=‘

hence, Eq. (5.67) can be rewritten as

5 [164 = anwr (8 = (Bywar — 5 [1(8 - (B)WI(A- (a)var

AAAB > |—
L

Re-applying Eq. (5.65) to the two Hermitian operators, A — (A) and B — (B), in the above
expression, we obtain

AAAB >

1 el s A 1 (B
5 / (A~ (AB — (B) Wt — 5 / W(B — (B))(A— (A)Wdr

i i

This result can subsequently be expressed as the single integral,

AAAB >

zl/w*[(A —(A)(B — (B) (B — (B))(A— (A)|Wdz

i

Expanding the operators, and making appropriate cancellations by recognizing that the
various expectation values are real numbers, we have

AAAB > , (5.68)

1 o
Z—f\D*(AB— BAWdr
l

1 A

where we have invoked Eq. (5.62). Rewriting Eq. (5.68), we obtain finally the Heisenberg
uncertainty principle,

AAAB > “2—” (5.69)

which confirms that two dynamic variables, whose operators do not commute, cannot
be simultaneously measured with a precision greater than the expectation value of its
commutator.

As a specific example, consider the simultaneous uncertainty in position and momen-
tum for the x-direction, Ax Ap,. The relevant commutator can be determined by operating
on the general function, ¢(x), thus giving, from Eq. (5.62),

ho hop ho(xe)
)’C\,A =X, —— :x—————:lh
& pule |: zaxi|(p idx 1 O0x ¢
Hence, we obtain C = # so that, for normalized wave functions, (C) is also given by #.
The uncertainty principle then becomes, from Eq. (5.69),

h
AxApy = = (5.70)

Therefore, as expected from de Broglie’s hypothesis, a lower uncertainty in position implies
a higher uncertainty in momentum; similarly, a lower uncertainty in momentum implies a
higher uncertainty in position.

5.9 Indistinguishability and Symmetry

Particles in classical mechanics are said to be distinguishable, not in the sense that they
are visually different, but in the sense that the controlling differential equations provide
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unique trajectories for all such particles. Even when collisions occur between particles, the
mathematical solutions distinguish their trajectories both before and after each collision.
In comparison, following particle trajectories is impossible using quantum mechanics, as
suggested by its probabilistic description and the Heisenberg uncertainty principle. In
other words, while we may study interactions between particles in quantum mechanics,
we cannot distinguish the path of one particle from another. Therefore, we conclude that
like fundamental particles can be counted but are inherently indistinguishable. This feature
leads to natural symmetry conditions for the wave function of any multiparticle system.

These imposed symmetry conditions can be understood by solving Eq. (5.44), for which
the resulting wave function for a system of N independent particles can be written as

Y =Y(ri,ry,r3,...ry).

If we conceptually exchange two of the position vectors, say the first and second, the
solution now becomes

U =v(rar,rs,...ry).

But this exchange is purely a mathematical operation as like particles are indistinguish-
able. In other words, physical observations must remain unchanged by any such virtual
operation. Because physical observations depend exclusively on the PDF, we thus conclude
that v *y cannot be affected by particle permutations if the particles are truly indistinguish-
able. This conclusion can be guaranteed if

Y(ra,ri,r3,...rN) =Y (r1,r2, 13, ... FN);

that is, the wave function must be symmetric (4) or antisymmetric (—) with respect to the
exchange of any two particles.

For an N-particle system, there are N! possible permutations. For convenience, we
define the permutation operator, P,, as that operator permuting one order of position
vectors (r1,r2, 13, ..., ry) to another (r, r1,r3,...,ry). For the N-particle system, the
number of such operatorsis clearly N! We may also define | P, | as the number of two-particle
exchanges required to bring about the order specified by the particular operator, P,.
Two successive exchanges of two particles having an antisymmetric wave function will,
of course, yield the original wave function. As a more complicated example, consider the
antisymmetric system containing three particles with initial order 123. Let P; represent
the 123 order; P,, 213; P, 312; P4, 132; Ps, 231; and Py, 321. By counting the number
of exchanges of two particles which are necessary to give the desired order, we see that
[Pl =0, |P|=|P]|=|F|=1,and |P;| = |P5| = 2. On this basis, using the permutation
operator, we may write the above symmetry condition as

Py = (£1)Fly. (5.71)

In general, any fundamental particle can be characterized by either a symmetric or an
antisymmetric wave function. The characteristic symmetry for each particle type can be
determined from experiment or deduced from relativistic quantum mechanics. Particles
with symmetric wave functions are called bosons while those with antisymmetric wave
functions are called fermions. Table 5.1 lists the important particle types thus obeying
Bose-FEinstein or Fermi-Dirac statistics. While basic material particles (electrons, protons,
neutrons) always have antisymmetric wave functions, we note that nuclei of even mass
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Table 5.1. Wave function symmetries for atomic particles

Wave function symmetry Symmetric (+) Antisymmetic (—)

Nomenclature Bosons Fermions

Statistics Bose-Einstein Fermi-Dirac

Particles types Photons, phonons Electrons, protons, neutrons
Nuclei of even mass number” Nuclei of odd mass number”

Spin quantum number Integral Half-integral

Pauli exclusion principle? No Yes

* The mass number is the number of protons plus the number of neutrons in a nucleus.

number are differentiated by symmetric wave functions. In preparation for upcoming
applications to quantum mechanics, spectroscopy and statistical thermodynamics, we also
include for the sake of completeness in Table 5.1 the influences of symmetry on spin
quantum number and the Pauli exclusion principle.

5.10 The Pauli Exclusion Principle

The Pauli exclusion principle was developed by the German physicist Wolfgang Pauli
(1900-1958); the principle follows directly from the symmetry requirements on wave func-
tions. Consider a system of independent particles, whose wave function we have previously
shown can be written as a product of component wave functions. Hence, from Eq. (5.47),
the overall wave function for a two-particle system can be expressed as

V(ri,r2) = ¥i(r)y;(ra),

where the notation v; () indicates that particle & is in quantum state i. Unfortunately, this
overall wave function is neither symmetric nor antisymmetric with respect to the exchange
of two particles. It is simple, however, to construct such a wave function; for example, the
expression

Y (ri.r) = vi(r) v(ra) £ ¥i(r) ¥ (r1) (5.72)

is clearly symmetric or antisymmetric, depending on whether the central sign is positive
or negative, respectively. Because the Schrodinger wave equation is a linear partial dif-
ferential equation, any sum of its valid solutions is also valid; thus, Eq. (5.72) satisfies the
parent wave equation plus any imposed symmetry requirement.

Now, if two particles have antisymmetric wave functions, when we attempt to put them
into the same quantum state (i.e., let ¢; = v;), Eq. (5.72) becomes

Y (r1,r2) = ¥i(r)yi(r2) — yi(r2)vi(ry) = 0.

In other words, the contemplated situation has zero probability of occurrence and is thus
impossible. This important result is known as the Pauli exclusion principle: No two like
particles with antisymmetric wave functions can be in the same quantum state. We note that
the two particles in question must be in the same multiparticle system for the exclusion
principle to apply. Therefore, two electrons in separate atoms can be in the same quantum
state, but if those two atoms form a molecule then the two electrons must be in different
quantum states.
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In general, the wave function for a system of N independent particles can be written
as

Y(r) =Y (ED Py (r)va(ra) - Y (ry). (5.73)
r

where the positive and negative signs are invoked, respectively, for symmetric and anti-
symmetric wave functions. Note that, for two particles, Eq. (5.73) duplicates Eq. (5.72).
The sum in Eq. (5.73) is taken over all possible operators, P,; hence, the overall wave func-
tion, ¥ (r), can vanish only if the individual wave functions are antisymmetric. Therefore,
particles having such wave functions must obey the exclusion principle. On this basis, Pauli
was eventually able to explain satisfactorily the buildup of the periodic table, as discussed
further in Chapter 6.

5.11 The Correspondence Principle

The correspondence principle was proposed by Niels Bohr in 1923. Since the laws of
classical physics had been found to work well in the macroscopic domain, Bohr argued that
a satisfactory quantum theory must approach classical theory when applied to macroscopic
behavior. In essence, the results of quantum and classical mechanics should correspond
to each other for larger masses or energies. Based on its many successful applications,
the quantum theory finally developed by Schrodinger clearly satisfies this correspondence
principle. As expected, the transition from quantum to classical mechanics is gradual; recall,
for example, the results obtained when considering atomic hydrogen and the particle in a
box. For the former, the shift from discontinuous to continuous energies occurs when the
electron becomes unbound rather than bound to the proton. For the latter, the discreteness
predicted by quantum mechanics for a particle bound in a box is simply too small to be
observed by any instrument in the macroscopic domain.

Planck’s constant, &, plays a cardinal role in the discreteness of quantum mechanics.
Indeed, this fundamental constant enters explicitly or implicitly into almost every equation
of quantum mechanics. Specifically, from the particle in a box, one can readily understand
that the smallness of /2 underlies the correspondence between quantum and classical results
in the macroscopic domain. Therefore, if Planck’s constant were sufficiently large, we would
be more likely to observe the discontinuities predicted by quantum mechanics even in our
everyday world.

In summary, quantum mechanics displays two primary differences from classical
mechanics: discontinuity of energies and indistinguishability of particles. These conditions
must be considered in the formulation of quantum statistical mechanics. However, as we
have already found in Chapter 3 and as we will see further in Chapter 8, both of these dif-
ferences can be easily accounted for in certain limiting cases. Hence, classical mechanical
concepts remain quite useful for many applications to statistical thermodynamics.

Problems enhancing your understanding of this
chapter are combined with those for Chapters 6
and 7 in Problem Set I11.






6 Quantum Analysis of Internal
Energy Modes

In the previous chapter, we introduced the fundamentals of quantum mechanics and
derived important expressions describing the allowed energies and degeneracies of the
external or translational energy mode for a single-particle system. We now apply quantum
mechanics to more complicated two-particle systems so as to model in a simplified manner
the remaining internal energy modes of an atom or molecule. In so doing, we will develop
equations and procedures for calculating the energies and degeneracies associated with
the rotational, vibrational, and electronic motions of a diatomic molecule. Making use of
basic statistical relations from Chapter 4, we will then be in a position to evaluate the
partition function and thus thermodynamic properties for any given atom or molecule.

6.1 Schrodinger Wave Equation for Two-Particle System

A primary system of importance to both quantum mechanics and statistical thermody-
namics is that composed of two particles, as in, for example, the two nuclei of a diatomic
molecule (when neglecting its electrons) or the proton and electron of a hydrogen atom.
For both cases, the total classical energy is given by the Hamiltonian,

2 2
P1 1253

H=—+—= 4V, 6.1
2m1+2m2+ 12 (6.1)

where V) is the potential energy describing this two-particle system. If we convert each
term of Eq. (6.1) to its corresponding quantum mechanical operator, the resulting steady-
state Schrodinger wave equation becomes

o, n o,
Viy — —2V21ﬁ + (V2 —e)y =0, (6.2)

C2my 2m

in agreement with Eq. (5.44) for a generic two-particle system. Equation (6.2) is impossible
tosolve inits present form; however, as in classical mechanics, we may separate the external
energy mode from all internal modes by converting to a center-of-mass coordinate system.
The internal motion can then be viewed as the relative motion of one particle with respect
to the other particle.

97
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Figure 6.1 Coordinate transformation to center-of-mass sys-
tem for two particles.

v

6.1.1 Conversion to Center-of-Mass Coordinates

The classic description of a two-particle system in terms of independent vectors, r; and
r, associated with the two masses, m; and m,, is shown in Fig. 6.1. Recall that the motion
of this two-particle system can also be described in terms of its center of mass (CM). In
other words, we may employ instead the independent vectors, R and r, associated with
absolute motion of the CM and with relative motion of the two component masses, respec-
tively. From Fig. 6.1, we find via vector analysis that these two coordinate descriptions can
be related through the basic equations

Fi = R— (mo/m))r (63)
r, = R+ (my/m)r, (6.4)

where the total mass nm, = my + n,. Therefore, using the usual dot notation for velocity
as well as Egs. (6.3) and (6.4), the total kinetic energy can be expressed as

2 2
pi Py mi, . M. My o o
L1 L2 _ 7 . i . =—(R-R)+ —(i - 6.5
> 1-I—2 5 2(1‘1 r1)+2(r2 ) 2( ) 2(" P), (6.5)

where the reduced mass is defined by

L (6.6)
m +ny '

Equation (6.5) indicates that the kinetic energy of a two-particle system is equivalent
to that of the total mass placed at the CM plus that of the reduced mass moving relative
to the CM. Hence, from Eq. (6.2), the steady-state Schrodinger wave equation for any
two-particle system becomes

o, W,
—— V¥ — —V Via — =0. 6.7
3 VRV m FU A+ (Vio— &)y (6.7)
In general, however, Eq. (6.7) is still unsolvable as the potential energy, Vi,, often depends
onbothr and R. In other words, further assumptions are required to effect a more complete
separation of the external from the internal motions of a two-particle system.
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6.1.2 Separation of External from Internal Modes

We find, in fact, that full separation of the translational energy mode from the remain-
ing internal energy modes mandates two additional hypotheses. First, we must assume
that the two-particle system of interest is unaffected by other such systems so that Vi,
depends only on r. Consequently, for diatomic molecules, each molecule can be considered
independently of all nearby molecules within any practical macroscopic system. Second,
we presume that our two-particle system experiences only a central coulombic field; i.e.,
Via = V(r), where r = |r, — ry|. Therefore, Eq. (6.7) can now be written as

hz
2m

w—ﬁv2+vww=w,

so that for independent external and internal coordinates, we have from the procedures
of Section 5.6.2,

N h?
Hexﬂpext = _%V%{wext = 8e)ctwe)(l (68)
1

h2
_v;?wint + V(r) 1pint = gintwmty (69)

Hintwim‘ = _Z,u

where 1/’ = I,/fextwint and & = Eext T Eint-

We have thus shown that by converting to a center-of-mass coordinate system and
assuming an independent central field, complete separation can be effected between the
external and internal motions of any two-particle system. According to Section 5.7, Eq.
(6.8) can be solved to determine the allowed energies and degeneracies for the translational
energy mode, except that Egs. (5.58) and (5.61) would be expressed in terms of the total
mass, m,. In a similar manner, using Eq. (6.9), we may now investigate the internal motion
of any two-particle system. Specific cases of interest in this chapter include the rotation
and vibration of a diatomic molecule or the electronic orbits within a hydrogen atom.
By considering these two cases, we can obtain all required expressions for energies and
degeneracies corresponding to the rotational, vibrational, and electronic energy modes. In
doing so, we avoid mathematical fatigue by including only absolutely necessary derivations
so that we can focus on those aspects of quantum mechanics explicitly needed to understand
the energies and degeneracies utilized in statistical thermodynamics.

6.2 The Internal Motion for a Two-Particle System

As indicated in the previous section, Eq. (6.9) describes the internal behavior for any
two-particle system characterized by an autonomous central field. The resulting com-
plex motions are best analyzed using spherical coordinates (Appendix I). On this basis,
Eq. (6.9) becomes

r2or 9_ a0 i n V in :O
I:,,z or < 8r> T sine r2sin6 06 (Sm ag) + r2sin2 0 8¢2] Vi t+ [8 ¢ = V()] Yin

Employing separation of variables, we presume

Vin(r, 6, ¢) = R(Y(O, §), (6.10)
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thus giving the following ordinary and partial differential equations:

d [ ,dR 2ur?

5 (V E)-}-{?[EIHZ—V(V)]—(X}R—O (611)
1 9 Y 1 %Y

— ~ (sinoe— G Y=0, 6.12

sin6 90 <Sm 20 ) T antgagr T (12

where 0 < r < oo and « is the required separation constant. Similarly,

Y(6.¢) = 0(0)2(¢), (6.13)
so that applying separation of variables again, but now to Eq. (6.12), we obtain
1 d /. do B
sind do <Sm a9 ) * <°‘ sin29> (6.14)
d’®
- ® =0, 6.15
R (6.15)

where 0 <0 <7, 0 < ¢ <27 and g is a second separation constant.

Equations (6.11), (6.14), and (6.15) constitute three ordinary differential equations in
terms of three unknown constants, namely, «, g, and ¢;,;. As expected, the radial portion
of the internal motion depends on the central potential, V(r), while the angular motion is
independent of V(r). Hence, for the diatomic case, Eq. (6.11) describes vibrational motion
along the internuclear axis, while Egs. (6.14) and (6.15) together define two-dimensional
rotational motion. In the next section, we specifically address the diatomic molecule by
solving Eqgs. (6.14) and (6.15) for the allowed energies and degeneracies corresponding to
the rotational energy mode. In so doing, we will determine «, thus eventually permitting
solution of Eq. (6.11) for the vibrational energy mode.

6.3 The Rotational Energy Mode for a Diatomic Molecule

We begin our analysis of the rotational motion for a diatomic molecule by considering the
normalized solution to Eq. (6.15),

exp(ime)
N

where the integer values of m are specified by requiring that ®(¢ + 27) = ®(¢p). As
discussed in Chapter 5, such continuity conditions are often necessary to ensure well-
defined probabilities for ensuing quantum calculations. By employing the transformation
w = cos 6, we next convert Eq. (6.14) to

%[(1—w2)j—i}+<“_1T12>®20’ (6.17)

which can be identified as Legendre’s equation of classical mathematical physics. When an
assumed power series is invoked to solve Eq. (6.17), the series must be truncated to ensure
finite solutions at w = £1. The truncation process leads to well-defined solutions only if

d(p) = m=,B=0, £1, £2,..., (6.16)

o=JU+1) T =iml; (6.18)
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Table 6.1 The first few spherical harmonics

0_ /L 0_ /5 20 —
Yo=1/4 Y;=,/1-(Bcos’0 —1)
Y] = /2 sinf cos6 e'?
T

Y=,/ cosé Y= ,/Lsinfcosh e

1 4 2 87

1 _ 3 g s 2 [15 G2 0ip
Y =,/gsinde Y;=,/5-sin"0e

1 [3 g it 2 _ [15 24,2
Y =,/gsinfe Y, =,/5sin"fe

hence, substituting Eq. (6.18) into Eq. (6.17), we obtain after considerable effort the
normalized solution

QJ+1)(J = m)]
O(w) = P , 6.19
() = [ SR E ] prw) (6.19)
where P,‘m‘(w) is the associated Legendre function of order |m| and degree J, given by
I 1 2y A" J

Combining Egs. (6.13), (6.16), and (6.19), we can express the solution for the rotational
motion of a diatomic molecule as

2J +1)(J —|m])!
47 (J + |m|)!

172
Y0, ¢) = [ } P/ (cos ) ™. (6.21)
Because Eq. (6.21) isinherently orthonormal over a spherical surface, the various solutions
for different values of the integers J and m are called spherical harmonics. The relevant
integers are, of course, new quantum numbers, often called, respectively, the rotational
and magnetic quantum numbers. The first few spherical harmonics are listed for clarity in
Table 6.1.
From classical mechanics, we recall that the kinetic energy for a rigid two-particle
system undergoing rotational motion at angular velocity w can be expressed as
L2
K=—, 6.22
37 (6.22)
where the angular momentum L = /o and the moment of inertia / = ur?. Invoking
Eq. (5.30), the quantum mechanical operator for the rotational kinetic energy of a two-
particle system in spherical coordinates (Appendix I) is

MW, R[19 [,9 1 a8 (. 8 1
K=—"v="" |22 (22 )y % (sinog— )+ —" 2 |.
21 2u | r2 or ar r2siné 90 a0 r2sin 0 0¢?

Therefore, for a rigid rotor,

N [ 1 9 0 1 9
K=——|—_—(sing— _— 6.23
21 [sin@ 20 (Sm 89) " inZe Bdﬂ} (02



102 ¢ Quantum Analysis of Internal Energy Modes

as r is invariant for a hypothetical rigid molecule undergoing no vibrational motion. Com-
paring Egs. (6.22) and (6.23), we conclude that the operator for the angular momentum
must be

R 1 9 3 1 9
D=1 —— (sind— — |, 6.24
[sine 26 (Sm ae) t e a¢2] 624
as can also be proved by directly applying operator theory to the vector definition of

angular momentum.
If we now apply Eq. (6.24) to our spherical harmonics, from Eq. (6.12) we obtain

2
zZY(9,¢)=—h2[ L 9 <sin9g)+ ! 8Y] =ah’Y(0,9). (6.25)

sin0 96 00 ) " sin? 0 992
From Eq. (6.18), Eq. (6.25) can be expressed more precisely as
L2Y"(0, ¢) = J(J + 1)RPY0, §). (6.26)

Multiplying Eq. (6.26) by R(r), we find from Eq. (6.10) that our original eigenvalue problem
can be expressed as

P (r, 0, ¢) = J(J + 1) Wi (1.0, §) ;
hence, we conclude, following Section 5.5, that
2= (1% =J(J+ 1)K (6.27)

We have thus shown that the angular momentum of a rigid diatomic molecule is quantized,
as for the Bohr model of atomic hydrogen.

From the point of view of statistical thermodynamics, we are, of course, more concerned
with rotational energy than with angular momentum. Consequently, substituting Eq. (6.27)
into Eq. (6.22), we find that the rotational energy levels for a rigid rotor are given by

J(J+1)R?
21 '
where, from Egs. (6.16) and (6.18), the rotational quantum number, J, is limited to zero or

any positive integer. For convenience, we convert Eq. (6.28) to wave number units, thus
obtaining

(6.28)

Erot =

F(J)= ghc’ =JUJ+1)B  J=01.2..., (6.29)

where the rotational constant is defined as

h
Be = ijz—cle (630)

and
I, = ur? (6.31)

designates the moment of inertia corresponding to the equilibrium internuclear distance,
re, for a given diatomic molecule modeled as a rigid rotor.

Finally, we can determine the rotational degeneracy by recognizing that Eq. (6.21)
identifies a different quantum state for every possible value of the magnetic quantum
number, m, associated with any given rotational quantum number, J. Indeed, for a given J,
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_____ 1
L.=mh /Z: T+ DA

Figure 6.2 The vector model for angular momentum (J = 2). 2h -
+h -
L =\6h
—h =
—2h =

Egs. (6.16) and (6.18) indicate that m = 0, £1, £2, ..., £ J; thus, the number of possible
m-values for the degeneracy must be

8rot = 2J +1. (632)

Quantum mechanics verifies that, for a given rotational energy, the above degeneracy
corresponds to 2J + 1 different values of the angular momentum along the z-coordinate.
This z-component of the angular momentum, as shown schematically for / = 2 in Fig. 6.2,
can generally be expressed as (Problem 3.3)

L. = mh, (6.33)

which implies a splitting of each rotational energy level into 2J + 1 finer levels when the
z-coordinate is defined by a homogeneous magnetic field. The resulting Zeeman effect in
the analogous atomic case (Section 6.5) is the main reason that m is called the magnetic
quantum number.

EXAMPLE 6.1
Verify proper normalization for the spherical harmonic designated by Y.

Solution
Proper normalization implies that, when integrating over all space defined for any given
wave function,

/ vidr =1,
where dt = r?sin6drdfd¢ for spherical coordinates (Appendix ). Employing
3 ,
Y=, & sinfe'?,
we may write the above normalization condition as

/w*wm:// Y1*Y1sin6 do dg,

where the r-dependence has been omitted because all spherical harmonics are functions
only of the zenith and azimuthal angles, 6 and ¢. Substituting, we obtain

3 27 pm 3 T
// YYlsing do dp = —/ / sin® 0 do d¢ = -/ sin® 6 do.
87 Jo Jo 4 Jo
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Evaluating the remaining integral, we have

31 O 312 2
// Y1*Y]sin6dodep = 1 |:§cos€(sin29+2)i| =3 [TL?} -1

T

Therefore, as expected, the spherical harmonic, Y}, is indeed properly normalized.

6.4 The Vibrational Energy Mode for a Diatomic Molecule

The vibrational energy mode for a diatomic molecule can be analyzed by solving Eq. (6.11),
which can now be expressed via Eq. (6.18) as

2
0%<r2%)+{22—;[8mt—v(”)]—](1+1)}R:O' (6.34)
At this point, however, a further assumption is required as, realistically, ¢;,, includes the
energy of all moving electrons within the molecule, which obviously cannot be described
solely in terms of a single r-coordinate. More generally, the surrounding electron cloud
will surely complicate the rotational and vibrational motions of the atomic nuclei compris-
ing any such molecule. Fortunately, we can separate the electronic and nuclear motions
of a diatomic molecule by invoking the so-called Born—-Oppenheimer approximation.
This somewhat intuitive presumption is based on the fact that the mass of each sur-
rounding electron is much less than that of either vibrating nucleus. For this reason,
the rapidly moving electrons undergo many orbits during a single vibration or rota-
tion of the two nuclei. Consequently, we can analyze the electronic motion within a
diatomic molecule by assuming that the nuclei are stationary. The internuclear distance
still varies, of course, owing to the characteristic vibration and rotation of the molecule.
Therefore, the electronic energy must be determined for every possible internuclear sep-
aration, which inherently affects the strong coupling between available electrons and
protons.

In essence, the Born—Oppenheimer approximation permits separation of the electronic
from the combined rotational-vibrational wave functions so that ¥, = ¥ ¥,y. Subse-
quently, using Eq. (6.9), the Schrodinger wave equations describing the electronic and
rovibrational modes become

He“/fel = Sell/fel (635)
Hrvl/frv = 8rvl//er (636)

where the internal energy can now be expressed as a sum of independent electronic and
rovibrational energies, i.e.,

Eint = Eel + Epv- (6.37)

Conceptually, Eq. (6.35) is solved for all possible fixed separations between the atomic
nuclei in a particular electronic state, thus determining &.;(r). The overall potential func-
tion needed for this incredibly complex solution must account for all interactions among
the electrons and nuclei of a given molecular system. The continuous distribution of
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resulting eigenvalues, g,(r), then provides the internuclear potential, V' (r), needed tosolve
Eq. (6.36) for the chosen electronic state. In other words, V(r) = ¢.(r), so that, as expected,
the calculated rovibrational energies, ¢,y, must depend strongly on the specific electronic
arrangement actually binding any diatomic molecule.

Because the Born—-Oppenheimer approximation separates rovibrational from elec-
tronic motion, Eq. (6.36) can be rendered as Eq. (6.34) by using ¢, rather than ¢;,,. Hence,
the radial portion of the Schrodinger wave equation becomes

d ( ,dR 2ur? h?
— == — e —V(@)— =—=J(J +1)| R=0,
dr (r dr ) + 2 | ") 2ur? +1)

where electronic motion is now accounted for through V(r). However, from Eq. (6.28),
we subsequently obtain

d ( ,dR 2ur?
PSS )+ o e — V(D] R =0, :
ar (r I ) + = [ewin = V(NI R=0 (6.38)
so that we have clearly separated the rotational from the vibrational energy modes, as
indicated by

Erv = Erot + Evib- (6.39)

On this basis, Eq. (6.38) may be solved for the vibrational energy mode once we have
developed a suitable expression for the internuclear potential, V(7).

Because Eq. (6.35) offers no hope of an analytical solution for V(r), a power-series
solution known as the Dunham potential has been developed that eventually produces via
Eq. (6.36) a related power-series expression for the allowed energy levels describing the
combined rotational and vibrational movements of a diatomic molecule. Mathematical
convenience, however, has spurred the search for analytical models that reproduce the
essential features of the Dunham potential. The most popular and accurate choice for
such a model is the Morse potential,

V(r) =D, [1 — e Pr], (6.40)

where D, and g are associated fitting constants while r, is the internuclear separation at
thermodynamic equilibrium. Physically, the Morse potential reflects the chemical bond
created by the electrostatic forces within the molecule. Figure 6.3 displays the Morse
potential, as compared to the classic harmonic oscillator potential,

V(r) = sko(r —re), (6.41)

where the force constant, ko, resulting from Hooke’s law (F = kyx) is related to the con-
ventional oscillator frequency, v, by

ko = u(2mv)?. (6.42)

The most significant aspect of this comparison is the good agreement between the harmonic
oscillator and Morse potentials at internuclear distances r = r,.

We can easily verify that both potentials comport with the expected vibrational motion
of a diatomic molecule. Recall that, for a conservative system (Appendix G), a force is
related to its potential via F = —3dV /dr. Hence, for r > r, in Fig. 6.3, the force is negative
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or attractive while, for r < r,, the force is positive
or repulsive. Both the strong repulsive force and the
weaker attractive force arise from the electrostatic
behavior of positive nuclei embedded within a neg-
ative electron cloud. More importantly, the alter-
nating attractive and repulsive forces create oscil-
latory motion of the nuclei near r,, as indicated by
the minimum in either potential. However, in con-
trast to the harmonic oscillator potential, the Morse
potential asymptotically approaches the dissocia- ;
tiqn limit, D,, asr — .oo. In' other words, given suf- Figure 6.3 The Morse (solid line) and har-
ficient energy D,, a diatomic molecule can eventu-  monic oscillator (dashed line) potential
ally be split into two free atoms. For this reason, the  energy functions.

Morse potential produces vibrational motion only

when V(r) < D,, i.e., when a reasonably stable bond is maintained between the two nuclei
of the diatomic molecule.

Despite this distinction, the harmonic oscillator potential remains a good approxima-
tion to the Morse potential at lower electronic energies associated with internuclear sepa-
rations near r.. On this basis, we may substitute Eq. (6.41) into Eq. (6.38), thus obtaining,
after several variable transformations,

v(r)

d’S 2u 1, 5
o o (e k) s =0 (04)
where S(r) = rR(r) and x = r — r.. Some additional transformations give
d*H dH
— —2y—+(—-1)H=0 6.44
o7 "Wy HO-DH=0, (6:44)

where H(y) = S(y) exp(y?*/2), y = 2m v/ h)/2x, and

2vi
= v
hv

(6.45)

Equation (6.44) is another well-known differential equation from classical mathematical
physics, whose solution is the Hermite polynomial of degree v,

v

; d
Hy(y) = (=1)" exp(y") 75 exp(=y°). (6.46)
for which continuity requires
v=1(-1 v=012.... (6.47)

Consequently, after proper normalization, the complete solution to Eq. (6.43) becomes

1

/2,y
Sl @vo)!/?

(&) exp(-ax’/2) Hyta'20) (648)

where o = 2w uv/h for the harmonic oscillator. For mathematical clarity, the first few
solutions representing Eq. (6.48) are provided in Table 6.2.
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Table 6.2 The first few solutions, S,(a'/*x),
for the harmonic oscillator

So = (%)1/4 exp(—ax?/2)

S = (%)1/4 (2a'%x) exp(—ax?/2)

$ = (£)"* Qar? — 1) exp(—ax?/2)

S3 = (%)1/4 2a*?x3 — 3a!?x) exp(—ax?/2)

If we now combine Egs. (6.45) and (6.47), the vibrational energy becomes
evip = (v + %) hv v=0,1,2,..., (6.49)

where v denotes the vibrational quantum number. Equation (6.49) represents the pre-
scribed, equally-spaced energy levels for the harmonic oscillator. Note that

evip(v =0) = %hv,

so that a vibrational zero-point energy exists even at the lowest or ground vibrational
level. This zero-point energy is a consequence of the Heisenberg uncertainty principle.
Because the total energy for any harmonic oscillator can be written in terms of its kinetic
and potential contributions as (p?/2u) + (kox>/2), we immediately recognize that zero
energy would require zero expectation values for both the momentum and position, which
would clearly violate the uncertainty principle. If we subsequently convert to wave number
units, from Eq. (6.49) we obtain

Evib

he

where the vibrational frequency (cm~') can be defined, using Eq. (6.42), as

G(v) = =w+He. v=012..., (6.50)

Vv 1 k()
We=—=—[—.
‘T ¢ 2nc\

(6.51)

Finally, because Eq. (6.46) depends solely on the vibrational quantum number, the vibra-
tional degeneracy is obviously

8vib = 1. (652)

In summary, Egs. (6.29) and (6.50) constitute simplified expressions for the rotational
and vibrational energies of a diatomic molecule when modeled as a combined rigid rotor
and harmonic oscillator. A rigid rotor presumes a fixed internuclear distance, which man-
dates small vibrational energies, so that the actual internuclear separation deviates insignif-
icantly from its equilibrium value, r,. Similarly, small oscillations about r, ensure that the
Morse potential is well approximated by the harmonic oscillator. In reality, of course,
the vibrational and rotational motions affect one another, while the combined rigid-
rotor/harmonic-oscillator model assumes no such coupling. For this reason, Egs. (6.29) and
(6.50) should be considered useful approximations eventually requiring further improve-
ments, as discussed later in Chapter 7.
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EXAMPLE 6.2
The steady-state Schrodinger wave equation for a one-dimensional harmonic oscillator in

Cartesian coordiates is given by
v 2up 1, 5
—dx2 + _h2 <8vib - Ekﬂx ) !ﬁ =0,

which duplicates Eq. (6.43). Hence, the wave function, v,, describing the one-dimensional
harmonic oscillator is equivalent to S,. On this basis, show that vy and ¥ are orthonormal.

Solution
The wave functions, ¥y and 1, are orthonormal if they are both normalized and orthog-
onal. Proper normalization requires that

/oo Y dx = 1.

Hence, from Table 6.2, for v = 0 we have

/Z V2 = (%>1/2 /:W exp(—ax?) dx — (%)1/2 [g]l/z L

[e¢]

Similarly, for v = 1,

* a \1/2 [ an12[ 712
/ Vi dx = da (G) / x?exp(—ax?)dx = 2a (;) [m] =1

o]

Consequently, both wave functions have been properly normalized. Now, we recall that
two wave functions are orthogonal if

/ Yoydx = 0.

Evaluating this integral, we verify that

oo 2 /2 poo
/ Yoyrdx = a (;) / xexp(—ax?)dx =0,

o0

as the above integrand is clearly an odd function of x.

6.5 The Electronic Energy Mode for Atomic Hydrogen

Our analysis of the diatomic molecule has led to important expressions for the allowed
energy levels and degeneracies characterizing both the rigid rotor and harmonic oscillator.
We now begin our investigation of the electronic energy mode by revisiting the prototypic
hydrogen atom. Specifically, because atomic hydrogen is composed of one proton and one
electron, we can essentially employ the same two-body analysis that we previously used
for the diatomic molecule. Therefore, we may again separate the external and internal
energy modes by transforming to a CM and relative coordinate system, except in this case
the only viable internal mode arises from the electronic structure of the hydrogen atom.
Repeating the usual separation-of-variables procedure, we thus obtain, once more,

wel (r993 ¢) = R(V)Y(Q, ¢)’ (653)



6.5 The Electronic Energy Mode for Atomic Hydrogen * 109

so that Eq. (6.11) now becomes, for the r-direction,

d ( ,dR 2ur?

o (P) e - v -e) R=0 (654

while the spherical harmonics, Y(6, ¢), still hold for the 6 and ¢ directions.
Consequently, recalling Eq. (6.21), we obtain the analogous solution,

@+ 1) (= m) :
Y6 = P img 6.55
1. ¢) [ 4 (I + |m|)! 1 (cosf) e, (6.55)
so that, from Eq. (6.18),
a=Ill+1) [ >|m|. (6.56)

Invoking Eq. (6.27), we introduce the orbital angular momentum quantum number, I, thus
defining the quantized angular momentum via the analogous expression

P =1(1+ 1)K (6.57)

Finally, from Eq. (6.56), we recall that the magnetic quantum number, m, can take on 2/ + 1
possible values given by

m=0,+1,£2, ..., I (6.58)

hence, we again define via Eq. (6.33) the z-component of the angular momentum, but this
time for atomic hydrogen rather than for a diatomic molecule.

Based on the above development, the distinctive mathematical feature for atomic
hydrogen, as compared to diatomic molecules, is the radial component of the Schrodinger
wave equation. Pursuing this feature, we invoke Egs. (5.6) and (6.56), thus expressing

Eq. (6.54) as
1d(,dR (I+1) 2u e2
—— — ) -] —— — — | & R=0. 6.59
r2dr (r dr) { r2 h? 8l+4nsor ( )
After several transformations, Eq. (6.59) becomes
1 d ,dR (l+1) n 1
— = (=) - —~4+-|R=0 6.60
pzdp(p dp) [ ? p+4 ’ (6.60)
where
2
p=2 (6.61)
na,
and
h2
2
= — , 6.62
" 2/J(/aggel ( )
for which a corrected Bohr radius can now be defined as
2
g = (6.63)

e’
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Table 6.3 The first few associated Laguerre polynomials and radial functions for the
hydrogen atom

n=1,1=0  L(p)=-1 Rm:(
n=21=0  Li(p)=-21(2-p) R20=<
n=21=1  Iip)=-3! Ry = (2
n=31=0  Li(p)=—-313—3p+1p?) R30=(
n=30=1  L(p)=-4(-p) R = (&
(

I’l:3,l:2 Lg(,o):—S' R32:

The usual power-series approach eventually leads to a normalized solution for
Eq. (6.60), as given by the radial function

g / 32
mw=ﬂ§ﬁﬁ%}(i)pmeméﬁw, (6:64)
where
12410 0) — '&E 1)+ [(n+ D! k
"”(p)_;(_) n—l—1-R2A+1+ K’

is the associated Laguerre polynomial, whose continuity demands that the principal quan-
tum number, n, obey

n=1,2,3,...,1 <n, (6.65)

sothat/ =0,1,2,...,n— 1. The first few associated Laguerre polynomials and radial func-
tions are listed for clarification in Table 6.3. As expected, each tabulated radial function,
R, has been normalized by integrating with respect to the radial portion of the differential
volume in spherical coordinates, dt = r2sin6 dr do d¢, so that

/ R Ryr*dr = 1. (6.66)
0

The probability density functions associated with Table 6.3 are shown in Fig. 6.4. We
find, in contrast with the Bohr model, that the electron can wander over a range of radial
positions, thus fostering mathematically the concept of an electron cloud. Nevertheless, if
the orbital angular momentum quantum number, /, is zero, the most probable locations
in Fig. 6.4 duplicate the electronic orbits originally suggested by Bohr. Therefore, while
confirming the basic spectral features of the Bohr model, quantum mechanics obviously
adds incredible depth and richness to our semiclassical understanding of atomic structure.

Having determined the radial contribution, we can now obtain the complete wave
functions for atomic hydrogen from Eq. (6.53), thus giving

Wnlm (l", 6» ¢) = Rnl(lo)Y;n(Gv ¢)a (667)
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Figure 6.4 The dimensionless probability density function, 62 R (c')/a., associated with the
radial portion of various wave functions for atomic hydrogen, where o = r/a,.

for which Eqs. (6.55) and (6.64) provide Y}'(6,¢) and Ry(p), respectively. From
Tables 6.1 and 6.3, the wave functions for any hydrogen-like atom can be expressed in
terms of the atomic number, Z, as shown in Table 6.4. We note that a hydrogen-like
atom implies a single valence electron, such as for He*! or Li*?. Moreover, in contrast
to the simpler radial functions of Table 6.3, the complete wave functions of Table 6.4
inherently describe through their angular dependencies complicated, three-dimensional
electron clouds, especially if both / and m are nonzero. Some examples of electron clouds
representing ¢ * are displayed in Fig. 6.5. By comparing Figs. 6.4 and 6.5, we observe that,
for spherically symmetric wave functions (/ = 0), the electron cloud mirrors its radial prob-
ability distribution. However, the permitted spatial distribution is obviously much more
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Table 6.4 The wave functions for atomic hydrogen, including hydrogen-like species with Z
protons (n=1,n=2,n=73)

n=1,1=0,m=0 1/[100_f( 2312 exp(—Zr/as)

n=21=0m=0 Ya00 = 4J27(ao)3/2 [2 - (Zr/a.)] exp(—Zr/2a.)
n=21l=1,m=0 Y10 = 4\/5(%)3/2(2’/“ )exp(—Zr/2a,) cos
n=21l=1,m=4+1 Vo1 = 8\/_( 2Y3/2(Zr /a.) exp(— Zr/2a,) sin 6 e*'¢
n=31=0,m=0 Y300 = 81J37(ao V32[27 — 18(Zr/a,) + 2(Zr/a.)?) exp(— Zr/3a,)
n=3I1=1,m=0 V3o = 81f(a0 V32[6(Zr/a,) — (Zr/a,)*] exp(—Zr/3a.) cos
n=3,Il=1,m==+1 Vi = SIJ—(ao V2[6(Zr/a,) — (Zr/a,)*] exp(—Zr/3a,) sin 0 e*'¢
n=31=2m=0 Y = 81‘/G(Z)W(Zr/a )2 exp(—Zr/3a,)(3cos?6 — 1)
n=31=2,m=4=l1 Y3 = 81\f( Y32(Zr/a,)? exp(—Zr/3a,)sin 6 cos § e*?
n=31=2m=42 Yap = 162\/_(% V2(Zr/a,)? exp(—Zr/3a,)sin® 6 e¥%9

complicated and surely rather unexpected for most three-dimensional wave functions
(I #0).

From the perspective of statistical thermodynamics, the most significant contribution
from quantum mechanics is its specification of allowed energies and degeneracies. For
atomic hydrogen, the electronic energy levels (cm™!) can be determined by combining

Y100 Y200 Y210

V300 V310 V320

Figure 6.5 Probability density plots represented as electron clouds for various wave functions
of atomic hydrogen. The darker regions indicate a higher probability of finding an electron.
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Egs. (6.62) and (6.63), thus obtaining

4
~ Eel ue 1
= = ————=—. 6.68
= e 8s2ch® n? (6.68)
We note that Eq. (6.68) differs from Eq. (5.12) for the Bohr model only by replacement of
the electron mass with its corresponding reduced mass, as expected when converting to a
more accurate CM coordinate system. On this basis, a revised Rydberg constant becomes

pe -1
Ry = —Segclﬁ =109,683 cm™, (6.69)
which is in remarkable agreement with the experimental value of 109,678 cm~!. We rec-
ognize, in addition, that Egs. (6.68) and (6.69) have been verified by employing a robust
quantum mechanical theory rather than the ad hoc approach used in the early development
of the Bohr model. Consequently, the Schrodinger wave equation can now be applied with
some confidence to more complicated atomic and molecular systems.

EXAMPLE 6.3

Determine radial probability density functions for atomic hydrogen corresponding to
(ayn=1,l=0,m=0and (b) n =2,/ =1,m=0. (c) Plot the probability density func-
tions for these two cases on a single graph; discuss the implications of your plot.

Solution
(a) From the first postulate of quantum mechanics, the three-dimensional differential prob-
ability in spherical coordinates is given by

dP(r,0,¢) = y*yr?sin6 dr do do,

so that the radial differential probability can be obtained by integrating over all possible
zenith and azimuthal angles:

27 pm
dP(r) = / / vy r? sin 0 dr do dg.
0 0

Hence, for the n = 1,/ = 0, m = 0 case, from Table 6.4 (Z = 1) we obtain

1 1\32
Y100 = N (a_) exp(—r/a.),
so that
1 2

2r pm 4
dP(r) = ﬁ/@ /0 r? exp(=2r /a.,)dr sinfdf do = a% exp(—2r/a.)dr.

Defining 0 = r/a, and substituting into the previous expression, we may write dP(c) =
f(o)do, so that the radial probability density function becomes

f(o) = 40 exp(—20).
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(b) Similarly, for the n =2,/ = 1, m = 0 case, from Table 6.4 (Z = 1) we obtain

1

Y210 = W

1\32
( > (r/a.)exp(—r/2a,)cos®,

and thus

1 2w pw
dP(r) = ﬂ/ / 2 (r /a,)? exp(—r/a,)dr cos® 6 sin 6 d6 d¢

24 E (r/ao) exp(—r/a,)dr.

Again defining o = r/a,, the radial probability density function for this case becomes

flo) = eXID( ).

(c) The two radial probability density functions describing the position of the electron
within atomic hydrogen are shown on the accompanying plot. As expected, the most
probable radius is significantly smaller when the principal quantum number is unity
rather than two. Moreover, uncertainty in the position of the electron is considerably
less for the n = 1 case as compared to the n = 2 case. Because of the greater uncertainty
forn =2, its peak probability is significantly less than that forn = 1.

0.6
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04 Y100
flo) 03
0.2

Y210
0.1
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Equation (6.68) demonstrates that the allowed energy levels for atomic hydrogen are
functions solely of the principal quantum number, n. In comparison, Eq. (6.67) indicates
that the associated wave functions depend on the orbital angular momentum and magnetic
quantum numbers, as well as the principal quantum number. Hence, the number of possible
values for / and m corresponding to any given value of » must define the degeneracy for the
electronic energy mode. Because Egs. (6.58) and (6.65) show that m =0, +1, £2, ..., &/

and/ =0,1,2,...,n—1, we expect the electronic degeneracy for atomic hydrogen to be
n—1
gn=y (Q+1)=n (6.70)

=0

However, Eq. (6.70) is actually incorrect because, as suggested by Wolfgang Pauli (1900
1958) in 1925, an electron executes not only orbital motion but also spins about its
own axis. This intrinsic spin was subsequently found to explain satisfactorily the famous
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Stern—Gerlach experiment, which established that a beam of silver atoms could be split
into two beams by an inhomogeneous magnetic field. More generally, the English physicist
Paul Dirac (1902-1984) eventually demonstrated that electron spin arises quite naturally
from relativistic quantum mechanics.

Therefore, in analogy with our previous quantum description of the orbital angular
momentum, new quantum numbers can be defined for both the spin angular momentum
and its z-component. From Eq. (6.57), the spin angular momentum becomes

§? =s(s + 1) A, (6.71)

where s is the spin quantum number for an electron. Now, for atomic hydrogen, Eq. (6.33)
for the z-component of the orbital angular momentum can be expressed as

L. =mh, (6.72)

where ny is the orbital magnetic quantum number. By analogy, the z-component of the spin
angular momentum becomes

S, = myh, (6.73)

where my is called the spin magnetic quantum number. For an electron, the spin quantum
number is restricted by relativistic quantum mechanics to a single value of s = 1/2; thus,
by analogy with Eq. (6.56), we have s > |m;], so that

my = +1, (6.74)

which implies either an “up” or “down” orientation (1) of the spin quantum number.

In summary, the electronic state of the hydrogen atom is specified by four quantum
numbers. The principal quantum number, n, determines the electronic energy; the orbital
angular momentum quantum number, /, defines the orbital angular momentum; the orbital
magnetic quantum number, ny, specifies the z-component of the orbital angular momen-
tum; and the spin magnetic quantum number, m1,, specifies the z-component of the spin
angular momentum. Because Eq. (6.70) already accounts for quantum states defined by /
and my, while Eq. (6.74) permits two possible values for the fourth quantum number, m,
the electronic degeneracy for the hydrogen atom becomes

gu =217, (6.75)

where n is the principal quantum number. Therefore, we have demonstrated from Egs.
(6.68) and (6.75) that quantum mechanics is capable of providing succinct expressions for
both the electronic energy and degeneracy of atomic hydrogen. Unfortunately, the same
cannot be said for multielectron atoms and molecules.

6.6 The Electronic Energy Mode for Multielectron Species

The steady-state Schrodinger wave equation for a generic N-electron atom with nuclear
charge, Z, at the origin can be written as

hz N 5 N Ze2 N N ez
— = N2 = s,
2m, ; ! ; 4 e r; + ; ; dreorij v=ey
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where the first term accounts for the motion of the N electrons, the second term accounts
for hydrogen-like interactions between electrons and protons, and the third term accounts
for repulsive forces among the various electrons making up the atom. Implementing the
so-called Hartree—Fock procedure, accurate solutions for many atoms can be obtained by
expressing the overall wave function as a product of independent wave functions,

N
v =[]
i=1
similar to those for atomic hydrogen, specifically
@i(ri) =Y N;jCij exp(=&jri),
J

where Nj; is a normalization constant, while C;; and ¢;; are variational parameters used
to obtain the final solution. In essence, the trial wave functions, ¢(r;), represent specific
solutions to the Schrédinger wave equation for independent electrons moving in an effec-
tive potential created by the combined nuclei and electrons. The final solution is obtained
iteratively by guessing values for the above parameters, determining effective potentials,
using these potentials to evaluate new parameter values, and so on until convergence.
The resulting self-consistent field method leads to calculations of orbital energies and thus
to allowed electronic energies for multielectron atoms. Typically, the self-consistent field
method provides Hartree—Fock energies to within a percent or two of measured electronic
energies for atoms having Z < 40. Unfortunately, similar calculations are quite ineffective
for larger atoms and even more so for diatomic molecules.

Based on this discussion, we conclude that operational limitations prevent the
Schrodinger wave equation from providing accurate electronic energies for multielectron
atoms or molecules. Hence, these energies must be obtained experimentally via either
atomic or molecular spectroscopy. Extensive tabulations of such electronic energy levels
are available in the spectroscopic literature and, more recently, on websites maintained by
the National Institute of Standards and Technology (Washington, DC). Each electronic
energy level is characterized by an associated ferm symbol from which we can extract the
electronic degeneracy required for statistical mechanical calculations. On this basis, our
major goal in the remainder of this chapter is to develop an understanding and appreciation
for such terms symbols as applied to both multielectron atoms and molecules.

6.6.1 Electron Configuration for Multielectron Atoms

While predicted electronic energies using the self-consistent field method are inevitably
inaccurate for multielectron atoms, an important result of the Hartree—Fock orbital pro-
cedure is that the constituent electrons perpetuate the same set of quantum numbers as
that employed for the hydrogen atom. Consequently, for each electron of a multielectron
atom, we may still specify four controlling quantum numbers, as summarized in Table
6.5. A significant difference, however, is the strong dependence of the electronic energy
for such atoms on the orbital angular momentum quantum number as well as on the
principal quantum number. As for atomic hydrogen, the quantum numbers, my and m;,
denoting the z-components of the orbital and spin angular momenta, respectively, preserve
their limitation to 2/ 4+ 1 and two values, respectively. Taken together, these four quantum
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Table 6.5 Quantum numbers for the
electrons of a multielectron atom

n n=12,3,...

l [=0,1,2,..., n—1
ny ny =0, :|:1,:|:2, N +/
my my = +1/2

numbers must specify a single quantum state. Furthermore, according to the Pauli exclu-
sion principle (Section 5.10), only a single electron can occupy any given quantum state.
Therefore, each electron of a multielectron atom can be identified by a unique combination
of the four quantum numbers listed in Table 6.5.

On this basis, we now introduce the so-called configuration of an atom, which specifies
in a convenient fashion the number of electrons occupying each shell (n=1,2,3,...)
and subshell (I =0,1,2,...,n— 1) of a multielectron atom. The shell is specified by the
numerical value of the principal quantum number, n, while the subshell is specified by the
letters s, p, d, f, corresponding to the orbital angular momentum quantum numbers, / =
0,1, 2, 3, respectively. Given this nomenclature, the number of electrons in each subshell
is indicated via the format

nlk,

where n indicates the shell number, / indicates the subshell letter, and k indicates the num-
ber of electrons per subshell. As an example, for the eleven electrons composing atomic
sodium (Z = 11), the configuration for the ground electronic state is written as 1522522 p®3s,
where the number of electrons per subshell is limited by ny and m, to 2(2/ 4 1). By identify-
ing the available subshells of lowest energy for each atomic number (Problem 3.9), we may
determine the ground-state configuration of each element, as listed for hydrogen through
argon in Table 6.6. We note from this tabulation that the number of electrons per shell is
consistent with the degeneracy predicted by Eq. (6.75). Employing the periodic table of
Appendix C, Table 6.6 could easily be extended to atoms having Z > 18 by heeding the
appropriate rules embodied in Problem 3.9.

Table 6.6 Electron configurations and term symbols for the ground states of atomic hydrogen
through argon (Z =1 —18)

Electron Term Electron Term
VA Atom configuration symbol Z Atom configuration symbol
1 H 1s 2812 10 Ne [He] 25?2 p® 1S,
2 He 152 1S, 11 Na [Ne]3s 2812
3 Li [He] 2s 281 12 Mg [Ne] 3s? 1S
4 Be [He] 252 1S, 13 Al [Ne]3s23p 2Py
5 B [He] 2s22p P 14 Si [Ne]3s23p? 3p,
6 C [He] 2522 p? 3R 15 P [Ne]3s23p? 43
7 N [He]2s22p? S5 16 S [Ne]3s23p* P
8 0] [He] 2522 p* 3P 17 Cl [Ne]3s23p° Py
9 F [He] 2s22p° 2Py 18 Ar [Ne]3s23p° 1S
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Figure 6.6 Vector model for Russell-Saunders (L—S) coupling.

6.6.2 Spectroscopic Term Symbols for Multielectron Atoms

The four quantum numbers used to determine the electron configuration do not account
for what turn out to be significant interactions among the various orbital and spin angular
momentum vectors of a multielectron atom. These additional interactions can be modeled
by introducing the resultant orbital and spin angular momentum vectors,

LZZI, SZZSI',

where /; and s; indicate corresponding individual vectors for each electron. Invoking Egs.
(6.57) and (6.71), magnitudes for the orbital and spin angular momentum vectors can be

written as
Ll =/ L(L+1)h |S|=,/S(S+1)*A,

where L and S are the resultant orbital and spin angular momentum quantum numbers,
respectively. Implementing so-called spin—orbit (Russell-Saunders) coupling, which dom-
inates for multielectron atoms having Z < 40, we may define the total angular momentum
vector as

J=L+S. (6.76)

Because of this spin—orbit coupling (Fig. 6.6), the orbital, spin, and total angular momentum
vectors exercise a pronounced effect on the allowed energy levels and thus the spectrum of
amultielectron atom. The spectroscopic term classification is anomenclature that describes
this effect and thus provides a scheme for labeling those energy levels associated with any
atomic spectrum.

The above coupling process can be understood in greater depth by recalling from basic
electromagnetic theory that a rotating charge produces an induced magnetic field. Hence,
an electron rotating around its orbit or about its own axis will generate a corresponding
magnetic dipole moment vector. Coupling between such vectors induces a natural torque;
hence, L and § will precess about J, as shown in Fig. 6.6. This induced precession obviously
affects the electronic energy of a multielectron atom. In particular, because of this coupling,
the total angular momentum vector becomes quantized so that

Jl=JJJ+1)h J=|L-S8|, |L-S|+1,...L+S—1, L+S (6.77)
L.=Mh My=—J,—J+1,...J—1,1, (6.78)

where J is the total angular momentum quantum number and M is, of course, its quantized
z-component. The various J-values permitted by Eq. (6.77) reflect the process of vector
quantization, as demonstrated in Fig. 6.7 for the case in which L and S are both unity.
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Now, as indicated previously, the electronic energy S
of a multielectron atom is determined mainly by the n §
and/values for each constituent electron (shell and sub- LT>J% LT ls
shell). However, the overall electron cloud, as described
by L, §,and J, exerts an important secondary influence.  ;_, J=1 J=0
Therefore, both the electron configuration and its asso- Figure 6.7 Addition of angular
ciated angular momentum quantum numbers must be |~ ok for L — 1 and
known to properly specify an electronic energy level. §=1.
Moreover, since the total angular momentum quantum
number, J, influences the electronic energy while its z-component, My, does not, Eq. (6.78)
indicates that the electronic degeneracy must be

L

g =81 =2J + 1. (6.79)

As suggested by our previous discussion, the term classification for the electronic state
of a multielectron atom is predicated on the above need to specity L, S, and J. In general,
the atomic term symbol is given by

LRy (6.80)

where L = 0, 1, 2, 3 is represented by S, P, D, F, respectively. For example, if L=1
and S = 1/2, Eq. (6.77) indicates that / = 1/2, 3/2. Hence, the relevant term symbols are
2P, )> and 2Py )5, often written as 2P 2 3,2; in other words, we have doublet P-states, which
are characteristic of all alkali metals such as sodium or potassium. More generally, each
electronic energy level of an atom requires a specific term symbol. Hence, for completeness,
term symbols representing ground electronic states are included for all 18 elements in
Table 6.6. We note from Eqgs. (6.58) and (6.74) that, for any completed subshell, the z-
components of L and S become by definition

MLZZmli:O M_g:sti:O.
i i

As aresult, L = S = 0, so that the associated term symbol for any completed subshell is
always 'Sy. Therefore, as suggested by the electron configurations of Table 6.6, we may
safely ignore all quantum numbers affiliated with completely filled inner subshells when
determining relevant term symbols. Empirical rules established for identification of the
ground-state term symbols in Table 6.6 are outlined in Problem 3.9.

6.6.3 Electronic Energy Levels and Degeneracies for Atoms

The electronic energy levels for a multielectron atom can be determined via various spec-
troscopic measurements. Typically, excitation above the ground electronic state occurs
because of a chemical or radiative process that excites a single valence electron to a more
energetic subshell. Each energy level is identified by providing both the configuration
(which specifies n and /) and the term symbol (which specifies L, S, and J). As an example,
Table 6.7 lists the configuration, the term symbol, and the electronic energy for the first
eleven electronic states of the potassium atom (Z = 19). Similar tabulations for some addi-
tional elements are provided in Appendix J.1. A more complete graphical description of
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Table 6.7 Energy levels and associated degeneracies for

atomic potassium
Energy Effective

Configuration ~ Term symbol  (cm™) degeneracy

[Ar]4s 2S1/2 0 2

[Ar]4p 2 [)1/23/2 12985.2 6
13042.9

[Ar]5s 281 21026.6 2

[Ar]3d 2 D3/2,5/2 21534.7 10
21537.0

[AI‘]Sp 2P1/213/2 24701.4 6
24720.1

[Ar]d4d 2Dspsp 273971 10
27398.1

[Ar]6s 281 27450.7 2

electronic energies for potassium is portrayed by the energy level diagram of Fig. 6.8. This
diagram also indicates the allowed electronic transitions, including the wavelengths (A)
of the resulting spectral lines. The intense resonance lines at 7665 and 7699 A are readily
observed in emission even at very low potassium concentrations. A comparable doublet
at 5890 and 5896 A for sodium is known as the Na D-lines. Much can be learned about the
rich relationship between electronic energy levels and atomic spectroscopy by studying
together Table 6.7 and Fig. 6.8.

If we employ Eq. (6.79), the electronic degeneracy can be calculated from the J-value
specified via a given term symbol. However, as demonstrated in Table 6.7, the shifts in
energy among levels with only changes in J are usually so small that we can define an

eVil 28, 2Py, 2P, D5, 2Dy, sy
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average energy and thus an effective degeneracy corresponding to all J-values with the
same L and S; hence,

el eff = Zgj = Z 27 +1). (6.81)
7 7

Effective degeneracies for the 4p, 3d, 5p, and 4d levels of potassium are identified in
Table 6.7. The number of J-values for given values of L and S is called the multiplicity. In
most cases, differing J-values give rise to closely-lying lines in the spectrum, which together
constitute a multiplet. Figure 6.8 indicates that potassium is characterized by doublets;
typical spectral features for other atoms include triplets, quartets, quintets, and sextets.
In fact, as indicated by Eq. (6.81), the effective degeneracy can generally be obtained by
summing over an associated multiplet.

6.6.4 Electronic Energy Levels and Degeneracies for Diatomic Molecules

From a quantum mechanical viewpoint, molecules have much in common with multielec-
tron atoms. All molecules, for example, display suitable orbital and spin angular momentum
vectors, L and S. However, for a diatomic molecule, only the components of L and S along
the internuclear axis undergo quantization owing to a cylindrically rather than spherically
symmetric electronic potential. On this basis, we can define two new angular momentum
components along internuclear axis AB, as shown in Fig. 6.9, so that

Lap=+Ah A=0,1,2,... (6.82)
Sus=%h T =-5-S+1,...5—1,8. (6.83)

The + symbol in Eq. (6.82) represents clockwise or counterclockwise circulation of elec-
trons about the internuclear axis; thus, A is the component of the orbital angular momen-
tum quantum number along A B. Similarly,in Eq. (6.83), for every value of the spin quantum
number, S, we have 25 + 1 values for its component, X, along the internuclear axis. Hence,
as displayed in Fig. 6.9, we recognize that L and S must precess about this axis, similar to
their precession about J for L—S coupling in multielectron atoms.

For a molecule, the electronic energy ultimately depends on the quantum numbers
A and S, similar to the secondary dependence on L and S for an atom. Therefore, the
molecular term symbol, in analogy with that for atoms, is labeled as

25+ A, (6.84)

where A =0, 1, 2 is represented by ¥, IT, A, respectively. The subscript, @ = A + X, is
often appended to identify a particular spin component, similar to J for atomic systems. For
all molecules, the multiplicity is defined by 2.5 + 1. Similar to the atomic case, the influence

A®

Figure 6.9 Angular momentum components for a diatomic molecule. A

“— Q—»
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Table 6.8 Electronic energy levels
and degeneracies for O,

Term T, (cmfl) 8el.eff
X’z 0 3
a'A, 7918.1 2
b 12; 13195.1 1
A3%S 35397.8 3
B 32; 49793.3 3

of spin—orbit coupling is usually small enough that we can define an effective degeneracy.
Therefore, we obtain from Egs. (6.80) and (6.81)

8el.eff = ¢(2S + 1), (685)

where ¢ =1 for A =0 and ¢ =2 for A > 0, thus accounting for two possible vector
directions along the internuclear axis when L 45 > 0. This factor of two s called A-doubling;
the 25 + 1 factor is called spin-splitting. The degeneracy defined by Eq. (6.85) is clearly
effective as spin-splitting and A-doubling lead to spectral lines having slightly different
wavelengths, although the energy difference caused by A-doubling is usually much smaller
than that produced by spin-splitting.

Akin to the atomic case, electronic energies for diatomic molecules are typically derived
from spectroscopic measurements, as discussed more completely in Chapter 7. Term sym-
bols are again needed to identify the various electronic energy levels. As an example, the
ground and first four excited electronic states for O, are listed in Table 6.8. Each electronic
state is defined by a unique Morse potential, reflecting its own spatial charge distribution,
as indicated by the associated energy-level diagram of Fig. 6.10. The energy, T;, represents
the energy gap between minima in the Morse potential describing the ground electronic

E/cm-1 JeV
18
60,000 -
| O(P) + O('D)
-6
40,000 - 7
Figure 6.10 Potential energy diagram for low-
i 14 lying electronic states of O,.
20,000 -
-2
0F -0
1 | 1 | 1 | 1
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state and that defining each excited electronic state. Table 6.8 also includes the effective
degeneracy for each term symbol, as calculated from Eq. (6.85). Additional tabulations of
electronic energies for selected diatomic molecules are provided in Appendix J.2.

For molecules, the ground electronic state is denoted by the symbol X, and each higher
electronic state with the same multiplicity is labeled A, B, C, ..., respectively. Similarly,
excited electronic states with different multiplicity are given the related nomenclature,
a,b,c,..., inorder of increasing energy. The g/u subscripts are attached to the molecular
term symbol only when dealing with homonuclear diatomics; these subscripts (g/u) denote
the symmetry of the wave function (even/odd) upon reflection through the midpoint of its
identical nuclei. Finally, the superscripts for the A = Ocase (X7, ) indicate the symmetry
of the wave function when reflected through an arbitrary plane passing through both nuclei
of any diatomic molecule.

6.7 Combined Energy Modes for Atoms and Diatomic Molecules

Having applied the steady-state Schrodinger wave equation to the electronic, vibrational,
and rotational motions of atoms and diatomic molecules, we now integrate our knowledge
by combining their derived energy levels on an energy-level diagram. For atoms, our task is
easy as electronic motion underlies the only internal energy mode. Typically, as indicated
previously, energy-level diagrams are constructed by setting the energy of the ground
electronic state to zero. Considering again Fig. 6.8 for atomic potassium, we note that the
left-hand ordinate (eV) has its zero of energy at the ground electronic state, although
the right-hand ordinate (cm™!) places its zero of energy at the ionization condition. As a
further example, we may use Egs. (6.68) and (6.69) to obtain the electronic energies from
the Schrodinger wave equation for the hydrogen atom; i.e.,
Ry

n?’

B = — (6.86)
where Ry is the Rydberg constant (cm™). Setting the zero of energy to that of the ground
electronic state (n = 1), from Egq. (6.86) we obtain

1
Eol = RH <1 - E) s (687)

which could easily be used to construct an energy-level diagram for atomic hydrogen
(Fig. 5.4).

In contrast to monatomic species, the total internal energy of a diatomic molecule
can be obtained by summing contributions from the electronic, vibrational, and rotational
energy modes. If we assume a combined rigid rotor and harmonic oscillator, for which the
rotational and vibrational parameters, B, and w,, are independent of electronic state, we
obtain from Egs. (6.29) and (6.50)

Em=T + v+ 3)we+J(J +1)B.

An associated energy-level diagram for the ground and first excited electronic states of
this prototypical diatomic molecule is shown in Fig. 6.11. As compared with the atomic
case, the electronic energy for molecular systems is portrayed by the Morse potential,
with 7; identifying the sizable energy gap between the bottoms of the potential wells for
the A and X states. The ground vibrational level occurs above the bottom of each well
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Rotational
levels

Figure 6.11 Prototypical energy-level diagram for diato-
mic molecule.

Vibrational
level

owing to its zero-point energy. Hence, additional vibrational and rotational energies can
be denoted for each Morse potential by a sequence of energy levels above the ground
vibrational state. Given such energy-level diagrams, we might surmise that spectral lines
would arise corresponding to all possible energy gaps shown in Fig. 6.11. Fortunately,
spectral signatures are usually much simpler owing to the applicability of so-called selection
rules for both atoms and molecules.

6.8 Selection Rules for Atoms and Molecules

Selection rules are restrictions that govern the possible or allowed transitions between
rotational, vibrational, or electronic states. For each energy mode, such rules are typi-
cally stated in terms of permitted changes in characteristic quantum numbers defining the
internal energy states. In general, we observe that the spectral intensity of an allowed
transition is much greater than that for a disallowed or forbidden transition. For the elec-
tronic mode, the term symbols distinguishing atoms and molecules generally provide the
basic nomenclature needed for the construction of relevant selection rules. In this case,
allowed transitions normally involve the jump of a single electron from one orbital to
another. While selection rules have typically been deduced experimentally, significant
theoretical confirmation has accrued from the application of perturbation theory to the
time-dependent Schrodinger wave equation. Employing this approach, we now analyze a
generic two-level system, thus eventually defining transition probabilities associated with
rotational, vibrational, or electronic spectroscopy.
We begin with the time-dependent Schrodinger wave equation; i.e., from Eq. (5.32),

N )\
av = ihaa—[. (6.88)
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Considering two rotational, vibrational, or electronic states, we find that the solution to
Eq. (6.88) is given by Eq. (5.38), which becomes for each state

Uy =y 6Xp(—i£1t/h) U, =y exp(—iszt/h), (689)

where g1 and g, represent particle energies for the lower and upper levels, respectively.
Assuming that any spectral transition is inherently a weak temporal process, we can define
the time-dependent portion of the Hamiltonian operator, H’, as a small perturbation about
its steady-state manifestation, H., ie.,

A=A +H, (6.90)
so that, from Eq. (6.88), stationary solutions must obey
N ow
AW, =ih at” ) (6.91)

This strategy is the essential tactic used when implementing time-dependent perturbation
theory.

For our application, the interaction energy between the perturbing electromagnetic
field and the atom or molecule arises through its electric dipole moment, p, as given by

w=Y ar: (6.92)

where ¢; represents the charge and r; the location for each constituent proton or electron.
Presuming a uniform electric field, E, we can express the time-dependent portion of the
Hamiltonian operator as

H=-u-E. (6.93)

For simplicity, we take both the dipole moment and the oscillating electric field to be in
the same direction, so that Eq. (6.93) becomes

H = —LE, coswt, (6.94)

where the radial frequency, from Eq. (5.27), can be written as
&) — &1
w=—--: 6.95
- (6.95)

We note, from Eq. (6.95), that the radial frequency of the incoming radiation corresponds
to the spectral transition for a two-level system, as required if we are to investigate the
transition probability.

We now model the temporal behavior of this two-level system as a dynamic perturba-
tion about its stationary solution, so that

V(1) = ar(t)Wi(r) + ax(t)Wa(1), (6.96)

where a; and a, must be determined from the perturbation analysis. If we substitute
Eq. (6.96) into Eq. (6.88) and invoke Eq. (6.90), we obtain

aip H"-I’l + 021:],\112 =ih(W1a1 + Vo), (6.97)
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where all terms involving H, have been eliminated through implementation of Eq. (6.91).
Multiplying Eq. (6.97) by v5 exp(ie»t/h) and substituting from Eqgs. (6.89), we have

e DY ayys H o = ihane™ D gy a3,

Integrating over all spatial coordinates and recognizing that the wave functions are
orthonormal, we then find, after utilizing Eq. (6.95),

iha, = a; el /llfz*l:ljlﬂl dt +ar /&;Fi@ﬁzd‘[ (698)

According to our perturbation analysis, states 1 and 2 will differ little from their initial
populations, so that we have a; ~ 1 and a, >~ 0. Therefore, Eq. (6.98) becomes

ih% = e/ / Vs H'yy dr. (6.99)
Finally, upon substitution from Eq. (6.94), Eq. (6.99) can be expressed as
ih% = — My E.e'" cos wt, (6.100)
for which
My, = /Kﬁz*mﬂldf- (6.101)

Equation (6.101) defines the transition dipole moment, which more generally becomes
M;; = / Y pydr, (6.102)

where the wave functions, v; and v;, identify the two states participating in any spectral
transition. Returning to our two-level system, we observe from Eq. (6.96) that a,(¢) repre-
sents the extent of participation in state 2. Therefore, the temporal derivative, a,, can be
interpreted as the transition rate from state 1 to state 2.

On this basis, we conclude from Eq. (6.100) that a transition between two rotational,
vibrational, or electronic states is impossible if M, is zero. In other words, a spectral line
emerges only when its transition dipole moment is nonzero. The various selection rules
thus reflect their transition dipole moments so that the more intense lines in the spectrum
are generally associated with greater values of M;;. Fortunately, determining the selection
rules themselves does not require evaluation of all possible transition dipole moments.
Indeed, the mathematical symmetry of any wave function is typically defined through its
quantum numbers, so that distinguishing between zero and nonzero values of Eq. (6.102)
can usually be done by inspection. For this reason, primary selection rules can be expressed
quite simply in terms of allowed changes in characteristic quantum numbers. Table 6.9 lists
selection rules derived from Eq. (6.102) when utilizing wave functions for the rigid rotor,
harmonic oscillator, and hydrogen atom.

The selection rule for the rigid rotor, AJ = %1, arises directly from the mathemati-
cal properties of spherical harmonics. Since spherical harmonics depend only on 6 and
¢, Egs. (6.92) and (6.102) together imply that rotational transitions can occur only for
molecules having a permanent dipole moment (u # 0). Unfortunately, nonzero dipole
moments are impossible for molecules endowed with spatial symmetry; for this reason,
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Table 6.9 Primary selection rules for rotational, vibrational, and electronic
energy modes

Energy mode Model Selection rules

Rotation Rigid rotor AJ =+1

Vibration Harmonic oscillator Av =41

Electronic Atoms 25t1[, AJ=0,£1 AL=4+1 AS=0
Electronic Molecules 25t1Aq AA=0,£41 AS=0

homonuclear diatomics are forbidden from undergoing rotational transitions. In a similar
fashion, the selection rule for the harmonic oscillator, Av = £1, depends on the math-
ematical properties of the Hermite polynomial. For such polynomials, evaluation of M;;
requires a Taylor expansion of the dipole moment about its equilibrium nuclear separation.
Using this procedure, we find that any vibrational transition mandates a spatial variation
in the electric dipole moment (du /dr # 0). Because all homonuclear diatomics have zero
dipole moments, they are thus prevented from undergoing vibrational as well as rotational
transitions.

Employing calculated transition dipole moments and measured spectral signatures,
spectroscopists have found that electronic selection rules can be based solely on term
symbols affiliated with the energy levels involved in any electronic transition. For this
reason, the electronic selection rules listed in Table 6.9 are purposefully cast in terms of
atomic or molecular term symbols. Hence, for atomic spectra, the generic term symbol
and associated primary selection rules are

B AJ=0,41 AL=+1 AS=0. (6.103)

We note, however, that AJ = 0 is forbidden if both electronic levels correspond to J = 0
states. Moreover, while the AJ rule is mandatory, the AL and AS rules become less so
for Z > 40. In comparison, for diatomic spectra, the generic term symbol and primary
selection rules are

BHAqQ: AA=0,41 AS=0. (6.104)

Subsidiary selection rules when needed are as follows: AQ =0, +1; X7 < T or ¥~ <
Y-, butnot Tt < X7; only g <> u for homonuclear diatomics.

Implementing Eq. (6.104), we note, from Table 6.8 and Fig. 6.10, that most transitions
from the ground to the upper electronic states of O, are forbidden. The only allowed
transition corresponds to the so-called Schumann-Runge system (B2, — X ¥, ), which
accounts for absorption of ultraviolet light at wavelengths below 200 nm in the earth’s
atmosphere. Given this electronic transition for O,, we realize that a permanent dipole
moment is unnecessary for homonuclear diatomics. This general conclusion is quite sig-
nificant for two reasons. First, as might be expected for shifts between electronic orbitals,
the transition dipole moment depends preferentially on that portion of the dipole moment
established by the electrons and not by the two nuclei. Second, because their rotational
and vibrational transitions are inherently forbidden, access to the molecular properties of
homonuclear diatomics is possible only through electronic spectroscopy.
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EXAMPLE 6.4

Consider the following queries concerning the atomic structure and spectrum for elemental

potassium.

(a) Only four intense transitions occur between the ground state and those upper energy
levels of potassium listed in Table 6.7. Identify these four electronic transitions.

(b) Verify the term symbols given in Table 6.7 for the [Ar]4p and the [Ar]3d electron
configurations.

(c) Using Table 6.7, substantiate the wavelengths indicated in Fig. 6.8 for the intense dou-
blet corresponding to the electronic transitions between the 4s-2S » and 4p-> Py 2.3
states.

Solution

(a) The intense lines in the electronic spectrum for potassium must comport with those
selection rules identified for all atomic spectra. Given the 4s-2S;, ground state, the
AS = 0 rule is inherently obeyed by all the upper energy levels of Table 6.7. How-
ever, the AL = £1 rule favors only those four upper energy levels labeled 4p-2 P 252
and 5p-2 P, 2.32. In addition, because these energy levels are identified by J =1/2
or J =3/2, consistency is automatically ensured with the selection rule, AJ =0, £1.
Hence, we find that, among the ten upper levels of Table 6.7, only four electronic transi-
tions satisfy all three selection rules. Moreover, the only effective rule for potassium is
AL=+1.

(b) For the [Ar]4p configuration, we have only one valence electron so that L. =1 and
S =1/2. Hence, from Eq. (6.77), J =1/2,3/2. In addition, we note that 2§+ 1 =2
and thus the term symbol for this configuration becomes *P; /2,3/2. In a similar fashion,
for the [Ar]3d configuration, L =2 and S = 1/2 so that / =3/2,5/2. Therefore, the
term symbol for this second configuration becomes 2Ds 2.3/2-

(c) From Table 6.7, the gaps in electronic energy associated with this intense doublet are
12985.2 and 13042.9 cm™!. Therefore, from Eq. (5.3), the associated wavelengths in
vacuum are 7701.1 and 7667.0 A, respectively. However, the wavelengths specified in
Fig. 6.8 have surely been measured in air rather than in vacuum. Now, from Av = ¢, we
observe that for the same frequency, A = A, /n, where the subscript indicates vacuum
conditions and the index of refraction, n = ¢, / c. For air at room temperature, the index
of refraction is n = 1.000275 near the above vacuum wavelengths. Hence, dividing the
vacuum wavelengths by 7, we find that the spectral doublet should occur at wavelengths
of 7699.0 and 7664.9 A, respectively, in air. These two computed wavelengths are in
excellent agreement with those indicated in Fig. 6.8.

Problems enhancing your understanding of this
chapter are combined with those for Chapters 5
and 7 in Problem Set I11.



7 The Spectroscopy of Diatomic
Molecules

In Chapter 6, we presented a quantum mechanical analysis of the internal energy modes
for a diatomic molecule. A significant aspect of this analysis was full separation of the
rotational, vibrational, and electronic energy modes. In other words, by successively imple-
menting the rigid-rotor model, the Born—-Oppenheimer approximation, and the harmonic-
oscillator model, we demonstrated that the internal energy of a diatomic molecule can be
expressed as

Eint = Eel + Evib + Eror- (71)

This uncoupling of internal energy modes creates a rudimentary model for the diatomic
molecule and thus offers the simplest explanation for its various spectral features. In
particular, if we convert Eq. (7.1) to wave number units (cm™!), we obtain

i = To + G(v) + F(J), (72)

where, from Egs. (6.29) and (6.50),
Gv)=@v+o. v=012,... (7.3)
F()=JJ+1)B.  J1=012,.... (7.4)

On this basis, our primary goal in this chapter is to explore how each term of Eq. (7.2) can
produce spectroscopic information. This knowledge is the foundation for tabular values
of T;, w,, and B,, which are fundamental for the statistical calculations of thermodynamic
properties that we shall return to in Chapters 8 and 9.

In preparation for our exploration of spectroscopy, we first review the various regions
of the electromagnetic spectrum, as outlined in Table 7.1. These regions are delineated in
terms of both wavelength (nm) and wave number (cm~!); however, you should recognize
that the indicated borders are approximate and are only meant to serve as a guide for future
discussions. Similarly, the molecular motions and thus the spectral transitions associated
with each region are only representative. In other words, some notable exceptions exist
to the general behavior indicated in Table 7.1; thus, basic calculations are often needed to
ensure proper spectral assignments. Finally, you should note that spectroscopists typically
report all infrared, visible, and near-ultraviolet wavelengths in air. Vacuum wavelengths
are used only in the far ultraviolet, as measurements in air are not possible below 200 nm.

129
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Table 7.1 Significant regions in the electromagnetic spectrum for molecular spectroscopy

Region Wavelength (nm) Wave number (cm™!) Transitions

Far ultraviolet 10-200 1,000,000-50,000 Electronic

Near ultraviolet 200-400 50,000-25,000 Electronic

Visible 400-800 25,000-12,500 Electronic

Near infrared 800-3000 12,500-3300 Vibrational (overtones)
Mid-infrared 3000-30,000 3300-300 Vibrational (fundamental)
Far infrared 30,000-300,000 300-30 Rotational

(light molecules)

Microwave 300,000-50,000,000 30-0.2 Rotational

7.1 Rotational Spectroscopy Using the Rigid-Rotor Model

We begin by considering what happens when only the rotational energy mode undergoes
transposition, with no influence whatever from the vibrational or electronic energy modes.
The available rotational energies, following the rigid-rotor model of Eq. (7.4), are displayed
in Fig. 7.1. From Table 6.9, the selection rule for rotational transitions is AJ = %1, so
that beginning at J = 3, absorption or emission of energy can only materialize to J = 4
(Jfinat = Jinitiat = +1) or J =2 (Jsipa — Jiniia = —1), respectively. Hence, as compared to
the hypothetical case with no selection rule, a considerable reduction occurs in the potential
complexity of rotational spectroscopy.

A convenient method for writing the rotational selection rule that proves to be very
useful in spectroscopy is

J—J"=1, (7.5)

where a single prime refers to the upper energy level and a double prime refers to the
lower energy level for any given transition, whether absorption or emission. Applying
this nomenclature to Eq. (7.4), the wave number of each spectral line for pure rotational
spectroscopy is given by

D=A&yu=J " +1)B.—J"(J"+1)B.. (7.6)
Invoking Eq. (7.5), we then obtain

§=2B,(J'+1) J'=01,2,...,

Figure 7.1 Rotational energy levels for the rigid rotor.
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so that an equidistant spacing given by
AV =2B, (7.7)

occurs between all adjacent line pairs in any rotational spectrum produced by the rigid-
rotor model. While an approximation, this simple but powerful prediction has nevertheless
received significant confirmation in the spectroscopic literature.

Recall from Egs. (6.30) and (6.31) that

h

B =—, 7.8
¢ 8n2cl, (7.8)

where the moment of inertia is
I, = ,urf.

Hence, evaluation of B,, obtained by applying Eq. (7.7) to a specific rotational spectrum,
results in an experimental value for the moment of inertia, thus providing the equilibrium
internuclear separation or bond length for a given diatomic molecule. Of course, such
calculations must be tempered by the level of approximation underlying the rigid-rotor
model. Nevertheless, Eq. (7.8) verifies that the average line spacing for rotational spectra
becomes narrower for heavier molecules, such as AlO, and broader for lighter molecules,
such as OH. Unfortunately, as discussed in Section 6.9, the transition dipole moment
for homonuclear diatomics such as O, or N, is zero; the obvious result is no rotational
signature. For heteronuclear diatomics, on the other hand, measured rotational constants
range from 0.1 to 30 cm~'. Therefore, rotational transitions appear in the microwave and
far infrared portions of the electromagnetic spectrum, as indicated in Table 7.1.

7.2 Vibrational Spectroscopy Using the Harmonic-Oscillator Model

In a similar fashion, we may develop a spectral expression reflecting dominance by vibra-
tional motion, with no influence from the rotational or electronic energy modes. Analogous
to Eq. (7.5), the selection rule for the harmonic oscillator is

v =" =1. (7.9)

Now, from Eq. (7.3), the wave number for pure vibrational spectroscopy when following
the harmonic-oscillator model becomes

D= A&, = (v/ + %) We — (v” + %) We. (7.10)
Substituting Eq. (7.9) into Eq. (7.10), we obtain the simple result,
U = w,, (7.11)

so that, for pure vibrational spectroscopy, we generate only a single spectral line at the
fundamental vibrational frequency, w,.
Recalling Eq. (6.51), we note that

W = — | —; (7.12)
2nc\ 1
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Figure 7.2 Schematic of P- and R-branches generated
by combined vibration and rotation.
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hence, spectral measurement of the fundamental vibrational wavelength leads to knowl-
edge of the force constant or bond strength for a diatomic molecule. Typically, w, =
1000-3000 cm~!, so that fundamental vibrational transitions appear in the mid-infrared
portion of the spectrum, as indicated in Table 7.1. However, from Section 6.8, we recall
that vibrational transitions mandate the generation of radial gradients in the electric
dipole moment during harmonic oscillation. Such gradients are impossible for symmet-
ric molecules; thus, as for the rotational case, homonuclear diatomics offer no spectral
signatures owing to molecular vibration.

Because w, >> B,, we might expect that the excessive energy accompanying vibrational
motion would automatically lead to rotational excitation. In fact, if we were to inspect
more carefully anticipated vibrational signatures by implementing a spectrometer with
higher resolution, we would find not a single fundamental line, but rather two groups
of kindred lines as indicated by the emission spectrum of Fig. 7.2. The group of lines at
lower wave numbers (higher wavelengths) is called the P-branch, while the group at higher
wave numbers (lower wavelengths) is called the R-branch. The dip between the branches
is still centered at the fundamental vibrational wavelength; however, the simultaneous
excitation of rotational motion eliminates this anticipated vibrational frequency in favor
of replacement signatures on both spectral sides of w,.

7.3 Rovibrational Spectroscopy: The Simplex Model

We observed in the previous section that a diatomic molecule can actually never undergo
vibrational motion without also undergoing rotational motion. For this reason, vibrational
and rotational changes in energy must be additive, thus producing rovibrational spectra
given by

V=A%, =0 — VYo, +[J'(J +1)=T"(J"+1)]B., (7.13)
where we have combined Egs. (7.6) and (7.10) to create a conjoined rigid-rotor/harmonic-
oscillator model. Here, the single and double primes refer to the upper and lower vibra-

tional levels, respectively, even when used to identify the rotational quantum numbers
within each vibrational level. For this combined simplex model, the selection rules are

V' =1 J =" =41, (7.14)

so that, as shown in the energy-level diagram of Fig. 7.3, we obtain two separate cases cor-
responding to AJ = %1, whether for absorption or emission. For clarity in exposition, the
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Figure 7.3 Energy-level diagram showing P- and R-
branches for rovibrational spectrum.

transitions displayed from left to right in Fig. 7.3 correspond to spectral lines of increasing
wave number, as portrayed in Fig. 7.2. Hence, the P-branch refers to the case for which
J" = J" — 1 while the R-branch refers to the case for which J' = J” 4 1.

Exploiting the previous development, we substitute Eq. (7.14) into Eq. (7.13) for each
case, giving for the P- and R-branches,

vp=w, —2BJ" J"'=1,2,3,... (7.15)
Vr=w, +2B,(J"+1) J"=0,1,2,..., (7.16)

respectively, so that the spectral line spacing for both branches is again
Avp = Avg =2B,. (7.17)

Therefore, we see from Eqgs. (7.15) and (7.16) that the P-branch produces a series of
equidistant rovibrational lines for ¥ < w, while the R-branch gives a similar series of
equally-spaced rovibrational lines for ¥ > w,, as suggested by Fig. 7.2. We also note that
the missing pure vibrational frequency in Fig. 7.2 results naturally from the addition or
subtraction of rotational energy with respect to w,. Furthermore, because rovibrational
spectroscopy encompasses both vibrational and rotational motion, a least-squares fit of
Egs. (7.15) and (7.16) to the spectrum of Fig. 7.2 would simultaneously determine both w,
and B,, thus providing measurements of both the bond strength and bond length.

From a more practical perspective, when discussing a particular rovibrational line, we
must be able to communicate with colleagues in an unequivocal fashion. Because of this
obvious need, spectroscopists have developed a rigorous notation to designate specific
lines in a rovibrational spectrum. In general, the notation follows

B,(J") B=P,R (7.18)

where B = P for aline in the P-branch and B = Rfor a line in the R-branch. Hence, P, (5)
designates a transition fromv' =2, J'=4tov” =1, J” =5 orvice versa (J' = J" — 1).
Similarly, R;(5) designates a transition from v' =1, J'=6 to v =0, J” =5 or vice
versa (J' = J” + 1). With respect to the latter, however, spectroscopists usually omit the
unity subscript when describing a rovibrational transition involving the ground vibrational
level.
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Figure 7.4 The rovibrational absorption spectrum for the v = 0 — 1 transition of gaseous
HBr, with the indicated P- and R-branches.

Unfortunately, the simplex model, as portrayed spectroscopically in Fig. 7.2, under-
states the inherent complexity of combined rotational and vibrational motion. Consider,
for example, the actual infrared absorption spectrum for gaseous HBr shown in Fig. 7.4.
Consistent with the simplex model, no pure vibrational line appears at w, ~ 2555 cm™!.
Similarly, in both Figs. 7.2 and 7.4, the variations in line intensity reflect analogous differ-
ences in rotational population, as discussed further in Chapter 9. However, in comparison
to the results anticipated from Eq. (7.17), the spacing between consecutive spectral lines
within the P-branch drops as ¥ — w,; similarly, within the R-branch, this spacing rises as
U — w,. In other words, the simplex model cannot reproduce the actual positions for the
various transitions in the rovibrational spectrum of HBr. This general result underscores
the limitations of the combined rigid-rotor/harmonic-oscillator model. Given this outlook,
we must now pursue a more realistic model for the combined vibrational and rotational
motions of a diatomic molecule.

EXAMPLE 7.1

The Raman spectrum of a diatomic molecule can be investigated via excitation with a
laser beam. The spectrum results from rovibrational modulation of scattered laser radia-
tion to produce sideband frequencies at ¥, + ©g, where ¥, is the laser frequency (cm™!)
and D is the rovibrational frequency (cm™!) of the molecule. The Stokes component at
Uy, — g corresponds to the vibrational transition from v” = 0 tov’ =1, while the anti-
Stokes component at ¥; + D corresponds to the inverse transition from v’ =1 tov” = 0.
The simultaneously excited rovibrational lines are limited by the governing selection rules
toAJ =J' —J" =12, with AJ = 42 designated as the S-branch and AJ = —2 desig-
nated as the O-branch.
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Consider the Stokes and anti-Stokes components of the Raman spectrum for diatomic
nitrogen. The relevant spectroscopic parameters defining the harmonic oscillator and rigid
rotor for the X'+ ground electronic state of N, are w, = 2359 cm~! and B, =2.0 cm™!,
respectively.

(a) Employing the simplex model, develop two expressions for the rovibrational wave
number, Uy, defining the S-branch and the O-branch for both the Stokes and anti-
Stokes spectrum.

(b) If the laser wavelength is 532 nm, determine the wavelength (nm) corresponding
to the J” = 6 line within the S-branch of the Stokes component for the N, Raman
spectrum.

(c) Similarly, determine the wavelength (nm) corresponding to the J” = 8 line within the
O-branch of the anti-Stokes component for the N, Raman spectrum.

Solution
(a) For both the Stokes and anti-Stokes components of the Raman signal, the rovibrational
wavenumbers can be obtained from

br= &, = 1) — &, =0).
where, for the simplex model,
Ev=w, (v+3)+ BJ(J +1).
Therefore, for the S-branch, for which J' = J” + 2,
iR=w.+[(J"+2)(J"+3)=J"(J'"+1)] B, =w, +22J" +3) B..
Similarly, for the O-branch, for which J' = J” — 2,
r=w.+[(J'=2)(J"'=1)=J"(J"+1)] B =w, —2(2J" —1) B..
(b) For the J” = 6 line within the S-branch,
bR =we +2(2J" +3) B, = 23594 30(2.0) = 2419 cm ™.

Given a laser at A;, = 532 nm, 7; = AZl = 18797 cm~!. Hence, for the Stokes compo-
nent,

by =D — g = 18797 — 2419 = 16378 cm ™',

so that Ag = ¥y = 610.6 nm.
(c) Similarly, for the J” = 8 line within the O-branch,

R =w, —2(2J" — 1) B, = 2359 — 30(2.0) = 2299 cm~ L
Hence, for the anti-Stokes component,

Du= DL+ Dg = 18797 + 2299 = 21096 cm ",

sothat iy = f);‘l = 474.0 nm. In summary, then, for alaser at 532 nm, the J” = 6 Stokes

line within the S-branch is at 610.6 nm, while the J” = 8 anti-Stokes line within the
O-branch is at 474.0 nm.
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7.4 The Complex Model for Combined Rotation and Vibration

The simplex model assumes complete separation of the vibrational and rotational energy
modes, with vibration modeled as a harmonic oscillator and rotation modeled as a rigid
rotor. We recognize, however, that such a model is much too simplistic. First, as we saw in
Chapter 6, the harmonic oscillator approximates the more realistic Morse potential only
at lower vibrational energies. Second, by imagining a diatomic molecule as two masses
linked with a spring, we realize that rotation will lead to stretching of the spring, thus
making a rigid rotor impossible. Third, carrying this analogy further, we also appreciate
that enhanced vibration will expand the mean bond length, thus affecting the moment of
inertia for rotation. In other words, an inevitable coupling must occur between vibration
and rotation.

Because each electronic energy level is characterized by a unique Morse potential
reflecting a prevalent bonding mechanism, Eq. (7.2) must actually be written as

Ein = T + G()le + Fuo(J)le, (7.19)

where 7, is the energy for a given electronic state, the subscript e identifies a dependence of
vibrational and rotational energy modes on electronic state, and the subscript v indicates
that the rotational energy mode is influenced by the vibrational energy mode. From this
perspective, Eq. (7.19) reminds us that, even in the ground electronic state (7, = 0), the
combined vibrational and rotational motions for any diatomic molecule ultimately depend
on the specific internuclear potential describing its electron configuration.

Utilizing the quantum methods of Chapter 6, more realistic expressions for G(v) and
F,(J) could now be derived by solving the steady-state Schrodinger wave equation given
the specific Morse potential,

V(r) = D1 — e AT,

for a given electronic state. Surprisingly enough, an analytical solution based on a power-
series representation of the Morse potential is still possible, though the mathematical
procedures are both tedious and ponderous. Not unexpectedly, this revised solution recon-
structs the basic rigid-rotor/harmonic-oscillator model, but with the inclusion of higher-
order correction terms. Forsaking the mathematical intricacies, we find that the required
vibrational and rotational energies can be expressed as

G =w (v+i)—ox (v+1)’  v=012... (7.20)
F,(J)=B,J(J +1)=DJ*(J+1)> J=0,1,2,..., (7.21)

where
B,=B —a.(v+3). (7.22)

If we employ instead the more general Dunham potential, which represents a Tay-
lor series expansion about r,, we merely introduce further higher-order terms into Eqgs.
(7.20-7.22). Fortunately, these three equations are sufficiently accurate for most purposes;
moreover, they include essentially all of the important physical phenomena. Furthermore,
each controlling parameter in Egs. (7.20-7.22) can be related to its Morse potential through
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Figure 7.5 Morse potential with vibrational energy levels for

the anharmonic oscillator. \\\ ///
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The second-order correction term in Eq. (7.20), as compared to Eq. (7.4) for the har-
monic oscillator, represents vibrational anharmonicity. Hence, the new parameter, x,, is
called the anharmonicity constant. Typical energy levels for the anharmonic oscillator are
displayed with their parent Morse potential in Fig. 7.5. As discussed in Chapter 6, the
harmonic-oscillator potential is a useful approximation to the Morse potential at lower
vibrational quantum numbers. The negative correction term in Eq. (7.20) evinces the pos-
sibility for dissociation at sufficiently high temperatures when employing the more realistic
Morse potential. From a different perspective, the spacing between consecutive vibrational
levels must actually decrease with higher vibrational quantum number to replicate the clas-
sical continuum upon dissociation. This behavior is quite clearly a very straightforward and
robust manifestation of the correspondence principle.

The second-order correction term in Eq. (7.21), for which D, is the centrifugal distortion
constant, represents rotational centrifugal stretching. This correction term is also negative
because enhanced centripetal acceleration at higher rotational quantum numbers must
increase I,, thus effectively reducing any rotational energy via the physics represented by
Eq. (7.8). Note that D,, as defined by the Kratzer relationship of Eq. (7.25), should not be
confused with the binding energy, D, (Eq. 6.40). Eliminating 8 from Eqs. (7.23) and (7.24),
we find that the binding energy can be determined from spectroscopic measurements of
w, and w,x, by implementing

D, = —¢ (7.27)
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Finally, Eq. (7.22) represents rotation—vibration coupling. Here, the coupling comes
from the influence of vibration on rotation and not vice versa, as typical w,/ B, values of
100-1000 imply many vibrations per rotation but no rotational events per vibration. The
controlling effect of vibration on rotation is also implied by Fig. 7.5, which portrays an
increasing average bond length with rising vibrational quantum number. This increasing
bond length leads to an enhanced moment of inertia, which reduces the effective rota-
tional energy — thus, the negative correction term involving the coupling constant, o,, in
Eq. (7.22).

7.5 Rovibrational Spectroscopy: The Complex Model

The combined effects of vibrational anharmonicity, rotational centrifugal stretching, and
rotation—vibration coupling constitute what we shall call the complex model, as compared
to the simplex model, which presumed an integrated harmonic oscillator and rigid rotor.
Pursuing this avenue, the total rovibrational energy within a given electronic state becomes,
from Egs. (7.20) and (7.21),

B = G) + Fy(J) = 0, (v+ 1) — wexe (v+ 1) + BJ(J +1) = DI +1)% (7.28)

Furthermore, for the anharmonic oscillator, the vibrational selection rule is no longer
limited to our previous Av = +1; in fact, the revised selection rules for the complex model
become

Vv =1,2,3,... J —J =+l, (7.29)

so that, for v” =0, v' —v” =1 designates the fundamental transition, v' — v” =2 des-
ignates the first overtone, and v’ — v” = 3 designates the second overtone, respectively.
Similarly, for v” > 0, rovibrational spectra corresponding to v' — v” = 1, 2, 3 would iden-
tify various hot bands. In general, higher overtones become progressively weaker by about
a factor of ten in comparison to the fundamental transition. As their name implies, hot
bands only appear at higher temperatures, when sufficient population is generated within
upper vibrational energy levels.

For simplicity in our forthcoming development, we now choose to neglect rotational
centrifugal stretching in Eq. (7.28), as this complication is often quite minor in comparison
to the remaining contributions. Therefore, the wave numbers displayed in any rovibrational
spectrum become

U =A% = w,(vVV =V") —wexe [V (V' +1) =" "+ D]+ B J (J +1)= B/ J"(J"+1),
so that, for those transitions affiliated with the ground vibrational level (v’ = 0),

bp=0,— (B, +B)J +(B,—B)J? ] =1,2.73... (7.30)

br=7,+2B 4+ (BB, —B)J"+(B,—B)J"? J'=01,2... (7.31)

for the P-branch (/' = J” — 1) and R-branch (J' = J” + 1), respectively. In accord with
the simplex model, Egs. (7.30) and (7.31) show that rotational energy is either added to or
subtracted from a purely vibrational contribution, specified in this case by

Uy = 0oV — weXev' (V' +1). (7.32)
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On this basis, the line spacing for rovibrational spectroscopy must be independent of
Eq. (7.32) and given by

Abp=(B,+ B))+ (B — B)(2J]" - 1) (7.33)
Abg=(3B,— B/)— (B — B))(2]" +1), (7.34)

for the P-branch and R-branch, respectively.

Because o, < B,, we ascertain from Eq. (7.22) that B] > B/. If B) = B/, Eqgs. (7.33)
and (7.34) merely replicate Eq. (7.17) for the simplex model. If, on the other hand, B > B/,
Eq. (7.33) confirms that the spacing between consecutive lines in the P-branch grows with
increasing J”. Similarly, Eq. (7.34) demonstrates that the spacing between consecutive lines
in the R-branch drops with increasing J”. This composite behavior comports perfectly with
that displayed for HBr in Fig. 7.4. Hence, a least-squares fit of both Eqgs. (7.30) and (7.31)
to infrared spectra is the preferred method for determining many spectral parameters,
including w,, wex,, B,, and .

EXAMPLE 7.2

Consider the P- and R-branches for the fundamental infrared spectrum of a diatomic

molecule.

(a) Show that the wave number (cm™') corresponding to the line positions for the P- and
R-branches when neglecting centrifugal distortion can be expressed as

b =70,4 (B +B)K+ (B — B)K?,

where ¥, = 0, — 2w.x,, K = —J" for the P-branch, and K = J” + 1 for the R-branch.

(b) Energy gaps between spectral lines that share a common upper or lower level are
known as combination differences. These differences are very useful because they
depend solely on the spectroscopic parameters for the lower or upper levels, respec-
tively. Demonstrate that the specific combination differences AJ” =2 and AJ’ =2, as
defined in the accompanying energy-level diagram, are given, respectively, by

AQF//(J”)=4B;,(J”~I—%) AzF/(J”)=4B; (.]//4—%)

K J=7"+1

27 J'=7"
X J=J"-1
. J7+1

A A4 ]n

A 4 ’”
J7 -1

A = AJ =2

(c) The following data are available from the fundamental infrared spectrum of HI:
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Rovibrational Line  Frequency (cm™!)  Rovibrational Line ~ Frequency (cm™')

R(0) 2242.6 P(1) 2217.1
R(1) 2254.8 P(2) 2203.8
R(2) 2266.6 P(3) 2190.2

Employing combination differences, determine By, B;, B,, and «, for HI from these
data.

Solution
(a) For the P-branch, K = —J”, so that we have, from the general expression given in
part (a),

5p(") = by = (B, + BJ) I+ (B~ B)) I,
which obviously replicates Eq. (7.30). Similarly, for the R-branch, K = J” + 1 so that
ir(J") =0y + (B, + B))(J"+ 1)+ (B, — B))(J" + 1)*.
Hence,
r(J") =Ty + (B, + B))(J" + 1) + (B, = B)) 2]" + 1) + (B, - B)) J",
or, in agreement with Eq. (7.31),
ir(J") =79, +2B,+ (3B, — B/)J" + (B, — B/)J".

Finally, for the fundamental infrared spectrum, v’ = 1, so that from Eq. (7.32) we verify
that

Up = 0oV — @eXeV' (V' + 1) = @, — 2w Xe.
(b) We observe that the combination difference for the AJ” = 2 case can be expressed as
A F' (I =vp(J"=1)—vp(J"+1),

since /' = J” + 1 for the R-branch while /' = J” — 1 for the P-branch. Hence, setting
K = J” for the R-branch and K = —(J” + 1) for the P-branch,

B! (J") = (B, + B)J" + (B~ B)J >+ (B, + B)(J" + 1) = (B, = B)(J" +1?,
so that
A F"(J") = (B, + B/)(2J" +1) — (B, — B))(2J" +1) =2B/(2J" + 1) = 4B, (J" + 1).
Similarly, the combination difference for the AJ’ = 2 case is
MF (J") = 55 (J") = 55 (J").
Therefore, setting K = J” 4+ 1 for the R-branch and K = —J” for the P-branch,

MF' (") = (B + B (" + )+ (B, = B (I + 1+ (B + B) J" = (B, = B) ",
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so that
A F' (J")=(B,+ B))(2]" + 1)+ (B, — B))(2J" +1) =2B,2J" + 1) = 4B, (J" + 1).
(c) From the given data on the fundamental infrared spectrum of HI, the lower combina-
tion difference gives
Ay F" (1) = DR (0) — Dp (2) =2242.6 —2203.8 = 4B, (1 + %) =68y,

sothat 6By = 38.8cm™~! or By = 6.47 cm™!. Similarly, the upper combination difference
gives

AF' (1) = ir(1) — 9p (1) =2254.8 —2217.1 = 4B, (1+ 1) = 6B,

so that 6B; = 37.7 cm™! or B; = 6.28 cm~'. Finally, from Eq. (7.22), we may write
for our two vibrational levels B = B, — 1.5«, and By = B, — 0.5«,. Therefore, solving
these two equations simultaneously, we obtain B, = 1.5By — 0.5B; and «, = By — By,
sothat B, = 6.57cm ! and o, = 0.19 cm ™.

7.6 Electronic Spectroscopy

The most complicated spectral signature arises when we have simultaneous changes in the
electronic, vibrational, and rotational energy modes. From Eq. (7.19), the wave number
for individual lines in a rovibronic spectrum can be expressed as

= Afiw = AT, + AG(v) + AF,(J), (7.35)

where the three terms represent variations in the electronic, vibrational, and rotational
energy, respectively. The shift in vibrational energy now depends on both the lower and
upper electronic energy levels. The same applies to the change in rotational energy;
moreover, this change depends on both the lower and upper vibrational energy levels.
In addition, because the transition dipole moment controlling rovibronic transitions is
often nonzero for symmetric species, we expect electronic spectra for all molecules — even
homonuclear diatomics, such as O, and N,.

If we now consider, for simplicity, the ground and excited electronic states of a diatomic
molecule, Eq. (7.35) can be written in the form

=10, + AF,(J), (7.36)
where the band origin is defined as
U, = T, + AG(v). (7.37)

Typically, the band origin is dominated by 7, ~ 10* — 10° cm~!, which corresponds to the
visible or ultraviolet region of the electromagnetic spectrum, as indicated in Table 7.1. In
general, the vibrational contribution to Eq. (7.37) is

AG(v) = [a); (W + 1) —wLx, (v + %)2] - [a)g (V' +3) = lx) (v + %)2] , (7.38)

where the single and double primes refer to spectral parameters affiliated with the
upper and lower electronic states, respectively. Analogous to the rovibrational case, the
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Sequences Progressions

Av=+1 Av=0 Av=-1 vV =0 V=2

A4 y y A A A

Figure 7.6 Electronic energy-level diagram, showing various sequences and progressions.

vibrational selection rule for rovibronic transitions is
Av=v —v" =0, £1, £2, £3,...; (7.39)

thus, any vibrational level in an upper electronic state can be linked with any vibrational
level in the ground electronic state. In particular, an electronic spectrum containing vibra-
tional bands with constant Av is called a sequence. A spectrum containing regular vibra-
tional bands with either constant v’ or v” is called a progression. Such sequences and
progressions are best understood via an energy-level diagram, as depicted in Fig. 7.6.

Returning to Eq. (7.36), the rotational contribution to a rovibronic spectrum can be
derived by implementing Eq. (7.21); the result is

AF,(J)=[BJ'(J' +1) = D,J*(J' + 1)*] = [B)J"(J" +1). — D/J"(J" + 1)*], (7.40)

where again the single and double primes refer to the upper and lower electronic states,
respectively. In comparison to the rovibrational case, the rotational selection rule for
rovibronic transitions turns out to be

AT =7 —J]" =0, £1, (7.41)

where we now entertain the possibility of a Q-branch (AJ = 0) in addition to the usual P-
and R-branches. Typically, the Q-branch is intense for electronic transitions with AA = +£1,
weak when AA = 0, and forbidden if A = 0 for both participating electronic states. In
general, strong lines in a rovibronic spectrum are called main-line transitions, while weak
spectral lines are called satellite transitions.

Equation (7.40) represents the rotational structure within the vibronic bands delineated
by Eq. (7.37). In parallel with the rovibrational case, this rotational structure is defined by
applying Eq. (7.41) to Eq. (7.40). Presuming again negligible rotational distortion ( D, = 0),
we find

bp=10,—(B,+B)J" +(B,—B)J? J' =1273... (7.42)
bo=10,+(B,—B)J' +(B,—B)J"?* ] =1,2.3... (7.43)

br=10,+2B + (BB, —B)J +(B,—B)J? J]"=012... (7.44)
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for the P-branch (/' = J” — 1), Q-branch (/' = J”), and R-branch (/' = J” + 1), respec-
tively. We observe from Eq. (7.43) that no rovibronic signature is possible for J' = 0 <
J” = 05 in other words, a gap will appear in the rovibronic spectrum corresponding to the
band origin at ¥, in analogy with a similar gap in the infrared spectrum.

Utilizing Egs. (7.42-7.44), we find the spacing between consecutive rovibronic lines
within the P-, Q-, and R-branches to be

Avp = (B, + B!+ (B — B))(2J" — 1) (7.45)
Abg=2(J"+1)(B, — B! (7.46)
Avg= (B, — B')— (B! — B))(2J" +1). (7.47)

Despite the equivalence between Egs. (7.45) and (7.33) for the P-branch and between Egs.
(7.47) and (7.34) for the R-branch, we must recognize that B, and B] can differ substantially
for electronic transitions as compared to infrared transitions. Moreover, whereas B, > B,
is mandatory for infrared spectroscopy, either B] > B/ or B, < B, can apply for visible
and ultraviolet spectroscopy, as the rotational constant depends on the Morse potential
for each specific electronic state. Remarkably, these features can cause the rovibronic
lines within a band to crowd together and eventually reverse their spectral direction, thus
creating a well-defined bandhead. In fact, bandheads within the P- and R-branches can
be identified by setting Egs. (7.45) and (7.47) to zero, which results in the following two
expressions for the J-value in the lower electronic state defining each bandhead:

1 /B + B
n_ Z v v 1 4
Jp 2<B{,—B{j+ ) (7.48)
1 /3B — B/
Jp==-—=2—2-1). 7.49
: 2<B:;—B; > 74

We realize from Egs. (7.48) and (7.49) that for B] < B, the bandhead appears in the
P-branch, while for B] > B, the bandhead appears in the R-branch. Therefore, spectral
analyses contingent on substantial spacings between rovibronic lines would mandate use of
the R-branch for B] < B] and the P-branch for B] > B|. On the other hand, bandheads are
inevitably the most easily observable feature in any rovibronic spectrum because spectral
crowding and reversal enhance spectral intensity and thus generate sharp cutoffs toward
either the high- or low-wavelength end of the spectrum. Consider, for example, the ultravi-
olet emission spectrum of N, as displayed in Fig. 7.7. Here, the various bandheads clearly
occur toward the high-wavelength side of the spectrum, thus indicating their occurrence
within the P-branch. Such bandheads are often described as violet-degraded because of the
drop in intensity toward shorter wavelengths. Similarly, a bandhead within the R-branch
would be called red-degraded owing to its drop in intensity toward longer wavelengths.

For the Q-branch, we observe from Egs. (7.43) and (7.46) that an intense pile-up of
rovibronic signatures can occur at the band origin when B >~ B]. We should also note that
our previous discussion of electronic spectroscopy holds exactly only for singlet—singlet
transitions (S = 0). Visible or ultraviolet transitions involving electronic states with S > 0
produce somewhat more complicated spectra because of the effects of rotational structure
on both the spin and orbital angular momenta. Nevertheless, the spectral signatures for
such molecules can still be reasonably approximated by employing the simplified rovi-
bronic model discussed in this chapter.
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Figure 7.7 The rotational fine structure in the ultraviolet emission spectrum of N,. The indi-
cated wavelengths along the rovibronic sequence are in angstroms.

As might be expected, spectroscopists have developed a scheme similar to that for the
rovibrational case to identify individual rovibronic transitions occurring within a visible
or ultraviolet spectrum. In general, the notation invoked to designate a rotational shift
follows

B;(J’Y B=P,O.R i=123,..., (7.50)

where B = P for aline in the P-branch, B = Qfor a transition in the Q-branch, and B = R
for a line in the R-branch. The numerical subscript is less significant but is sometimes used
to distinguish among closely-lying transitions linking various spin-split levels within a
multiplet. For electronic spectroscopy, an additional nomenclature is obviously necessary
to designate the vibrational and electronic shifts. The usual notation is

A(V) = X(v"), (7.51)
where only one arrow can be used, either to the left for absorption or to the right
for emission. The lower vibrational level (v”) can be associated with any electronic
state (X, A, B); in contrast, the upper vibrational level (v') must occur within a higher
electronic state (A, B, C) permitted by the reigning selection rules. As an example, a spe-
cific transition in the ultraviolet spectrum for the hydroxyl radical could be identified via
the following complete nomenclature:

0:109) A2S(v=1) « X*M(v = 0),

thus indicating the J” = J’ = 9 line in the Q-branch of OH, as produced by absorption of
radiation from the v” = 0 vibrational level in the ground (*TT) electronic state to the v’ = 0
vibrational level in the first excited (?X) electronic state.

Energy-Mode Parameters for Diatomic Molecules

In summary, our purpose in this chapter has been to demonstrate the practical link through
spectroscopy between quantum mechanics and statistical thermodynamics. Employing
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Table 7.2 Energy-mode parameters for the three lowest electronic states of molecular oxygen

Termsymbol T, (em™!)  w,(cm™)  w.x, (cm™) B, (ecm™)  a.(cm™!) D, (cm™)
3Eg 0 1580.19 11.981 1.4456 0.0159 4.839-107°
1A, 7918.1 1483.50 12.900 1.4264 0.0171 4.860-107°
12; 131951 1432.77 14.000 1.4004 0.0182 5.351-10°°

statistical methods, we recall that the thermodynamic properties of atoms and molecules
can be evaluated from their associated energy levels and degeneracies. These microscopic
parameters can be understood and sometimes even predicted using quantum mechanics.
However, as we saw in Chapter 6, quantum mechanics is usually relegated to providing
basic particle models whose parameters must still be determined by experimentation. For
example, in this chapter, we found that the complex model for combined rotation and
vibration ultimately rests on various quantum procedures for diatomic molecules. Nev-
ertheless, spectroscopic measurements remain essential for the determination of various
energy-mode parameters, such as the fundamental vibrational frequency, w,, and the rota-
tional constant, B,.

We conclude, therefore, that the most significant aspect of atomic and molecular spec-
troscopy is its experimental entrée into the microscopic world. Through spectroscopy, we
can determine the energies and degeneracies of electronic states, as listed in Tables 6.7
and 6.8 for atomic potassium and molecular oxygen, respectively. Similar tabulations are
included in Appendix J for a potpourri of additional atoms and molecules. More generally,
spectroscopic measurements permit rigorous comparisons between quantum predictions
and spectral signatures, thus giving, via optimized fitting algorithms, accurate values for
all energy-mode parameters. As an example, such parameter values are listed for the
three lowest electronic states of molecular oxygen in Table 7.2. Similar tabulations for
selected diatomic molecules are provided in Appendix K. We note from Table 7.2 that
values for w, and B, vary among different electronic states owing to their unique Morse
potentials. In addition, because they reflect corrections to the basic harmonic-oscillator
and rigid-rotor models, we observe that values for w,x., o, and D, are significantly
less than those for w, and B,. A further appreciation of the influence of molecular type
and electronic state on energy-mode parameters can be gained by perusing the tables of
Appendix K.

EXAMPLE 7.3
The observed spectral frequencies (cm~!) corresponding to some significant vibronic tran-
sitions within the A'TT <~ X 'S7 electronic system of PN are as follows:

Vibronic Transition Frequency (cm™)
A (v=0) < X'S* (v =0) 39699.1
AT (v =1) < X'S* (v = 0) 40786.8
A (v=2) < X'S* (v=0) 41858.9

Using the given spectral data, calculate w, and w,.x, for the A ITT electronic state of PN.
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Solution
Combining Egs. (7.37) and (7.38), the band origin for any vibronic transition becomes

b, (v, V) =T, + [w; (W +1)—wx, (v + %)2] - [w;’ (W +3) —wlxl (v + %)2] )
Hence, for those specific transitions indicated in the above table, we have
5, (v =0, v =0)=T. + [fo, — t0x,] — [30] — tox/]
5, (V' =1, v =0)=T + 30, — Jo.x.] — [0 — jox!]
5, (V' =2,v"=0)=T + 30, - Zo,x.] — [0 — Jolx!].

Subtracting the first of these three equations from each of the remaining two equations,
we may write

5.0 =1, 0" =0)— 9, (v =0, v =0) = 0, — 2w.x" = 40786.8 — 39699.1 = 1087.7
5.(v =2, 0" =0)— i, (=0, v =0) =20, — 6.x' =41858.9 — 39699.1 = 2159.8

Simultaneous solution of these two expressions gives o, =1103.3 cm™! and w.x, =
7.80 cm™1.




PROBLEM SET Il

Quantum Mechanics and Spectroscopy
(Chapters 5-7)

3.1

3.2

Consider the Bohr model for the hydrogen atom.

a.

Using the Lyman series of spectral lines, determine the first four excited energy
levels and the ionization energy of the H atom (cm™!).

. Construct an energy-level diagram based on the energies computed in part (a).

Determine the wavelengths (nm) of the spectral lines lying closest to the infrared
for both the Lyman and Balmer series. Indicate the transitions corresponding to
these two lines on your energy-level diagram.

If Ay (s7!)is the probability per unit time that an atom in the first excited level
of H will execute a downward transition to the ground level and N, is the number
of atoms which occupy the first excited level at any instant, obtain an expression
in terms of the Rydberg constant for the rate at which energy is emitted because
of transitions fromn =2ton = 1.

. To a good approximation, the lifetime, 7, of an H atom in the first excited level

is the reciprocal of Aj;. If A, is given by

2.2
2me vy,

Ay =

3 9
EoM,C
what is the value of ? How many revolutions will an electron make before
decaying radiatively to the ground level?

Despite its simplicity, the Bohr theory can be applied directly to any hydrogen-like
ion such as He™ and Li’* consisting of one electron around a nucleus.

a.

Using a center-of-mass coordinate system and recognizing that the charge on
the nucleus is Ze where Z is the atomic number, show that the radius of allowed
orbits and the change in orbital energy (cm™!) are given by

e.h*n? o Z%*u /11

r=— AE = s—5— ,

Zm je? 8e2ch3
where p is the reduced mass and # is the principal quantum number. Calculate
the radius of the first Bohr orbit for He™.

2 2
m

. A spectacular success of the Bohr theory was its correct assignment of some solar

spectral lines caused by Het. These He™ lines correspond to a set of transitions
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3.3

3.4

3.5

for which the electron falls from a higher energy level into the n = 4 level. Derive
a formula for the wave numbers of the observed lines in this so-called Pickering
series. In what region of the spectrum do these lines occur?

c. Calculate the ionization energy (eV) of singly ionized helium.

For a two-particle system, we found that the steady-state Schrodinger equation in
relative coordinates can be solved by expressing the normalized wave function as
Y(r.60,¢) = R(r)0(0) ().
The angular component of the wave function is given by
O(0)0(¢) = AP (cosb)e™,
where m =0, £1,+2, ..., +J.

a. The z-component of the orbital angular momentum is given classically by

L; = xpy — ypx.

Use this expression to show that the quantum mechanical operator correspond-
ing to the z-component of the angular momentum is given by
5 0
L, =—ih—.
d¢
b. Prove that L, = mh by applying this operator to ®(¢).
c. Prove that L, = m# by determining the expectation value for the z-component
of the orbital angular momentum.

The root-mean-square deviation of a dynamic variable, B(r, p, t), is defined as
AB=[((B~(B))]"*.

Hence, ABis ameasure of the average fluctuation of a variable about its expectation

value. If AB is zero, the variable may assume only discrete values.

a. Demonstrate that AB = [(B?) — (B)?]'/2.

b. Show that a variable B, whose operator satisfies the equation BY = bW, where
b is a real constant, may assume only discrete values. Hence, verify that the total
particle energy is quantized.

Consider a free particle of mass m constrained to move on a circle of radius a.
a. Show that the Schrodinger equation for this case is given by
w2 d*y
21 do?
where I = ma? is the moment of inertia and 6 describes the angular position of
the particle.

:81//' 059527'[,

b. Demonstrate that the normalized solution to this equation is
w(e) — (zn)fl/Zeiinﬁ’
where n = (21¢)'/?/ h.
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c. Using an appropriate boundary condition, show that the allowed discrete energy
levels are given by
n*h?
21
d. Prove that the above eigenfunctions form an orthonormal set.

n=0,+1,£2,....

E =

e. These results can be used to construct a free-electron model of benzene since
its six 7 electrons have free access to the entire doughnut-shaped electron cloud
surrounding the conjugated carbon ring. Utilizing this free-electron model and
the Pauli exclusion principle, show that the lowest possible absorption frequency
(cm™!) for benzene is

. 3h
V= ——.
8n2cl

Consider a particle which is constrained to move in a one-dimensional box of length

L. Employing the methods of quantum mechanics, determine the following prop-

erties.

a. Evaluate the average position of the particle, (x). Is your result physically
reasonable? Why?

b. Calculate the uncertainty in position by finding the root-mean-square deviation,
AX.

c. Establish the average momentum of the particle, (p). Is your result physically
reasonable? Why?

d. Determine the uncertainty in momentum by assessing the root-mean-square
deviation, Ap.

e. Show that your standard deviations in position and momentum are consistent
with the Heisenberg uncertainty principle. What happens to the uncertainties in
position and momentum as L — 0 and as L — oco? Explain.

The normalized wave function for a one-dimensional harmonic oscillator is given
by

1 a /4 —ax?
) = Gy (;) Ha(oPx) e,

where o = /ku/h, H,(a'?x) is the vth-degree Hermite polynomial, x denotes
the displacement from the equilibrium bond length (—oo < x < 00), k is the force
constant, and u is the reduced mass. Therefore, the normalized wave functions for
the ground and first excited vibrational levels are

volx) = (%)1/4 e (o) = (%)1/4 (20" 2x) e /2,

a. Employing the steady-state Schrodinger equation, verify that o = /ku / h and
hence that & = hv(v + 1/2), where v = (27)~'\/k/u for v = 0 and for v = 1.

b. The Heisenberg uncertainty principle can be expressed as

opox > h/2,
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3.9

where the relevant standard deviations are o) = (p*) — (p)* and o7 = (x*) —
(x)2. Show that v(x) and ¥(x) give results consistent with the Heisenberg
uncertainty principle.

c. To a good approximation, the microwave spectrum of HCI consists of a series of
equally spaced lines separated by 20.9 cm™!. In contrast, the infrared spectrum
of HCI produces just one line at 2866 cm~!. Determine the fractional deviation
in bond length, o,/ x,, where x, is the equilibrium bond length for HCIl. Compare
your results for v = 0 and v = 1, and discuss the relevant physical implications.

The hydrogen atom is the only chemical species which admits a closed-form solution
to the Schrodinger wave equation. In general, the wave functions are expressed in
spherical coordinates but fortunately they are spherically symmetric for all the
s-orbitals. Consider the wave function for the 1s orbital (n =1, [ =0, ny = 0),

11\ —r/a,
w(r,e,¢>=ﬁ(z) e

where a, is the Bohr radius, given by a, = s,h?/m je*.
a. Demonstrate that this wave function is properly normalized.

b. Show that the probability density function for the radial position of the 1s elec-
tron is given by

4r2 2r
— —2r /a,
fr = e .
( ) a3

c. Determine the average radial position, 7, for the 1s orbital.

d. Calculate the uncertainty in radial position by determining the root-mean-square
deviation, Ar.

e. Evaluate Ar /F. Comment on the physical implications of your result.

The configuration for the ground state of a multielectron atom can be determined
by using the following two rules: (1) electrons must occupy the available subshells
of lowest energy; (2) the maximum number of electrons occupying any subshell
is determined by the Pauli exclusion principle. The ordering of subshell energies
needed to comply with the first rule has been obtained experimentally; in general,
the appropriate sequence to n = 5 is as follows: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, Ss, 44,
5p. Using these rules, we find the configurations for hydrogen and argon to be 1s
and 1s°2s?2p%3s23p®, respectively, where the superscript to the right of the letter
designation for / denotes the number of electrons in a subshell. Note that the sum of
the superscripts in a configuration must equal the atomic number Z (for hydrogen
and argon, 1 and 18, respectively).

The term symbol corresponding to the lowest energy for a given configuration
can also be found by using three empirical rules developed by the German spectro-
scopist Frederick Hund. Hund’s rules are as follows: (1) the state with the largest
value of S is most stable; (2) for states with the same value of S, that state with
the largest value of L is most stable; (3) for states with the same values of L and
S, that state with the smallest value of J is most stable when a subshell is less than
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half-filled while that state with the largest value of J is most stable when a subshell
is more than half-filled.

a.

Construct a table listing the configuration for the ground state of those elements
of the periodic table from Z=1to Z = 18.

. Hund’s first two rules indicate that the electronic quantum numbers n;, = £1/2

andmy =0, £1, £2,..., £/ associated with any subshell must be sequenced so
that the electrons are placed in available quantum states with the highest positive
values of Mg = > m; and M; = > m,;, where M; = M} + Mjs. On this basis,
expand the table in part (a) to include the values of L and S describing the ground
state for each atom.

. Expand the table in part (b) further by including the possible J values for each

atom and also the term symbol which describes the ground electronic state of
each atom.

. Based on your table, what are the common term symbols for the noble gases (He,

Ne, Ar), the alkali metals (Li, Na), and halogens (F, Cl)? Hence, what feature of
atomic structure is responsible for the observed periodicity of the chemical and
physical properties of the elements? In particular, how would you explain the
inertness of the noble gases and the high reactivity of both the alkali metals and
halogens?

The following exercises are concerned with determining the degeneracy of various
electronic energy levels.

a.

Two low-lying but closely-spaced, excited energy levels of helium have the config-
uration 1s2p. What are the values of L and § for each of these energy levels? For
both levels, determine the multiplicity, the term symbol and degeneracy of each
member of the multiplet, and the cumulative degeneracy (neglecting multiplet
splitting).

. Two closely-spaced, excited energy levels of atomic oxygen have the configu-

ration 1s>2s>2p33s. What are the values of L and S for each energy level? For
both levels, determine the multiplicity, the term symbol and degeneracy of each
member of the multiplet, and the cumulative degeneracy.

. Consider the following molecular term symbols: X, ?I1. List the values of S, A,

the multiplicity, and the degeneracy for each term symbol. Provide the complete
term-symbol classification (i.e., including multiplets) for each term component.

The following exercises are concerned with determining the degeneracy of various
electronic energy levels.

a.

Six closely-spaced, excited energy levels of atomic nitrogen have the configu-
ration 15°25°2p*3p. What are the values of L and S for each of these energy
levels? For each level, determine the multiplicity, the term symbol and degener-
acy of each member of the multiplet, and the cumulative degeneracy (neglecting
multiplet splitting).

. Consider the following molecular term symbols: ' =, *IT, 2A. List the values of

S, A, the multiplicity, and the degeneracy for each term symbol. Provide the
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complete term-symbol classification (i.e., including multiplets) for each term
component.

3.12 The following exercises are concerned with determining the degeneracy of various

3.13

c

a.

lectronic energy levels.

Two closely-spaced, excited energy levels of atomic nitrogen have the configu-
ration 1s*2s>2p?3s. What are the values of L and S for each energy level? For
both levels, determine the multiplicity, the term symbol and degeneracy of each
member of the multiplet, and the cumulative degeneracy (neglecting multiplet
splitting).

. Two low-lying, but closely-spaced, excited energy levels of calcium have the
configuration 1s22s?2p®3s23p®4s3d. What are the values of L and S for each of
these energy levels? For both levels, determine the multiplicity, the term symbol
and degeneracy of each member of the multiplet, and the cumulative degeneracy.

. Consider the following molecular term symbols: 2%, *A. List the values of S, A,
the multiplicity, and the degeneracy for each term symbol. Provide the complete
term-symbol classification (i.e., including multiplets) for each term component.

The following data are available for OH:

X 11 T.=0 we = 3737.76 cm™! wex, = 84.881 cm™!
B, =18911cm™! o, =0.7242 cm™! D.=1938 x 10~*cm™!
Ax*t T, =32684.1 cm™! w, = 3178.86 cm™! weXe =92.917 cm™!
B, =17.358 cm™! a, =0.7868 cm™! D, =20.39 x 10~ cm™!
. Construct an energy-level diagram for the ground electronic state of OH. Con-

sider only the energies of the first 15 rotational levels within the first two vibra-
tional levels, i.e.,J = 0—15 and v = 0, 1. Label the ordinate in cm~! and note the
total degeneracy of each individual rotational level on the diagram. Following
standard spectroscopic practice, set the zero of energy at v = 0, J = 0 of the
ground electronic state.

. Determine the energies (cm™) of the 15 purely rotational transitions for the v =
0 vibrational level within the ground electronic state and plot them on a second
energy-level diagram. Draw a vertical line representing v = 0,/ = 14—13 on
your first energy-level diagram.

. Calculate the energies (cm™!) for the rovibrational transitions P;(1) through
P1(6) and R;(0) through R;(5) of the ground electronic state; plot them on
a third energy-level diagram. Which branch will lead to a bandhead? At what
value of J” will the bandhead form? Draw lines representing the P;(7) and R (7)
transitions on your first energy-level diagram.

. Determine the energies (cm ™) for the P(1) through P(15) and the R(0) through
R(14) spectral lines for the electronic transition A 2X*(v = 0) < X 2TI(v = 0).
Employing K = J + 1 for the R-branch and K = —J for the P-branch, plot K
versus these energies for each branch on a fourth graph, which is called a Fortrat
diagram. Which branch manifests a bandhead? Why?
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e. Compare typical energies for these rotational, vibrational, and electronic tran-
sitions. What does your result imply with respect to (1) ease of mode excitation
and (2) location of lines for each mode in the spectrum?

The following data are available for CN:

X2zt T.=0 w, = 2068.59 cm™! weX, = 13.087 cm™!
B, =1.8997 cm™! @, =0.0174 cm™! D,=64x10%cm™!

B2x+ T, =25752.0cm™! w, =2163.90 cm™* WeX, =20.200 cm ™!
B, =1.9730 cm™! o, =0.0230 cm™! D,=6.6 x 10 cm™!

a. Construct an energy-level diagram for the ground electronic state of CN. Con-
sider only the energies of the first 15 rotational levels within the first two vibra-
tional levels, i.e.,/ = 0—15 and v = 0, 1. Label the ordinate in cm~! and indicate
the total degeneracy of each individual rotational level on the diagram. For con-
sistency with standard spectroscopic practice, set the zero of energy at v = 0,
J = 0 of the ground electronic state.

b. Determine the energies (cm™!) of the 15 purely rotational transitions for the v =
0 vibrational level within the ground electronic state and plot them on a second
energy-level diagram. Draw a vertical line representing v = 0, / = 13—12 on
your first energy-level diagram.

c. Calculate the energies (cm™!) for the rovibrational transitions Py(1) through
Py(6) and R;(0) through R(5) of the ground electronic state; plot them on
a third energy-level diagram. Which branch will lead to a bandhead? At what
value of J” will the bandhead form? Draw lines representing the P;(5) and Ry (5)
transitions on your first energy-level diagram.

d. Evaluate the energies (cm™!) for the P(1 +5n), n=0,...,9 and the R(5n),
n=0,...,9 spectral lines for the electronic transition B >X*(v = 0)« X 2%+
(v =0). Using K = J + 1 for the R-branch and K = —J for the P-branch, plot K
versus these energies for each branch on a fourth graph, which is called a Fortrat
diagram. Which branch manifests a bandhead? Why?

e. Compare typical energies for these rotational, vibrational, and electronic tran-
sitions. What does your result imply with respect to (1) ease of mode excitation
and (2) location of lines for each mode in the spectrum?

The following data are available for NO:

X a1 T,=0cm™! w, = 190420 cm™* WeX, = 14.075 cm™!

B, =1.6720cm™! o, =0.0171 cm™! D, =0.54 x 10°° cm™!
Azt T, =43965.7 cm™! w, =237431cm™! WX, = 16.106 cm™!

B, = 1.9965 cm™! a, =0.0192 cm™! D,=54x%x10"°cm™

a. Construct an energy-level diagram for the ground electronic state of NO. Con-
sider only the energies of the first 15 rotational levels within the first two vibra-
tional levels, i.e., / = 0 — 15 and v = 0, 1. Label the ordinate in cm~! and indi-
cate the total degeneracy of each individual rotational level on the diagram.
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For consistency with standard spectroscopic practice, set the zero of energy at
v =0, J = 0 of the ground electronic state.

b. Determine the energies (cm™!) of the 15 purely rotational transitions for the v =
0 vibrational level within the ground electronic state and plot them on a second
energy-level diagram. Draw a vertical line representing v = 0,/ = 12—11 on
your first energy-level diagram.

c. Calculate the energies (cm™') for the rovibrational transitions Py(1 + 5n), n =
0,...,5and Ri(5n), n=0,...,5 of the ground electronic state; plot them on
a third energy-level diagram. Which branch will lead to a bandhead? At what
value of J” will the bandhead form? Draw lines representing the P;(6) and R;(6)
transitions on your first energy-level diagram.

d. Determine the energies (cm™!) for the P(1) through P(12) and the R(0) through
R(11) spectral lines for the electronic transition A2X* (v = 0)« X 2TI(v = 0).
Implementing K = J + 1 for the R-branch and K = —/J for the P-branch, plot K
versus these energies for each branch on a fourth graph, which is called a Fortrat
diagram. Which branch manifests a bandhead? Why?

e. Compare typical energies for these rotational, vibrational, and electronic tran-
sitions. What does your result imply with respect to (1) ease of mode excitation
and (2) location of lines for each mode in the spectrum?
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8 Interlude: From Particle to Assembly

In this chapter, we summarize and expand somewhat on those results from quantum
mechanics and spectroscopy most germane to our study of statistical thermodynamics. We
then prepare for revisiting intensive properties in Chapter 9 by considering the nature of
thermodynamic calculations before the advent of quantum mechanics. From a pedagogical
point of view, the previous three chapters have focused on the properties of a single
atom or molecule. For our purposes, the most important such properties are the allowed
energy levels and degeneracies corresponding to the translational, rotational, vibrational,
and electronic energy modes of an independent particle. Exploiting this knowledge, we
proceed to a macroscopic assembly of atoms or molecules, with a focus on calculations
of thermodynamic properties for any pure ideal gas. Assemblies composed of different
particle types subsequently permit the evaluation of properties for both nonreacting and
reacting gaseous mixtures, including equilibrium constants for various chemical reactions.
Finally, re-applying spectroscopy to such mixtures, we examine the utility of statistical
thermodynamics for experimentally determining temperature or concentrations in realistic
gaseous mixtures at high temperatures and pressures.

8.1 Energy and Degeneracy

Our foray into quantum mechanics and spectroscopy has led to relations giving the energy
and degeneracy for all four energy modes — translation, rotation, vibration, and electronic.
If we insist on mode independence, any consideration of diatomic molecules also mandates
the simplex model, which presumes a combined rigid rotor and harmonic oscillator. The
resulting expressions, summarized in Table 8.1, provide the inputs required to evaluate the
partition function of any atom or diatomic molecule. As indicated in Chapter 4, knowledge
of the partition function, including its various derivatives with respect to temperature,
comprises a key ingredient through which statistical thermodynamics can take us from the
molecular properties of individual particles to the thermodynamic properties of particle
assemblies.

Perusing Table 8.1, we note that the translational energy has been converted to wave
number units (cm~'), thus defining a;, so as to achieve dimensional consistency with the
remaining internal energy modes. We also realize that the translational energy is unique in
depending on the assembly volume; in contrast, no other energy mode is affected by
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Table 8.1 The energy and degeneracy for the energy modes of an atom or diatomic molecule

Energy mode Energy (cm™') Parameter (cm™') Degeneracy

. h 2m\*?
Translation ay (1] +n3 +nj) U = g 27 (ﬁ) Vel2de,

. h
Rotation J(] + l)Be e — W 2J + 1
Vibration v+ 1 W, w, = L @ 1
2 2rc\
Electronic (atoms) T.-tabulations - 2T +1)
7

Electronic (molecules) T.-tabulations - p(2S+1)

macroscopic properties defining the particle assembly. Moreover, as compared to the
internal energy modes, the degeneracy for the translational mode requires representa-
tion through a probability density function. Shifting now to the internal modes, we recall
that the rotational constant, B,, for the rigid rotor and the vibrational frequency, w,,
for the harmonic oscillator can both be determined from spectroscopic measurements.
Similarly, spectroscopic measurements provide tabulations for the electronic energies of
atoms and molecules. For atoms, the required degeneracy is evaluated by summing over
a multiplet caused by different J-values; in a similar vein, for molecules, we typically sum
over a multiplet caused by spin-splitting and A-doubling. In other words, for both atoms
and molecules, the relevant expressions in Table 8.1 should be recognized as representing
effective degeneracies.

In calculating thermodynamic properties, we often find it convenient to express the
energies of Table 8.1 in terms of temperature. The conversion from either energy (J) or
wave number (cm~!) units to temperature (K) can be effected via

& e (14387 emK) 5, (8.1)
k k
where 4 is Planck’s constant, ¢ is the speed of light, k is Boltzmann’s constant, and & is
the energy in cm~!. Given Eq. (8.1), we may define characteristic translational, rotational,
vibrational, and electronic temperatures as follows:

h h h h
0 = _Catr 0, = _cBe 0, = _ca)e 0, = ?C];

(8.2)
From Table 8.1, the characteristic translational temperature is 6, ~ 1071° K for one cm? of
molecular hydrogen; even lower translational temperatures are obtained for more mas-
sive molecules or greater assembly volumes. In comparison, from Appendix K, typical
characteristic temperatures for the remaining energy modes are as follows: 6, ~ 10 K,
0, ~ 10° K, and 6, ~ 10° K. Therefore, we find that both the translational and rotational
modes are fully operative significantly below room temperature. The vibrational and elec-
tronic modes, however, become fully operative only at temperatures considerably above
300 K. As discussed further in Section 8.5.3, this observation proves to be very important
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when comparing predicted thermodynamic properties to those expected on the basis of
classical mechanics.

8.2 Separation of Energy Modes

When applying quantum mechanics to diatomic molecules in Chapter 6, we developed a
protocol for full separation of the four energy modes listed in Table 8.1. We first separated
the external mode from the three internal modes by converting to a coordinate system
that shifted all translational motion to the molecule’s center of mass. In this way, any
internal particle motion could be expressed relative to the center of mass. Therefore, the
Schrodinger wave equation for the molecule could be separated into two such equations,
one controlling the external and the other the internal motion. Solving independently for
the molecule’s external and internal contributions, we thus found that

Y = YeuVine & = Eext + Eimt 8 = Zext8int- (83)

Similarly, invoking the Born—-Oppenheimer approximation, we found that the Morse
potential describing any electronic state could be fashioned by solving the Schrodinger
wave equation for the associated electronic motion. The predicted electronic energies
defining the Morse potential presumed a continuum of stationary internuclear distances
consistent with expected vibrational dynamics. This internuclear potential, in turn, became
the primary input needed when solving the Schrodinger wave equation for combined
rotational and vibrational motion. In effect, we cultivated separation of the electronic and
rovibronic modes, so that

wint = 1,0elwrv Eint = el + Epy 8int = 8el8rv- (84)

Finally, we uncoupled the rotational and vibrational modes by (1) assuming a rigid rotor
and (2) approximating the Morse potential with its harmonic-oscillator counterpart. On
this basis, Schrodinger wave equations could be written in terms of independent potential
functions for both the rigid rotor and harmonic oscillator. These two wave equations
produced independent energies and degeneracies, so that

d’rv = wrotwvib Erv = Erot + Evib 8 = Zrot8vib- (85)

Accumulating now all of the above approximations and assumptions, we find by com-
bining Egs. (8.3-8.5) that the total energy and degeneracy for a diatomic molecule become

& =&y + Eror + Evib + Eel (86)

8 = 8ur8rot8vib&el- (87)

In other words, full separation implies independent energy modes so that the total energy is
simply the sum of all component energies. Similarly, the overall degeneracy is the product
of all component degeneracies, as anticipated on the basis of a probabilistic interpretation
of independent events. In summary, while Egs. (8.6) and (8.7) appear commonplace, we
should understand that their validity rests on three fundamental prescriptions: (1) the
Born-Oppenheimer approximation, (2) the harmonic-oscillator model, and (3) the rigid-
rotor assumption.
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Figure 8.1 Relation between 7, and 7, for ground and upper
electronic states.

8.3 The Molecular Internal Energy

If we focus on separated internal energy modes, we find from Egs. (8.4) and (8.5) that
Eint = Eel + Evib + Erors (8.8)
so that, in wave number units (cm™!),
B =T+ (v+3) e+ F(J). (8.9)

Now, despite the fact that the ground vibrational level prescribes nonzero energy, this
energy level obviously represents the lowest possible molecular internal energy outside
electronic or rotational contributions. On this basis, we find it convenient, especially when
calculating thermodynamic properties, to place the zero of energy at the lowest vibrational
level within the ground electronic state. To evaluate directly the internal energy in an upper
electronic state, we may define a revised electronic energy gap, T, as portrayed in Fig. 8.1.
Consequently, Eq. (8.9) can be rewritten as

S = T, +vw, + F(J), (8.10)

where we have dispensed with the ground vibrational energy in the upper electronic state,
as this zero-point energy is immaterial given the definition of 7..

Employing this revised zero of energy, we may conveniently simplify Fig. 8.1 by dis-
playing the various internal energy levels without their Morse potentials, as shown in
Fig. 8.2. Here, we have indicated the energy levels for vibration and rotation within both
the ground (X') and first excited (A) electronic states for a generic diatomic molecule.
The revised electronic energy gap, 7., which bridges the v” = 0 and v = 0 vibronic lev-
els, is also shown for clarity in Fig. 8.2. The vibrational energy gap, Ae,, is invariant for
the harmonic oscillator, but actually decreases at higher vibrational levels for the anhar-
monic oscillator. In contrast, the rotational energy gap, Ag,,;, always rises with increasing
rotational quantum number. For visualization purposes, energy-level diagrams are quite
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Figure 8.2 Vibrational and rotational levels in the A and X
states. T
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convenient for displaying molecular internal energies, as enumerated via Eq. (8.10). Such
diagrams are also helpful when portraying specific rovibronic lines in the spectrum, as
exemplified for the R(1) transition in Fig. 8.2. Finally, we note that

Agror < Agyip < Agep

in other words, the energy gap for the vibrational mode is less than that for the elec-
tronic mode but greater than that for the rotational mode. This result is, of course, con-
sistent with the characteristic temperatures for the internal energy modes, as discussed in
Section 8.1.

8.4 The Partition Function and Thermodynamic Properties

Separation of energy modes plays an important role not only in the evaluation of micro-
scopic properties, but also in the evaluation of macroscopic properties. Recall from
Chapter 4 that all thermodynamic properties in the dilute limit are related to the nat-
ural logarithm of the partition function. This observation is very significant because it
ultimately testifies that such properties can be evaluated by simply adding the separate
contributions arising from each independent energy mode. Consider, for example, the
usual separation between the translational and internal energy modes, as indicated by
Eq. (8.3). For this case, the partition function becomes

e Eirk T Einl
7 — § :gje ej/ kT _ Ek[:gtr,kgim,lexp |:_ tr o int :| ’
] s

so that

Z= {Z 8ir.k e_smk/kT} :Z 8int,l e fim /kT} = Ztr Z’nt-
k !
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More generally, for the four independent energy modes of any diatomic molecule, we
obtain

Z="Z4Zro1 Zoiv Zel (811)
InZ=InZ,+InZ, +1InZ,;, +1In Z,, (8.12)
so that the partition function is multiplicative and its logarithm is, of course, additive.
Because all thermodynamic properties in the dilute limit can be expressed in terms of
In Z, Eq. (8.12) implies that such properties are also additive over the available energy

modes. As an example, substituting Eq. (8.12) into Eq. (4.36), we obtain, for the specific
internal energy,

L:T oln 7, LT 0ln Z,,; LT oln Z,; LT dln Z, .
RT aT ), aT ), ar )y, aT )y,

For the specific entropy, on the other hand, we have from Eq. (4.40)

5= () (D (R, =
where

(LT n(E)e
for the translational energy mode and

(.7 (15), o

for each of the internal energy modes. Comparing Egs. (8.14) and (8.15), we note that
all terms independent of Z are incorporated with the translational contribution. Because
these terms must be counted only once, they are included with the most easily excited
mode and thus omitted from all internal modes. The same procedure must, of course, be
invoked for all remaining thermodynamic properties. Given Egs. (4.36-4.42), you should
thus recognize that A, = ine, it = Aine, ANA Cp iy = Cy it

Separation of energy modes also facilitates probability calculations associated with
statistical thermodynamics. If, for example, we wish to determine the probability of being
in a specific rotational, vibrational, and electronic energy level, we obtain from Egs. (4.14)
and (8.8)

Prol, vib,el — = kT

Nrot,vib,el 8rot8vib8el |: Erot T Evib + geli|
1,
N Zrot Zvib Zel

where the partition function and degeneracy can both be factored into their components,

Zint = ZrolZvib Zel 8int = 8rot8vib&el
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Figure 8.3 Coordinates describing the motion and thus degrees of free-
dom for a diatomic molecule.

XY, 2)

from Eqgs. (8.7) and (8.11). If we now wish to evaluate the probability of being in a specific
rotational energy level, regardless of the possible vibrational and electronic levels, we need
only sum over all possible vibrational and electronic energy levels, thus obtaining

Noot Z gratgvzbgel ex |: Erot + Evib + 5el:| 8rot e*Sm//kT
r()l - T, = - =7 Ean— ’
rot Zwb Zel kT Zrot

vib el

as

—evip | KT _ —&e/ kT
Zuiv =Y gupe "/ Zy=" gae "
el

vib

Therefore, for independent energy modes, the Boltzmann distribution may be applied in
the same fashion to any single mode as well as to any group of such energy modes.

8.5 Energy-Mode Contributions in Classical Mechanics

In preparation for statistical thermodynamic calculations, we now consider classical contri-
butions from various energy modes to the macroscopic internal energy and heat capacity.
Our eventual goal is to compare classic and quantum allocations from each of the trans-
lational, rotational, and vibrational modes. We begin by recognizing that, from a classical
perspective, each atom of a molecule can be characterized by three position coordinates.
Consequently, for a molecule composed of n atoms, the temporal motion of the entire
molecule requires 3n position coordinates. We thus say that the molecule has 3n degrees
of freedom. Consider, for example, the diatomic molecule of Fig. 8.3, which must have
six degrees of freedom. Based on our discussion in Chapter 6, these six degrees of freedom
can be distributed in the following way. First, three degrees of freedom are needed to
describe translation of the molecule’s center of mass (X, Y, Z). Second, two degrees of
freedom are required to describe its rotation about two orthogonal axes (y, z) perpendicu-
lar to the internuclear axis. Third, one degree of freedom is necessary to describe vibration
of the molecule along the internuclear axis (x) . Consistent with this description, we recall
that for a diatomic molecule the translational mode leads to three quantum numbers, the
rotational mode can be described by two quantum numbers, and the vibrational mode
mandates one quantum number. Hence, we see that each degree of freedom can be associ-
ated with a single quantum number, thus establishing a very robust link between classical
and quantum mechanics.
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dr

dp

Figure 8.4 Phase-space diagram; each dpdr cell represents a different
continuous value of energy.

v

8.5.1 The Phase Integral

To assess the contribution from each classic energy mode to the internal energy, u, or
to the specific heat, c,, we must develop a classical representation of the partition func-
tion. In pursuit of this goal, we introduce the concept of phase space, which provides the
necessary link between quantum and classical mechanics. To this end, we recall that, for
the one-dimensional harmonic oscillator, the Hamiltonian defining the total energy of a
conservative system is given by

p? 1 2
H(p,r)= o + 5 kor”, (8.16)

where p and r are the momentum and position, respectively. Now, Eq. (8.16) reflects an
important result from classical mechanics, namely that each degree of freedom mandates
a position and momentum coordinate (Appendix G). In fact, the central importance of
momentum and position in classical mechanics is manifested by the phase-space diagram,
as shown in Fig. 8.4. Because Eq. (8.16) signifies the Hamiltonian, we see that each cell of
area dpdr in phase space can be taken as representing a single classical value of continuous
energy. Therefore, we may assert that the number of quantum states within a single cell in
phase space must be the classical analog to the degeneracy.

The correspondence principle indicates that classical solutions must be replicated by
quantum mechanics in the limit of continuous energies, i.e., when Ae <« kT. Therefore, for
a single degree of freedom, the classical version of the partition function should become

Z=> gje /" ~ / e /M dg = / e Hen/KT gg, (8.17)
]

where dg represents the degeneracy for one degree of freedom in the energy range, ¢ to
¢ + de. Because classical energy can always be portrayed within phase space, we pre-
sume that the classical counterpart to the differential degeneracy for one momentum and
position coordinate can be expressed as

dg = Cdpdr, (8.18)

where the constant, C, must be chosen to ensure that the classical and quantum results
agree at the classical limit. Substituting Eq. (8.18) into Eq. (8.17), we thus obtain per degree
of freedom

Z=Cp=C / / e PN g iy, (8.19)
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& = constant p

v+1

Figure 8.5 Areain phase space representing a single
quantum state for the harmonic oscillator.

v

where the integration is carried out over all phase space, so that ¢ is known as the phase
integral.

Equation (8.19) is highly significant as it relates the partition function, which implies
quantum mechanics, to the phase integral, which implies classical mechanics. More impor-
tantly, while a definite point in phase space is permitted by classical mechanics, the same is
not true of quantum mechanics owing to the uncertainty principle. On this basis, the value
of C establishes a statistical mechanical adumbration of the correspondence principle. In
particular, we note from Eq. (8.18) that C can be interpreted as the number of quantum
states per area in phase space. As a result, the inverse of C must be the area in phase space
corresponding to a single quantum state.

Given the above rationale, we now evaluate C by introducing a phase-space represen-
tation of the classic harmonic oscillator. From Eq. (8.16), curves of constant vibrational
energy in phase space can be expressed as

where o> = 2ue and B2 = 2¢/ky. Therefore, for the harmonic oscillator, we find that all
combinations of momentum and position giving the same total energy define an ellipse in
phase space. The area circumscribed by this ellipse is given by

A=maB =2me/pu/ky=¢/v, (8.20)

where Eq. (6.42) has been used to express Eq. (8.20) in terms of the fundamental vibrational
frequency, v. Because the inverse of C is the area in phase space corresponding to one
quantum state, we may evaluate C by determining the difference in phase-space area
for two successive vibrational quantum numbers, as this incremental area identifies a
single quantum state for the harmonic oscillator. Utilizing Fig. 8.5, we can determine
the appropriate difference in phase-space area by substituting Eq. (6.49) into Eq. (8.20):

(v—{-%)hv—(v—l—%)hv

Vv

Av+1)—Aw) = =h.

Remarkably, we find that Planck’s constant can be uniquely interpreted as the area in
phase space corresponding to a single quantum state!
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By exploiting the phase-space representation for a classic harmonic oscillator, as por-
trayed in Fig. 8.5, we have shown that C = A~!. Given the magnitude of Planck’s constant,
we immediately recognize that the number of quantum states per area of phase space is
overwhelmingly gigantic. More significantly, we find that Eq. (8.19) becomes

1
z=- / / e HONIKT gy gy (821)

for a single degree of freedom. Consequently, for n degrees of freedom, the partition
function can be related to the phase integral through

%
Z= R (8.22)
where the phase integral itself can be expressed compactly as
0= // e Hp.D)/KT gy qny. (8.23)

n

As an example, for a Cartesian coordinate system having three degrees of freedom,
Eq. (8.23) becomes

(p:/ / / / / / e_H(”")/depxdpydpzdxdydz,

where H(p, r) has been cast in terms of the generalized momentum and position vectors,
p and r, thus indicating a potential dependence on all three momentum and position
coordinates.

8.5.2 The Equipartition Principle

Having defined the phase integral, we are now prepared to evaluate the classical con-
tributions to u and ¢, from the translational, rotational, and vibrational energy modes.
As discussed in Chapter 9, the electronic mode cannot be considered as its input always
requires the application of quantum mechanics. In general, the contribution from each
classical energy mode is prescribed by the equipartition principle, which can be stated as
follows.

Each independent pure quadratic momentum or position term in the classical
energy of a particle contributes R7T/2 (R/2) to the thermodynamic internal energy
(heat capacity) per mole.

To prove this principle, we again make use of the harmonic oscillator. For this case,
Eq. (8.16) shows that the pure quadratic momentum term is p?/2u while the pure quadratic
position term is kyr?/2. Therefore, to determine allocations to u or ¢, from such pure
quadratic terms, we need only substitute Eq. (8.16) into Eq. (8.21). The result for a single
degree of freedom is

1 [e'S) oo p2 ](0,,2 1
Z—- - BV apdr = — /27 pkT - /22kT
h/oo/weXp[ 2ukT 2kT} pdr = 3N 2mukT - J2mkT [k,

where we have conveniently separated the contributions to the partition function from the
independent momentum and position terms.



8.5 Energy-Mode Contributions in Classical Mechanics ¢ 167

Table 8.2 Classical contributions from the translational, rotational, and vibrational energy
modes to the internal energy and heat capacity for a diatomic molecule (see Fig. 8.3)

Contribution Translation Rotation Vibration Total
. 1 1 pf kox?
Classical energy P (Px + Py + p%) 57 (L + L) o + =
Degrees of freedom 3 2 1 6
3 7
Internal energy (u) 3 RT RT RT 5 RT
. 3 7
Heat capacity (c,) 3 R R R 3 R

On this basis, whether derived from a pure quadratic momentum or position term, the
universal contribution to the partition function in either case is given by

1
InZ= 5 In T + constant.

Hence, from Eq. (4.360), the allocation to the internal energy from either pure quadratic

term is
i:T dln Z 21.
RT or )y, 2

Similarly, from Eq. (4.41), the contribution to the heat capacity from either term must be

o [0 72 dlnZ 1

R |dT aT )1, 2
Therefore, at thermodynamic equilibrium, we have shown that any pure quadratic term
contributes RT/2 to the internal energy per mole and R/2 to the heat capacity per mole.

This conclusion is clearly unaffected by whether the pure quadratic term is based on
momentum or position; thus, we have verified the classical equipartition principle.

8.5.3 Mode Contributions

By invoking the equipartition principle, we can determine the internal energy and heat
capacity for a classic diatomic molecule, as summarized in Table 8.2. The translational
mode is characterized by three pure quadratic momentum terms, one for each transla-
tional degree of freedom. Similarly, the rotational mode has two degrees of freedom,
corresponding to two pure quadratic momentum terms. In comparison, the vibrational
mode possesses a single degree of freedom, but two independent quadratic terms, one
based on momentum and the other based on position. The additional quadratic term for
vibration arises from its potential energy, which is totally missing from both the trans-
lational and rotational modes. In summary, the classical energy for a diatomic molecule
displays seven pure quadratic terms; the implication is an internal energy and heat capacity
per mole of 3.5RT and 3.5R, respectively, as distributed among the three classical energy
modes in Table 8.2. For a monatomic gas, comparatively, we have only three pure quadratic



168 ¢ Interlude: From Particle to Assembly

7 Translation
2] +
Rotation
¢, 5| Translation
R 2 +
Rotation
7<6,=1000K +
3 ] <~ | Vibration
2 | Translation
T7>6,=10K
— >

T

Figure 8.6 Influence of temperature on the specific heat of a typical diatomic molecule. The
translational mode is fully excited at low temperatures, the rotational mode becomes fully
excited at intermediate temperatures, and the vibrational mode becomes fully excited at the
highest temperatures.

translational contributions, so that we would expect the internal energy per mole to be
1.5RT and the heat capacity per mole to be 1.5R.

As we will see in the next chapter, classical predictions for internal energy and spe-
cific heat agree very well with quantum predictions for monatomic gases; however, the
agreement is usually quite poor for diatomic gases, except at temperatures approaching
1000-2000 K. This behavior can be understood by taking into consideration the charac-
teristic mode temperatures of Section 8.1. In particular, we recall that the translational
and rotational modes have characteristic temperatures much less than 300 K, while the
characteristic temperature for the vibrational mode is ordinarily much greater than 300 K.
Therefore, the translational and rotational modes become fully excited, thus matching their
classical contributions, at room temperature, while the vibrational mode approaches full
excitation only at much higher temperatures. On this basis, we would expect the diatomic
internal energy and heat capacity per mole to be 2.5RT and 2.5R, respectively, near room
temperature. More generally, the influence of temperature on specific heat for a diatomic
molecule follows the behavior displayed in Fig. 8.6. Each plateau signals full excitation
of an energy mode with rising temperature: first for the translational mode, then for the
rotational mode, and finally for the vibrational mode. This fascinating behavior clearly
reflects the importance of quantum mechanics, thus providing further motivation for our
continued study of statistical thermodynamics, especially when applied to gaseous systems
strongly influenced by vibrational and electronic motion.

Problems enhancing your understanding of this
chapter are combined with those for Chapter 9
in Problem Set I'V.



9 Thermodynamic Properties
of the Ideal Gas

To this point, our study of statistical thermodynamics has provided a methodology for
determining the most probable macrostate when considering an isolated system of inde-
pendent particles. The most probable macrostate, in turn, has spawned mathematical defi-
nitions for both the internal energy and entropy in the dilute limit, thus producing general
analytical expressions for all intensive thermodynamic properties of the ideal gas, as dis-
cussed in Chapter 4. These properties are inherently expressed in terms of the partition
function, which mandates information on those energy levels and degeneracies associ-
ated with a particular atom or molecule. Obtaining such data has provided the rationale
for our study of quantum mechanics and spectroscopy. Now that we have access to the
necessary spectroscopic information, we are finally prepared to calculate the properties
of the ideal gas. We begin, for simplicity, with the monatomic gas, which requires only
knowledge connected with the translational and electronic energy modes. We then move
on to the diatomic gas, which demands additional information based on the rotational
and vibrational energy modes. Finally, we consider the polyatomic gas, which thus far has
received little attention in our deliberations related to either statistical thermodynamics
or quantum mechanics.

9.1 The Monatomic Gas

Typical monatomic gases include the noble gases, such as He and Ar, and elemental radicals,
such as atomic oxygen and nitrogen. For such gases, rotation and vibration are irrelevant;
thus, we need only consider the translational and electronic energy modes. Based on its
extremely low characteristic temperature, the translational mode will produce thermody-
namic properties that comport well with the expectations of classical mechanics. Contri-
butions from the electronic mode, however, must build more directly on our knowledge of
quantum mechanics and spectroscopy. For both modes, the entrée to property calculations
rests, as expected, with their explicit linkages to the molecular partition function.

9.1.1 Translational Mode

In Section 5.7, we applied quantum mechanics to the particle in a box. The salient
result, from Eq. (5.58), is an expression for the translational energy of a single gaseous

169
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atom, namely,
h2

8mV?/3
where the three spatial quantum numbers, n, 1y, and n3, can each take on any value
from unity to infinity. As discussed in Section 8.4, the contribution to thermodynamic
properties from any independent energy mode can be ascertained by first determining its
contribution to the partition function. For the translational mode, the partition function
can be evaluated most directly by summing over states rather than over levels. On this
basis, we obtain from Eq. (4.13)

2
Zi= Y 30 e |- k)|

11}’[21)1;1

& = (n} +nd +nj),

thus giving for the translational partition function,

p & o,n* ’
o [Zexp <_T)} , (9.1)

n=1
where, from Eq. (8.2), we have introduced the characteristic translational temperature,
h2

8mkV2/3"
We note that the summation of Eq. (9.1) is identical for the three translational quantum
numbers. Moreover, by summing over all possible values from unity to infinity, we are
indeed accounting for each quantum state, as identified by its unique set of translational
quantum numbers.

From Section 8.1, we recall that 6, ~ 10716 K; thus, for any realistic assembly tempera-
ture, the summation in Eq. (9.1) can be converted to an equivalent integration (Appendix
D.3). In other words, because of the incredibly minute separation between consecutive
translational levels, we may assume a continuous distribution of translational energies, as
might be expected from classical mechanics. Consequently, from Appendix B, Eq. (9.1)

becomes
o0 O, S (1 [x1)
tn b
7, = ——|d =1 /—1 , 9.3
{/0 eXp( T) ”} {2 el} ©3)

so that, substituting Eq. (9.2) into Eq. (9.3), we obtain

32

6, = 92)

h2

The translational partition function, as defined by Eq. (9.4), can also be derived (Prob-
lem 4.2) by either (1) summing over energy levels using the density of states of Eq. (5.61)
or (2) evaluating the phase integral, as given by Eq. (8.23). These alternatives, especially
that invoking the phase integral, bespeak gargantuan numbers of energy levels separated
by miniscule energy gaps, so that we can easily replace discrete with continuous energies.
For this reason, quantum mechanics is actually unnecessary for the translational energy
mode; hence, the equipartition principle is perfectly suitable for calculating translational
contributions to thermodynamic properties.
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Because the characteristic temperature for the translational mode is so much smaller
than that for the various internal energy modes, the total number of quantum states for an
atom or molecule is essentially equivalent to that for the translational mode. Therefore,
our previous criterion for the dilute limit, as specified by Eq. (4.18), can be expressed as

Z  Zy (2nmkT\* (V
N o~ W = <T> (N) > 1. 9.5)
For an ideal gas at its standard temperature and pressure of 298.15 K and 1 bar, Eq. (9.5)
typically gives Z,/N ~ 10°, which certainly supports the dilute limit. We note, however,
that according to this revised criterion, dilute conditions may not exist at low temperatures
or high densities, especially for particles with nearly zero mass.
Employing the translational partition function, we may now evaluate the contributions
of the translational mode to the thermodynamic properties of an ideal gas. Considering,
for example, the internal energy, we have from Egs. (4.36) and (9.4)

u dln Z, 3
( RT)tr < oT ) v 2 06)
Similarly, for the specific heat at constant volume, we have from Eq. (4.41)
Cy 0 dln Z, 3
A IR P A s =, 9.7
( R >lr |: oT ( oT )} v 2 ©D

Therefore, the translational contribution to the internal energy per mole is 1.5RT and
that to the heat capacity per mole is 1.5 R, which is in perfect accord with our expectations
from the equipartition principle. Substituting Egs. (9.6) and (9.7) into Egs. (4.37) and (4.42),
respectively, we also find that the translational contributions to the specific enthalpy and
specific heat at constant pressure are as follows:

h 5 (cp) 5

RT), 2 R/w 2
At this point, the pressure can be easily determined by combining aspects of classical
and statistical thermodynamics. In particular, the pressure can be expressed classically

(Appendix F) as
_p= (2—3) , 9.8)
TN

while the Helmholtz free energy, from Eq. (4.28), is

A= _NKT [m (%) + 1} .

Recalling that Z = Z(T, V'), we thus obtain the general relation

InZ
P:NkT(an > . (9.9)
v ),

Applying Eq. (9.9) to the translational mode, we then obtain, by substitution from
Eq. (9.4),

PV = NkT, (9.10)
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which is, of course, the equation of state for an ideal gas. The obvious implication here
is that pressure arises solely from the translational mode, as surely expected from the
momentum exchange occurring at all walls for vessels containing independent gaseous
particles. On this basis, the partition function for each internal energy mode must depend
solely on temperature, as verified for all such modes later in this chapter.

Finally, for the entropy, we find from Egs. (4.40) and (9.4) that

<i> = §ln LkaT + In Z —i—é
R/v 2 h? N 2’

which becomes, after substitution from Eq. (9.10),

s )2 52
<7e)tr —1In [—(2 )h3I§kT) } + % (9.11)

Presuming proper evaluation (Problem 4.1), Eq. (9.11) can be converted to the famous
Sackur—Tetrode equation for translational entropy:

(%)tr - %lnT—i— %lnM—lnP— 1.1516, (9.12)
where T is the temperature (K), M is the molecular weight (kg/kmol), and P is the pres-
sure (bar). Based on Eq. (9.5), the Sackur-Tetrode equation, which holds only in the
dilute limit, is obviously inappropriate for temperatures approaching absolute zero. Hence,
the fact that Eq. (9.12) gives an entropy value of negative infinity at 7'= 0 should not
be considered problematic.

EXAMPLE 9.1
Determine the contribution to the Helmholtz free energy (kJ/mole) from the translational
energy mode at 500 K and 2 bars for monatomic helium.

Solution
From Eq. (4.38), the translational contribution to the Helmholtz free energy for an ideal

gas is
(.~ (%) ]

Employing Egs. (9.4) and (9.10), we find that

Zr  (2mmkT\*? (kT
N \ R rP)

Substituting for the given conditions and for appropriate fundamental constants, we obtain

3 (KT
h3P

% = (2mm)

— [27(4.0026)(1.6605 x 10~27)]*/ { [(1.3807 x 102)(S00)" } ,

(6.6261 x 10-34)3(2 x 105)
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from which we calculate Z,/N = 5.808 x 10°. On the other hand, because this rather
cumbersome expression has already been simplified via Problem 4.1, we could also find
the same answer more quickly from

ZTr T5/2M3/2
— =0.02595——,
N P

where M is the molecular weight and P is the pressure in bars. In either case, we now have

a Zyy _ o
(R_T),, T [m (W) + 1} = —(13.272 + 1.000) = —14.272.

Evaluating the Hemholtz free energy, we thus obtain, for the translational mode,

a, = —14.272(8.3145 J/K - mol)(500 K) = —58.333 kJ/mol.

9.1.2 Electronic Mode

The contribution to the partition function from the electronic energy mode requires a
direct summation based on relevant term symbols and energy levels (cm™'), as tabulated
for selected species in Appendix J. In most cases, only the first few electronic levels need
be considered because of the improbability of populating highly excited levels at typical
temperatures. Nevertheless, an appropriate cutoff criterion must be established on a case-
by-case basis, especially at higher temperatures. Consider, for example, data for the first
three electronic levels of gaseous aluminum, as listed in Table 9.1. For this case, we would
normally require only the first two levels when calculating the partition function because
of the huge gap in energy between the second and third levels. Hence, from Eq. (4.12), the
partition function evaluated at 1000 K would become

(1.4387 cm - K)(112.1 cm ™)
1000 K

Zy=go+gie /T =2+ dexp [ } = 5.4042.

Now, from Chapter 4, we recall that the contribution from any energy mode to proper-
ties such as the internal energy and heat capacity is based on the evaluation of two standard
partial derivatives of the partition function with respect to temperature, namely,

T(aan) [iTz(aan)} .
T ), T aT )1,

Unfortunately, for the electronic case, contributions to these two expressions can be
derived only via term-by-term differentiation of Z,. The salient results, following much

Table 9.1 Electronic data for
atomic aluminum

Term symbol T, (cm™)
2 P1/2 0
2Py 1121

2810 25,3478
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algebra, are as follows:

dln Z, Z
T( - 1) _ Zd (9.13)
T )y~ Za
3 dIn Zy z" Z'\’
—1r =) =24-(Z£) . 9.14
|:3T ( aT >]v Zel (Zel> ©14)
where
Za =) gje" (9.15)
j
L= gi(ej/kT)e /KT (9.16)
j
n= g (ej/kT) e /4. (9.17)
J

The immediately preceding expressions provide the requisite tools for evaluating elec-
tronic contributions to thermodynamic properties for any ideal monatomic gas. Given
Eqgs. (9.13) and (9.14), for example, we immediately recognize from Egs. (4.36) and (4.41)
that

u h Z,
) = =) =Ze 9.18
(RT)@I (RT)el Zel ©-18)
c c z Z\?
v )4 el el
) =(22) = - =) . 9.19
(R)el (R>el Ze[ (Zg[) ( )
Similarly, from Eq. (8.15), we obtain for the electronic contribution to the entropy,
s z,
—) ==%+InZ,. 9.20
(%), Zg T (20

EXAMPLE 9.2
Calculate the specific heat at constant volume (J/K-mol) for monatomic nitrogen at
3000 K.

Solution
From Eq. (9.7), the translational contribution to the specific heat at constant volume for
any ideal gas is
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whereas the electronic contribution, from Eq. (9.19), is
(Cv ) Za < Zu ?
R/ o Ze] Zel '

The electronic contribution to any thermodynamic property can be easily determined by
setting up the following table, where from Eq. (8.1)

Sj hC 51‘ ~]‘

—+ = — | =) =(1.4387 cm-K) -=.

kT k (T) ( ) T
gj(cm™) g ej/kT  gjesi/kT gi(e;/kT)e si/kT gi(g;/ kT)*e=ci/kT

0 4 0 4 0 0
19,229 10 9.2216 9.8880 x 10~* 9.1183 x 103 8.4086 x 1072
28,839 6 13.830 59137 x 10°° 8.1787 x 107 1.1311 x 1073
4.0010 9.2001 x 1073 8.5217 x 1072

Here, we consider the first three electronic energy levels of atomic nitrogen, based on the
listed term symbols and energies of Appendix J.1. The energy corresponding to the fourth
level is 83,322 cm~!, which proves much too high to produce any further influence on
thermodynamic properties at the given temperature of 3000 K. The final row of the table
contains sums for the last three columns, which conveniently represent Z,;, Z/,, and Z7),
respectively. Employing the calculated data from this table, the electronic contribution to
the specific heat at constant volume becomes

Rle  Zy Zel 4.0010 4.0010

Hence, summing the translational and electronic contributions, the dimensionless specific
heat at constant volume for monatomic nitrogen at 3000 K is

(&) - zy (5)2 _83217x1072 <9.2001 x 103)2 00219,

% - (%)n + (C_I;)el = 1.5000 +0.0213 = 1.5213,

so that
¢, = 1.5213R = 1.5213(8.3145 J/K - mol) = 12.649 J/K - mol .

9.2 The Diatomic Gas

Evaluation of thermodynamic properties for diatomic gases requires that we take into con-
sideration the rotational and vibrational modes as well as the translational and electronic
modes introduced during our earlier discussion of monatomic gases. For the diatomic case,
complete mode separation necessitates the simplex model, i.e., the combined rigid rotor
and harmonic oscillator. Using this model, property calculations are reasonably straight-
forward as we need only sum relevant contributions from each independent energy mode.
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In particular, for any diatomic molecule, separate contributions from the rotational and
vibrational modes are merely added to those previously demonstrated from the transla-
tional and electronic modes.

9.2.1 Translational and Electronic Modes

Translational and electronic contributions to the thermodynamic properties of a diatomic
gas can be determined in the same manner as for the monatomic gas. However, the trans-
lational partition function must be based on a conversion to center-of-mass coordinates,

so that
2emkT\>?
er=<7) |4 m=my + ny,

where the total mass now represents both nuclei of the chosen diatomic molecule. For the
electronic mode, we observe that the upper energy levels of many diatomics tend to be
substantially higher than the ground electronic level. Hence, from Eq. (9.15), the electronic
partition function can often be approximated by

Zy=) gje 1K ~ g (9.21)
J

Care must be exercised, however, because notable exceptions, such as O, and NO, are
inherently problematic even at modest assembly temperatures. Furthermore, any sub-
stantial electronic contribution demands adherence to a consistent zero of energy, as we
discuss next before addressing the influence of rotational and vibrational modes on various
thermodynamic properties.

9.2.2 The Zero of Energy

Recall from Section 8.3 that the zero of energy for a diatomic molecule can be set at
either the minimum of the Morse potential defining the ground electronic state or at
the ground vibrational level within this particular Morse potential. Another possibility
is to set the zero of energy at the ground electronic state corresponding to those atoms
produced by dissociation of the diatomic molecule. The latter requires that we define the
dissociation energy, D, as well as the binding energy, D,, as portrayed in Fig. 9.1. From this
perspective, Table 9.2 lists the various possibilities for establishing the zero of energy and
thus for defining the internal energy of any diatomic molecule. For each of the four possible
cases, the vibrational and rotational energies are calculated based on mode parameters
for the upper electronic state; however, if 7, = 0 or 7, = 0, the molecular internal energy
must, of course, be defined by using only those parameters associated with the ground
electronic state.

When evaluating thermodynamic properties for an assembly containing a pure ideal
gas, the T, -formulation having the zero of energy at the ground vibrational level within the
ground electronic state is, by far, the most common choice. This preference derives from its
conformance to spectroscopic measurements, which inherently monitor energy differences



9.2 The Diatomic Gas ¢ 177

Table 9.2 Formulations defining the zero of energy and the internal energy for a diatomic
molecule

Formulation Zero of energy Internal molecular energy

T Ground vibrational level within ground T, +vw, + F(J)
electronic state

T, Minimum of Morse potential for ground L+@w+1) e+ F(J)
electronic state

D, Ground electronic state of dissociated atoms T, + vw, + F(J) — D,

D, Ground electronic state of dissociated atoms T+ (v+13) w+F(J)-D.

with respect to the ground vibroniclevel. Moreover, because the 7,-option is ubiquitous for
the JANAF tables, comparative consistency demands that we follow this accepted custom.
However, for an assembly containing a reactive mixture, the D,-formulation having the
zero of energy at the ground electronic state of the dissociated atoms becomes mandatory,
as we shall discover in Chapter 10.

We note, by the way, that the binding and dissociation energies are related through the
zero-point vibrational energy within the ground electronic state, i.e.,

D, =D, + %we

when employing the harmonic-oscillator model. Nonetheless, Table 9.2 clearly indicates
that the ground-state vibrational energy can be either included or excluded when choosing
a zero of energy. While either is permissible, you must obviously be careful not to mix
two different formulations when making thermodynamic calculations. In most cases, such
problems can be avoided by simply sticking with the standard 7.-formulation established
by those scientists and engineers who originally specified the thermodynamic procedures
for the JANAF tables (Appendix E).

Figure 9.1 Parameters influencing the zero of energy for
diatomic molecules.
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9.2.3 Rotational Mode

From Table 8.1, the energy levels and degeneracies for the rigid rotor are given by
Fror = % —JJ+1)B, g =2J+1

so that the rotational partition function becomes

o0

oot = Zgje—w/kT — Z 2J + 1) exp[—J(J + 1),/ T]. (9.22)
7 J=0
Here, the characteristic rotational temperature, from Eq. (8.2), is
he h?
O =—B, = s—5—, 9.23
"k 8wk, ©-23)

for which the moment of inertia I, = Mrez. Unfortunately, for a homonuclear diatomic such
as O, or Np, we have inadvertently overcounted the number of available quantum states
by a factor of two because of the inherent indistinguishability of the nuclear pair. This
complication derives from symmetry requirements on the molecular wave function, as
generated by the usual coupling between nuclear spin and orbital rotation. As a result,
the partition function is restricted to only odd or even values of the rotational quantum
number, a feature explored in considerably more detail in Section 9.2.4. For now, based on
Eq. (9.22), we simply assert that the rotational partition function can be expressed more
generally as

o0

1
Zyor = — > @7 + 1) exp[-T(J +1)6,/T), (9.24)
J=0
where o is a symmetry factor, which, by definition, takes values of unity for a heteronuclear
and two for a homonuclear diatomic molecule.
Typically, 6, < T, so that Eq. (9.24) can be evaluated by using a standard Euler—
Maclaurin expansion (Appendix D.3), thus giving (Problem 1.13)

T Lo\ . 1 (6\ 4 (6)
Zin=— |1+ = — = — | = 9.25
ot 09,|:+3<T>+15(T) Tas\7) T (025)
If, on the other hand, 6, < T, the summation in Eq. (9.24) can be converted to an integra-
tion, as for our evaluation of the translational partition function. The obvious result from
Eq. (9.25)is
T

Zrot = O‘@r.

(9.26)

Now, for nearly all diatomics, 6, >~ 2 K, so that Eq. (9.20) is perfectly suitable for most
computations. However, for molecules containing a hydrogen atom, such as HCI or OH,
0, >~ 15 K; thus, for such cases, Eq. (9.25) becomes necessary. In contrast, direct summation
via Eq. (9.24) remains a requirement for Hy, as here 6, = 87.55 K. The various scenarios
are entirely consistent with Eq. (9.23), which implies a more rigorous procedure when cal-
culating the rotational partition function for lighter molecules. In fact, based on Eq. (9.25),
a cumulative error of less than 1% can be ensured when calculating Z,,, if we simply follow
the protocol delineated by Table 9.3.
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Table 9.3 Protocol for evaluation
of the rotational partition function

Condition Equation
T/6, <3 9.24
3<T/6, <30 9.25
T/6, > 30 9.26

As suggested previously, the most common scenario occurs when 7/6, > 30; here,
Eq. (9.26) controls so that our two standard partial derivatives for the partition function
with respect to temperature become

T 0ln Z,; _1 iTz 0ln Z,; _
oT v oT oT v

Therefore, as for the translational mode, we again replicate the classical results predicted
by the equipartition principle:

h
(L) - <_> —1 (9.27)
RT/ ror RT ).,
Cy Cp
=2) =(2L) =1. 9.28
( R>rot ( R )rol ( )
In addition, using Eq. (8.15), we obtain, for the rotational contribution to the entropy,
s T
=) =1+1 . 9.29
<R)rol + n(a@,) ( )

For heteronuclear diatomics containing atomic hydrogen, 3 < 7/6, < 30, which
implies utilization of Eq. (9.25); for this case, the rotational partition function can be
expressed as

T
Zrot = (7_9r Zer

where we have defined the rotational correction term,

1/6, 1 /6,\> 4 [6,\°
Ze=1+-(Z)+—(Z —(Z .
+3<T)+15<T> +315<T) + (9:30)

Evaluating our two standard partial derivatives, this time term-by-term, we find, after
much algebraic manipulation,

aln 7, z
T (%) =1-2% (9.31)
v re

3 dln Z, A 7' \?
[ﬁﬂ( ‘;T”lﬂ =1+7’Cz L (Z) , (9.32)
14 rc C
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= 4] Figure 9.2 Population distribution for rotational
] energy mode.
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where
16\ 2 (6\ 12 (6
Z === — | = — | = 9.33
re 3<T>+15(T) +315<T> + ( )
1/6 4 (6,\* 36 (6
7l == — (= — = 9.34
re 3<T>+15(T> +315<T) + ( )

Hence, from Egs. (9.31) and (9.32), we have for the rotational contributions to the internal
energy, enthalpy, and specific heats
h VA
( ”_) —(—) =1- 2 (9.35)
RT/ \RT Ze

rot

” / 7\ 2
Cy CP) Zrc - Zrc Zrc
v = (-2 =14 = e . 9.36
< R )rot < R/ ror Zye < Zye ( )
Similar expressions could be developed for all of the remaining thermodynamic properties,
including the entropy, which is specifically considered in Example 9.3.
We close this section by delving into some unique features associated with the parti-

cle distribution over rotational energy levels. For simplicity, we consider a heteronuclear
diatomic with a molecular distribution given, from Eq. (4.14), by

Ny g/e_”/kr (2]+1) J(J+1)9r
AT = - |. 9.37
N~ Zu Z ¥ T 037
Dividing Eq. (9.37) by its result at J = 0, we obtain
N, J(J +1)6,
—=02J+1 e I 9.38
=@+ e |- T 939)

This normalized distribution, displayed in Fig 9.2 for 7/6, = 100, accents the remarkable
peak that typically arises at arotational quantum number J > 0. Based on our discussion in
Section 4.3.1, we would normally expect the population to peak at its ground level, with an
exponentially decreasing population at higher levels. While this expectation is normally
met, the rotational case demonstrates that a strongly increasing degeneracy with rising
energy level can preferentially displace the maximum population away from its ground
level, as shown in Fig. 9.2. A similar feature can also arise for atoms having low-lying
electronic levels with degeneracies significantly greater than that for the ground electronic
state. Assuming, for the moment, a continuous rather than a discrete distribution, we may
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determine from Eq. (9.38) that value of the rotational quantum number corresponding to
the peak in the rotational distribution, which becomes

| T 1
Jmax = ﬁ - E (939)

As we will discover in Chapter 11, identifying the population peak for the rotational
distribution can be very important for many optical techniques used to determine the
concentration or temperature in a gaseous mixture. In particular, the rotational peak
usually offers the most intense signal in a rovibronic spectrum, and thus the best possible
detection limit. This consideration is especially significant when contemplating pollutant
measurements, for which concentrations typically occur at levels approaching a few parts
per million (ppm).

EXAMPLE 9.3
Evaluate the rotational contribution to the entropy (J/K - mol) for HF at 300 K.

Solution

From Appendix K.1, we find that for HF the rotational constant B, = 20.956 cm™, so that
the characteristic rotational temperature 6, = (1.4387 cm - K) (20.956 cm™') = 30.1494 K.
Therefore, at the given temperature of 300 K, 7/6, = 9.9505. From Table 9.3, we thus
choose Eq. (9.25) and its related expressions to determine properly the rotational contri-
bution to thermodynamic properties. In particular, from Eq. (8.15), the rotational contri-
bution to the entropy is given by

(3) = T(L lgTZrm)V +1n Z,

where Z,,, must be obtained from Eq. (9.25) and the first-derivative term must be obtained
from Eq. (9.31). On this basis, we first evaluate the rotational correction term via Eq. (9.30)
and the first-derivative rotational correction term via Eq. (9.33):

Zoo1 ()L (o 2+4 0\’
e 3\T 15\ T 315\ T
=1+ 0.0335 4+ 0.0007 = 1.0342
PR AV N AN LAY
T 3\T 15\ T 315\ T
= 0.03350 + 0.00135 + 0.00004 = 0.03489.

We now determine the rotational partition function from Eq. (9.25) and the required
partial derivative from Eq. (9.31), thus obtaining

T
Lot = _OZ’C = 9.9505 (1.0342) = 10.2908
o6y

T(%) _q o L g 00389 oeeoe.
v

aT Ze  1.0342
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where o0 =1 for a heteronuclear diatomic molecule. The dimensionless entropy now
becomes

s 0ln Z,,;
(Te),m =T <T>v +1In Z, = 0.96626 + In (10.2908) = 3.2976,

so that a final calculation gives for the rotational energy mode,

Sror = 3.2976 (8.3145 J/K - mol) = 27.418 J/K - mol.

9.2.4 Quantum Origin of Rotational Symmetry Factor

We now consider in some detail the rationale for the introduction of a symmetry factor
when determining the rotational partition function of a homonuclear diatomic molecule.
In short, the homonuclear issue arises owing to a combination of two factors: (1) the
indistinguishability of the two identical nuclei and (2) the energy exchange that occurs
owing to spin—orbit coupling. Recall from Section 5.9 that a virtual transposition of two
indistinguishable particles cannot affect their joint probability density function. Therefore,
the total wave function describing the two-particle system must be either symmetric or
antisymmetric, i.e.,

'(ﬁ(l'z, r1) = :Elﬂ(rl, 1‘2).

Consequently, a system composed of two identical bosons, which describe nuclei of even
mass number, must display a symmetric wave function (+) . Similarly, as summarized in
Table 5.1, a system composed of two identical fermions, which describe nuclei of odd mass
number, must display an antisymmetric wave function (—) . Recall also, from Section 6.6.2,
that any particle having both orbital and intrinsic spin generates an internal exchange of
energy because of the induced magnetic field resulting from each angular momentum
vector. For a diatomic molecule, this spin—orbit coupling arises because each nucleus spins
about its own axis while simultaneously rotating about the molecule’s center of mass.

Assuming mode separation, we may express the total wave function for a homonuclear
diatomic molecule as

W = 1/ftrl/frotwvib welwnuo (940)

where we have now introduced a nuclear wave function to account for the spin associated
with each of the identical nuclei. The translational wave function in Eq. (9.40) depends
only on the center-of-mass coordinates and the vibrational wave function depends only
on the distance between the two nuclei. Hence, these wave functions cannot influence
the symmetry of the total wave function. For ease in our forthcoming analysis, we simply
presume that the electronic wave function is symmetric with respect to nuclear exchange.
In fact, the symmetric case represents, by far, the most common situation, although the
antisymmetric case does occur and could easily be handled by inverting the logic of our
upcoming arguments. Based on the above reasoning, we conclude from Eq. (9.40) that
the symmetry of the total wave function, ¥, can be taken as identical to that for ¥,o .
Therefore, for a homonuclear diatomic containing two identical bosons, V¥, must
be symmetric; similarly, for a homonuclear diatomic containing two identical fermions,
YrotWnue Must be antisymmetric.
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The nuclear wave function for a diatomic molecule can, of course, be either symmetric
or antisymmetric. The number of symmetric wave functions is given by Bose-Einstein
statistics, while the number of antisymmetric wave functions is given by Fermi-Dirac
statistics. On this basis, given a nuclear degeneracy, g,, the number of symmetric wave
functions, from Eq. (2.31), is

MF — (N+g,—1)! _ (gn +1)! _ gn(gn+1)
nue Nl(g, —1)! 2(gn — 1)! 2 ’

(9.41)
since N = 2 for a homonculear diatomic. Similarly, from Eq. (2.30), the number of anti-
symmetric nuclear wave functions is given by

_ &n! &n! gn(gn — 1)
M- = = = . 9.42
e Nl (gn— N 2(gn —2)! 2 ( )

We observe that g, indicates the degeneracy corresponding to the nuclear ground state, as
the enormous energy required for nuclear excitation precludes populating upper nuclear
states at typical assembly temperatures. Hence, whether for bosons or fermions, the nuclear
degeneracy represents the number of ground-state wave functions characterizing a single
nucleus. In essence, the degeneracy occurs because of nuclear spin; indeed, as might be
expected from Eq. (6.85), the nuclear degeneracy is g, = 2s,, + 1, where s, is the nuclear-
spin quantum number.

The rotational wave function for a diatomic molecule was discussed at length in Sec-
tion 6.3. An analysis of the resulting spherical harmonics shows that

Wr()t(n - 9’ ¢ + JT) = (_1)JWrot(9v ¢)a

hence, the rotational wave function must be symmetric for even values and antisymmet-
ric for odd values of the rotational quantum number. Building on equivalent symmetry
between the total wave function and v,y ¥,.c, we conclude that, if the total wave function
is symmetric, the nuclear wave function must be symmetric for even J and antisymmetric
for odd J. Similarly, if the total wave function is antisymmetric, the nuclear wave function
must be antisymmetric for even J and symmetric for odd J. For our purposes, we invoke
the latter, although the former leads to the same final result. If, therefore, v, is symmetric
and ¥,o Y 1S antisymmetric, the combined rotational-nuclear partition function, Z,,,
arising from spin—orbit coupling becomes

-1 & 1) &
7 = gn(gn —1) Z QT + 1) e U/T 4 8n(gn+1) Z (2] + 1) e U+D8/T.
2 J even 2 J odd

Here, the first term combines an antisymmetric nuclear wave function with a symmetric
rotational wave function while the second term combines a symmetric nuclear wave func-
tion with an antisymmetric rotational wave function, thus creating an antisymmetric total
wave function. Constructing a symmetric total wave function, by the way, now becomes
quite straightforward; we would merely exchange the nuclear wave functions between the
first and second terms in the above expression for Z,,.

Based on Section 9.2.3, the combined rotational-nuclear partition function can be sim-
plified when 7/6, > 30 by converting the above summations to integrations, thus obtaining,
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for either the symmetric or antisymmetric case,

7= 8o D[ 1] et DI T (1) (9.43)

The resulting statistical factor, g2, represents the total number of nuclear quantum states
associated with a homonuclear diatomic molecule. In other words, at higher temperatures,
we have effectively uncoupled the rotational and nuclear partition functions for a diatomic
molecule, so that, as expected, the total number of nuclear quantum states is just the square
of the number of such states for each independent nucleus. Therefore, if we disavow nuclear
reactions, we can safely ignore this factor, even during chemical reactions, because of atom
conservation. In essence, by neglecting g2 in Eq. (9.43), and thus Eq. (9.26), we have simply
chosen to employ a zero of energy based on preservation of atomic particles, which is, of
course, consistent with nearly all spectroscopic measurements.

In summary, the factor of two in the denominator of Eq. (9.43) arises from counting
only even or odd values of the rotational quantum number, depending on the symmetry of
the nuclear wave function. On this basis, only even or odd J-values should appear in Fig. 9.2
for a homonuclear diatomic molecule. Additionally, once having chosen to ignore g2, we
need only introduce a symmetry factor, o = 2, into Eq. (9.24) to account for the quantum
complications arising from homonuclear diatomics. This procedure, then, explains the
existence of the symmetry factor that appears in all of the various expressions defining the
rotational partition function.

9.2.5 Vibrational Mode

From Table 8.1, the energy levels and degeneracy for the harmonic oscillator are given by

Gv) = (v+ %) e g =1.

However, as discussed in Section 9.2.2, we normally place the zero of energy at the ground
vibrational level within the ground electronic state so as to achieve consistency with the
baseline used in developing the JANAF tables. Therefore, following Table 9.2, we must
express the vibrational energy for the harmonic oscillator as

Evib

= Ve, (9.44)

Evip =
so that the vibrational partition function becomes

Zuip —Zg et/ = Zexp{ 6,0/ T), (9.45)

where the characteristic vibrational temperature, from Egs. (6.42) and (8.2), is

hv h |k

h = —=—]— 9.46
k 2nk (946)
Typically, 6, = 1000-6000 K, so that we cannot employ an Euler-Maclaurin expan-
sion as for the rotational energy mode. Fortunately, we may instead use the convergent
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geometric series,

Zx" =(1—-x)"! x| < 1;

n=0

thus, letting x = exp (—6,/ T), we obtain from Eq. (9.45) the vibrational partition function,
Zip=(1—e ™)~ (9.47)

Employing Eq. (9.47), our two standard partial derivatives for the partition function with
respect to temperature become

T(aln zw-b) _ 60T
%4

aT eh/T — 1
O (dnZ\] _ 6,/ T)* /T
oT aT v (ef/T — 1)2 ’

On this basis, the vibrational contributions to the internal energy, enthalpy, and heat capac-
ities can be expressed as

(R_MT>w'b - (Rir)w.b = 699/7% (9.48)
v /T e/ T
(%)m - (%)Wb = % (9.49)

Similarly, for the vibrational contribution to the entropy, we obtain, from Egs. (8.15) and
(9.47),

s 0,/ T
<Te>vib - ﬁ —In(1 — e /7). (9.50)

The significance of these vibrational contributions to thermodynamic properties can
be explored by carefully considering Egs. (9.48) and (9.49), which are both plotted in
Fig. 9.3. We observe that the specific heat does not display classical behavior until at least
T/6, ~ 2, which corresponds to 7"~ 2000—12,000 K. In other words, full excitation of the
vibrational mode so as to replicate the classical results,

fim (g7) =1 Jm (%) =1

requires very high temperatures. In fact, we find from Fig. 9.3 that classical behavior for the
internal energy is considerably delayed in comparison to that for the specific heat. Hence,
in contrast to the translational and rotational modes, the vibrational mode is typically
only partially excited near room temperature. While the equipartition principle applies
at sufficiently high temperatures, its predictions are obviously completely inappropriate
for most vibrating molecules at 300-2500 K. As might be expected from Eq. (9.46), the
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exception occurs for heavier diatomics, such as Brp, Cl, and I, whose characteristic
vibrational temperatures are near 500 K. Nevertheless, in general, the vibrational mode,
more than any other, exemplifies directly the importance of quantum mechanics in the
proper calculation of thermodynamic properties. Such properties can be evaluated by
conveniently summing over all energy modes, as demonstrated for the internal energy in
Example 9.4.

EXAMPLE 9.4
Employing the simplex model, calculate the internal energy (kJ/mole) for AlO at 2000 K.

Solution
From Section 8.4, we recognize that the internal energy can be determined by summing
the contributions from all four energy modes:

= (zr), * (z7). " (77). * (77)
RT ~ \RT/u RT/ el RT/ ror RT/vip”

The translational contribution, from Eq. (9.6), is

(%)tr - g.

The electronic contribution can be obtained from the data of Appendix K.2, as evaluated
based on the first two energy levels in the following table. The next level is at 20,689 cm™!,
which is much too high to have any further influence on the internal energy at the given
temperature. Because of our choice for a zero of energy, we must convert from the
T.-formulation provided by typical spectroscopic tables to the required 7,-formulation.
From Fig. 9.1, we recognize that, under the harmonic-oscillator approximation, the appro-
priate conversion can be made via

=T+, —a).
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T(em™)  w.(em™) T(m™) g &/kT  gje /5T g;(e;/kT)e i/ T

0 979.2 0 2 0 2 0

5406 728.5 5281 4 3.799 0.0896 0.3404
2.0896 0.3404

Consequently, employing the above table, we can obtain the electronic contribution from
Eq. (9.18), thus giving
u Z,  0.3404
—) ==2=—-—=0.1620.
<RT)el Zy  2.0896

The rotational contribution, from the rigid-rotor approximation, is based solely on the
rotational constant, B, = 0.6414 cm™!, as obtained from Appendix K.2. Asaresult, 7/6, =
(2000)/(1.4387)(0.6414) = 2167, so that, from Table 9.3, we find that Eq. (9.27) applies;

hence,
(R7). =1

Finally, the vibrational contribution, employing the harmonic-oscillator approxima-
tion, depends primarily on the characteristic vibrational temperature, which is 6, =
(1.4387 cm - K)(979.2 cm™!) = 1408.8 K. Therefore, from Eq. (9.48), we obtain

u 0,/ T
— = ———— =0.6888.
(77).= @

Having now evaluated the contributions from all four energy modes, we find that
u u u u u
7= (we), * (&e)a &) (&)
= 1.5000 + 1.0000 + 0.6888 + 0.1629 = 3.3517.
Therefore, a final calculation gives, for the total internal energy,

u = 3.3517(8.3145 J/K - mol) (2000 K) = 55.735 kJ/mol.

9.3 Rigorous and Semirigorous Models for the Diatomic Gas

Thus far, when calculating the thermodynamic properties of a diatomic molecule, we have
assumed complete separation of internal energy modes. In reality, of course, accurate cal-
culations require that the simplex model be replaced by the complex model for combined
rotation and vibration. In other words, we must consider the effects of vibrational anhar-
monicity, rotational centrifugal stretching, and rotation—vibration coupling. Furthermore,
we must account for the fact that controlling mode parameters might not be associated
solely with the ground electronic state, especially for those molecules with low-lying upper
electronic levels. This observation follows from Eq. (7.19), in that the rotational and vibra-
tional mode parameters depend on their associated electronic states.

On this basis, from Section 8.4, a rigorous expression for the partition function of a
diatomic gas can be given by

Z= erZint’ (951)
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where the internal partition function is

Zint = del,j 67881’j/kTZR—V,/‘. (952)
J

The rovibronic partition function, Zg_y,;, which inherently implies strong rotation—
vibration coupling, now depends explicitly on the jth electronic state via the influence of
its Morse potential on both the vibrational and rotational energy modes. In other words,
as discussed in Section 7.4 and shown by example in Table 7.2, the rovibronic energy,
ER-V,j
hc

= Gi(v)"f_ ij(J)s

is always affected by the identity of its associated electronic energy mode. As a result,
this rigorous model for the diatomic molecule invariably requires numerical computations
so as to properly evaluate the molecular partition function. Such numerical strategies are
the basis for the evaluation of all thermodynamic properties listed in the various JANAF
tables (Appendix E).

Calculation of thermodynamic properties would be considerably simplified, on the
other hand, if the coupled rovibrational modes could be separated from their electronic
energy mode. Given this scenario, Eq. (9.52) becomes

Zing = Zr-v del,j e e /KT (9.53)
j

where

1
Zroy ==Y Y (2] + 1) "/RDICOFR], 9.54
RV =~ 2 (27 +1)e (9.54)

This separation can be effected if one of the following holds: (1) the excited electroniclevels
are unpopulated; (2) the vibrational/rotational mode parameters are essentially the same
for all electronic states; or (3) the vibrational/rotational mode parameters can be suitably
averaged over the populated electronic energy levels. The most common scenario, by far, is
the presumption of a sufficiently low temperature so that the entire molecular population
resides within the ground electronic state. For some unstable molecules, only the mode
parameters associated with the ground electronic state are available in any case, owing to
a lack of spectroscopic information regarding their excited electronic states.

Equations (9.51), (9.53), and (9.54) together constitute the semirigorous model for the
partition function of a diatomic gas. The translational and electronic contributions to ther-
modynamic properties follow those for the simplex model. Evaluation of the rovibrational
contribution via Eq. (9.54) is more convoluted, however, and thus underscores our focus
for the remainder of this section.

From Eq. (7.28), the rovibrational energy for the complex model is given by

G(v)+ F,(J) = @ (v + 3) — wexe (v + %)2 + B,J(J +1)— D,J*(J +1)% (9.55)
where, from Eq. (7.22),

B,= B, —a. (v+3).
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Taking the zero of energy, as usual, at v = 0, J = 0 within the ground electronic state, we
obtain
a)e a)e-xe

GO) + Fi(0) = 5~ 74

Subtracting Eq. (9.56) from Eq. (9.55) yields the revised rovibrational energy,

(9.56)

Gw)+ F,(J) =o'v —o'x*v(v—1)+ B J(J +1) = D,J*(J +1)* —a.vJ(J +1)

(9.57)
where
0 = w, — 2weX, (9.58)
Xt = 2 (9.59)
o)
and
B* = B, — La.. (9.60)
If we now define a characteristic temperature for combined rotation and vibration,
hc
Op_y = ?[G(v) + F,(J)], (9.61)
we have
Or—
% =t[v —x*v(v — D]+ y[1 = yJ(J +1) = 8v]J(J + 1), (9.62)
where
w* (6,
t=—\—= 9.63
= (%) 063)
B* (06,
=_(Z 9.64
=2 (%) 0.64)
D,
= — 9.65
Y=g (9.65)
e
§=—. .66
o (9.66)

We note that Eqgs. (9.63) and (9.64) identify first-order corrections to the rigid-rotor/

harmonic-oscillator model. As usual, ., w.X,, B., a., and D, are obtained from spec-

troscopic data, as tabulated for selected diatomics in Appendix K. If D, or «, are

unavailable from the spectroscopy literature, they can be estimated from Eq. (7.25) or

Eq. (7.26), respectively; such estimates are usually quite reliable as both equations are

derived from rigorous quantum mechanical solutions based on the Morse potential.
Given Egs. (9.54) and (9.61), the rovibrational partition function now becomes

1
Zry=— 2J +1)e Orv/T, 9.67
ev= g 30 e ©0.67)
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Expanding Eq. (9.67) in an Euler-Maclaurin fashion (Appendix D.3), with 6z _y/ T given
by Eq. (9.62), we obtain after much algebra

ZR—V - ZI%—VZC()rra (968)
where
1 1
Ipy=——— 9.69
VA= (0.69)
y  y 2 5 2x*t

14
Zeow=1+=+"—4+— .
o +3+15+y+ef—1+(e‘—1)2
Examining Egs. (9.68-9.70), we note that Z_y represents a first-order correction to the
simplex solution, Z,, Z,, and that Z,,, designates an auxiliary second-order correction
factor. Hence, from Egs. (9.51), (9.53), and (9.68), the total partition function becomes

(9.70)

2= ZyuZaZR—v Zeorr, (971)
where, from Eq. (9.15),

fum Y et
i

All terms except for Z., can be calculated in the same fashion as for the rigid-
rotor/harmonic-oscillator model, except with the use of ¢ and y rather than 6,/ T and
0,/ T, respectively.

In summary, when employing the semirigorous model, the translational and electronic
contributions to thermodynamic properties follow the established simplex procedures.
For the rovibrational contribution, on the other hand, we require the usual derivative
expressions, which, from Egs. (9.68-9.70), are as follows:

dln Zp_ t 0In Z.opr
(LR gy w1 (22 (9.72)
oT v el —1 aT v
3 d1n Zg_ %! d d1In Zeoyr
O (fmlrvyl g € | 9 (0 Leorr )| (9.73)
oT 0T y (e —1)2 " |7 or )|,

The first two terms of Egs. (9.72) and (9.73) obviously arise from Z3_y. Hence, all rovibra-
tional contributions to thermodynamic properties when using the semirigorous approach
are obtained by simply adding a second-order correction term to primary terms closely
affiliated with the rigid-rotor/harmonic-oscillator model.

The correction terms in Egs. (9.72) and (9.73) can be obtained after much algebraic
manipulation from Eq. (9.70). These rovibrational corrections are as follows:

oln Z.,,, 4
T = = 9.74
( aT ) v Zeomr (0.74)

B dln Z, 4y et 12x*t
— T = =L 4+ | s+ D) +8x (r—1 75
[aT ( 0T )L y+(e’—1)3[(e+)+x( )+ez_1](9 )

where

2 t * #42 ,t

, y oy 2y t(8e' —2x*)  dx*tce
-4 — . 9.76
3Gy T ey Teoiy (976)

corr —
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In essence, Eq. (9.74) corrects for the evaluation of internal energy and enthalpy; similarly,
Eq. (9.75) corrects for the evaluation of specific heats.

EXAMPLE 9.5
Employing the semirigorous model, calculate the Gibbs free energy (kJ/mol) for N, at
3000 K and 1 bar.

Solution
From Eq. (4.39), the specific Gibbs free energy can be determined from

5 __w(Z).
RT N

thus, from Eq. (9.71), we require the semirigorous evaluation,

zZ 7 .
N = Wrzel ZR—VZL'()rr~

The translational contribution to the molecular partition function can be obtained most
directly from the result found in Problem 4.1, i.e.,

Z, T52 M3/ (3000)3/2(28.0135)3/2

N 0.02595 2 0.02595 w0) 8965 x 10

The electronic contribution can be determined from the data in Appendix K.2, as evaluated
in the following table. We again convert from the 7,-formulation to the 7-formulation to
account for our common zero of energy. From Fig. 9.1, we recognize that, for the complex
model, the conversion can be made via

L= T, + H(w, — o) = §(@lx, - ojx)),
Nevertheless, because the energy corresponding to the first excited electronic level is very
high, the electronic contribution to the partition function for N, is simply given by its
ground-state degeneracy. In other words, despite a temperature of 3000 K, essentially all
nitrogen molecules can be associated with the ground electronic level. Hence, only mode
parameters for the ground electronic state are needed to determine contributions from

the combined rotational and vibrational modes.

T, (em™) w, (em™)  wex, (em™) T (em™) g &/kT gje ikt
0 2358.6 14.32 0 1 0 1
50204 1460.6 13.87 49755 3 23.861 1.30 x 10710
1.00000

The rovibronic contribution based on the semirigorous model can be evalu-
ated from Egs. (9.68-9.70). The required rotational temperature is, from Appendix
K, 6, = (1.4387)(1.9982) = 2.8748 K. Similarly, the vibrational temperature becomes
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0, = (1.4387)(2358.57) = 3393.3 K. Given these characteristic temperatures, the corrected
rigid-rotor/harmonic-oscillator parameters for the semirigorous model are

B (6,\ (B —05a) (6 1. 2.874 )
y= B0 2 (B 050) (0r _ (19896 (28T48N o 5p1h 1o
B\T B, T 1.9982 ) \ 3000

. w* (0, _ (we = 2weXe) [0y _ 2329.92\ (33933 11174,
we \ T e T 2358.57 3000
Hence, from Eq. (9.69), the corrected simplex contribution to the semirigorous model
becomes

1 1
oy = ——— = [2(9.5414 x 107*) (0.67287)] " = 778.80.
Y= AT [2(9 x ) (0.67287)] 778.8

To evaluate the second-order correction term, we must first determine the required cor-
rection parameters from Egs. (9.59), (9.65) and (9.66); i.e.,

WeXe 14.324

* _ _ -3
X = T e = 6148 X 10
D, 576 x 1076
=L 20X 590 %100
V=B 1.9896 0 10
@ 00173 B

Consequently, from Eq. (9.70), the second-order correction term is

2 *
y oy 2y 3 2x*t 3
Zeow =14+ 4+—=+ — =1+4+13.872 x 107 = 1.0139.
3ttt i T e T T x

As a result, the total partition function for the semirigorous model can now be expressed
as

Z
v = %ZE_VZC(,,,ZeI = (1.8965 x 10%) (778.80) (1.0139) (1.0000) = 1.4975 x 10'2.

Therefore, the dimensionless Gibbs free energy becomes

S m(Z)=- 2y __
RT = In (N) = —1In(1.4975 x 10') = —28.035,

so that

g = —28.035 (8.3145 J/K - mol) (3000 K) = —699.29 kJ/mol.

9.4 The Polyatomic Gas

The evaluation of thermodynamic properties for a gaseous assembly composed of poly-
atomic molecules depends on whether the associated molecular structure is linear or non-
linear. For linear molecules, the relevant atoms are arranged along a single Cartesian
coordinate; examples are CO,, N, O, and C,H;. Purely geometrical considerations restrict
linear polyatomics to two rotational degrees of freedom (as for diatomics), while nonlin-
ear polyatomics exhibit three such degrees of freedom. Hence, for a polyatomic molecule
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Table 9.4 Degrees of freedom for a
polyatomic molecule with n atoms

Mode Linear Nonlinear
Translation 3 3
Rotation 2 3
Vibration 3n—5 3n—6

composed of n individual atoms, the number of vibrational modes must be 3n — 5 for the
linear case and 3n — 6 for the nonlinear case, as summarized in Table 9.4.

Each vibrational mode of a polyatomic molecule designates an internuclear distance
or angle whose oscillation reflects a local electronic potential. Hence, stable molecular
configurations for complex molecules must correspond to minima on a multidimensional
potential surface. This perspective, however, is much too difficult to handle from a quantum
mechanical viewpoint; therefore, as for the diatomic case, we seek a simpler model reflect-
ing available spectroscopic data. On this basis, we again employ the rigid-rotor/harmonic-
oscillator model, thus fostering complete separation of energy modes. A fully complex
model, including any rovibrational coupling, must obviously be employed for more rigor-
ous calculations.

Assuming complete mode separation, the molecular partition function for a polyatomic
molecule follows Eq. (8.11), thus giving

Z= Ztr Zel Zrot Zvib .

The translational contribution, similar to that for a diatomic molecule, is given by

2emkT\>?
Zy = (T) |4 m = Zmi,

where the total mass, 1, is simply the sum of all atomic masses composing the molecule.
Therefore, we conclude that the contribution of the translational mode to thermodynamic
properties is essentially the same for a polyatomic molecule as for the monatomic gas.
For nearly all polyatomics, the energy ascribed to the first excited electronic level
is sufficiently high that only the ground electronic state is necessary for most property
calculations. Hence, from Eq. (9.15), the electronic partition function becomes

Zy=) gje K ~ g, (9.77)
j

so that, from Egs. (4.36-4.42), the resulting contribution to thermodynamic properties is
nonzero only for the entropy and free energies. The required electronic degeneracy can
be obtained, as usual, from the term symbol associated with the ground electronic state.
For linear polyatomics, the term symbol and degeneracy follow the recipes previously
developed for diatomic molecules. However, for nonlinear polyatomics, the degeneracy is
always

8 =25+1, (9.78)
as obtained from the associated term symbol

ZS-HAi or ZS-HBi i = 1’ 2.
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Here, A indicates a symmetric while B implies a nonsymmetric molecular wave function.
Similarly, the index i = 1, 2 designates whether this wave function is symmetric or asym-
metric, respectively, with respect to the chemical structure of the polyatomic molecule.

9.4.1 Rotational Contribution

For a polyatomic molecule, the rotational contribution to thermodynamic properties
clearly depends on whether the molecule is linear or nonlinear. As indicated previously,
a linear polyatomic has the same two rotational degrees of freedom as for a diatomic
molecule. In addition, because of the greater mass of typical polyatomic species, invari-
ably T/6, > 30 so that the rotational partition function, following Eq. (9.26), becomes

T

Zyor = —. 9.79
! o6, ( )

As might be expected, the symmetry factor in Eq. (9.79) reflects the chemical structure
of a linear polyatomic; thus, as examples, 0 = 1 for N,O (N-N-O) and o = 2 for CO,
(O-C-0). Based on the diatomic case, the characteristic rotational temperature, 6,, is
given by Eq. (9.23), except that the moment of inertia must be evaluated from

2
I, = E m;x;,
i

where x; represents the distance of each constituent atom from the molecule’s center of
mass. Consequently, from Eq. (9.79), the rotational contributions to the internal energy
and specific heat for a linear polyatomic are

u dln Z,,;
T =1 )

Cy 9 ., dln Z,,; B
(§>ro,_[a_TT< oT )}V_l’ ©81)

which, of course, duplicates our previous results for the diatomic molecule.
In comparison to the linear polyatomic, the nonlinear polyatomic has three rotational
degrees of freedom and thus three principal moments of inertia:

L= "m(y+2)

L= "m(x+7)
3

I _Zm, +y, ,

where x;, y;, and z; are atomic distances from the molecule’s center of mass, as determined
via the usual formulation,

Zmixi = Zmi)’i = ZmiZi =0.
; ; i

The common methodology used here to define the center of mass and the principal
moments of inertia is discussed in depth in any textbook on classical mechanics. For our
purposes, we need only recall that the principal coordinates can ordinarily be established
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Table 9.5 Types of polyatomic molecules

Type Definition Example
Spherical top IL=1=1I CH4
Symmetric top I=1,#1 CeHg

Asymmetric top L #I,#1I, H,O

by defining one of the three Cartesian axes to be along a line of symmetry within the
molecular structure.

Based on possible relations among the magnitudes of the principal moments of inertia,
we may define three types of polyatomic molecules, as listed in Table 9.5. For the simple
spherical top (I; = I, = I;), quantum mechanics can be applied to determine rotational
energies and degeneracies, as for the diatomic molecule of Chapter 6. The result is

J(J+1)n?

Erot = 27 81 = (2‘1 + 1)2;
thus, from Eq. (4.12), the associated rotational partition function becomes
=/ T\
Zrot = £ (9_) .

Similarly, for the asymmetric top, we find that

1 7 T3
or = — | ————, 9.82
Zro o\ Ors0r 6,2 ©-82)

where, from Eq. (8.2), each characteristic temperature specifying rotational motion about
a single Cartesian coordinate can be related to a rotational constant, B,;, and thus to a
moment of inertia, /,;, for a given principal coordinate via

h 2
heg M
k 82k I

Clearly, both the symmetric and spherical tops can be considered special cases of the asym-
metric top, so that the rotational partition function for all three cases can be determined
via Eq. (9.82). As usual, the symmetry factor must be calculated from structural consid-
erations so as to correct for any repeated counting of indistinguishable configurations. In
essence, the symmetry factor indicates the number of ways that a molecule can be rotated
to achieve the same orientation in three-dimensional space. Typical examples are given in
Table 9.6, with structural clarifications provided for NHs, CHy4, and CsHg in Fig. 9.4. The

6,0 = (9.83)

Table 9.6 Symmetry factors for
polyatomic molecules

Molecule Symmetry factor
H,O 2
NH; 3
CH, 4
CH,4 12

CeHs 12
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CeHs
H H
N s
/N
H—-C C—H
\
c—~C
N
H H

Figure 9.4 Molecular structure of selected nonlinear polyatomic molecules.

symmetry factor of three for NHj arises from successive 120° rotations of the pyramidal
plane produced by its three hydrogen atoms. Similarly, the symmetry factor of 12 for CHy
originates from its four tetrahedral planes, each composed of three hydrogen atoms. For
CsHs, the symmetry factor of 12 is a manifestation of its planar hexagonal structure.

Regardless of the symmetry factor, Eq. (9.82) indicates that the rotational contributions
to the internal energy and specific heat for a nonlinear polyatomic are

u dln Z,; 3
— =T|—| == .84
(RT)rot < aT >V 2 (0-84)

Cy 9 ., (0InZ, 3
(ﬁ)mr[a—ﬂ (Tr )L—a- (085)

Therefore, we find that, compared to the linear polyatomic of Egs. (9.80) and (9.81), the
rotational mode for a nonlinear polyatomic contributes an additional R7'/2 to the internal
energy and an additional R/2 to the specificheat. In other words, the rotational contribution
to internal energy and heat capacity for both linear and nonlinear polyatomics is in exact
agreement with that expected from classical equipartition theory.

9.4.2 Vibrational Contribution

According to Table 9.4, linear and nonlinear polyatomics contain 3n — 5 and 3n — 6 vibra-
tional modes, respectively. Unfortunately, because of the plethora of such modes for large
polyatomics, their identification is hardly straightforward. Building again on our analogy
of masses connected with springs, we obviously have an enormous variety of possible inter-
nal motions, depending on molecular structure and initial bond displacement. However,
by choosing special coordinates labeled normal coordinates, the kinetic and potential
energy terms become pure quadratics so that we can ensure simple harmonic motion.
As for classic Fourier decompositions, any complex molecular ambulation can always be
described in terms of these primary oscillations. In particular, the specification of pure
harmonic motions supported by a given molecular structure is called normal mode analy-
sis, as described for a simple linear triatomic in Appendix L.

The pivotal result from normal mode analysis is identification of the independent vibra-
tional modes for any polyatomic molecule. Significantly, displacement along the identi-
fied normal coordinates causes all nuclei to move in phase with the same harmonic fre-
quency. Hence, we can model the inherently complex vibration of a polyatomic molecule
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Nonlinear triatomic molecule (H,0)

A/‘/.,/" \\_\\‘\A

symmetric stretch (w; = 3657 cm1)

asymmetric stretch (w, = 2349 cm1)

bend (w3 = 667 cm™1)

asymmetric stretch (w, = 3756 cm™1)

bend (w3 = 1595 cm™1)

Figure 9.5 Vibrational energy modes for linear and nonlinear triatomic molecules.

with the same harmonic oscillator equations that we previously used for the diatomic
molecule. Operating again with the zero of energy at the ground vibrational level, we have
from Eq. (9.47)
- 1
Zyip = ]1 gyl (9.86)
where m is 3n — 5 for a linear and 3n — 6 for a nonlinear polyatomic. From Eq. (8.2), the
characteristic vibrational temperature for each normal mode is

Ovi = h_kcweia (987)
where w,; is a so-called normal frequency (cm~'). As with our previous rotational con-
stants, B,;, these normal vibrational frequencies are usually obtained from the analysis
of spectroscopic data. For computational purposes, B,; and w,; values associated with the
ground electronic state of selected polyatomic species are tabulated in Appendix K.3.

Given Eq. (9.86), we find from Egs. (9.48) and (9.49) that the vibrational contributions
to the internal energy and heat capacity, respectively, for any polyatomic molecule are

u dln Zp " 0,/ T
7)) =T\ —— =) 77— 9.88
<RT)vib ( oT >V ;eew/T_l ( )
Cy 0 Jln Zvib m (Qui/ T)zeevi/T
=) == ()| =) 9.89
(R)vib |:3T < oT >:|V 1221: (e9m’/T_1)2 ( )

Each term of Eqgs. (9.88) or (9.89) entails an independent characteristic temperature; the
required 6,; values are based on Eq. (9.87) and tabulated values of w,;, as elaborated
for CO, and H,O in Fig. 9.5. Typically, for a linear triatomic such as CO,, we identify a
symmetric stretch mode, an asymmetric stretch mode, and two identical bending modes.
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In comparison, for a nonlinear triatomic such as H,O, we again have a symmetric and
an asymmetric stretch mode, but only one bending mode. As might be expected from
structural considerations, owing to a smaller Hooke constant (kp), the energy stored by
bending modes is usually considerably smaller than that associated with symmetric or
asymmetric stretch modes.

We note, by the way, that the molecular structure of linear triatomics having o = 2
is analogous to that for homonuclear diatomics. For this reason, the symmetric stretch
mode for CO; is infrared inactive owing to the impossibility of changes in its molecular
dipole moment. In comparison, the unbalanced molecular structure of CO, generated
during asymmetric stretch promotes infrared activity; indeed, the resulting absorption
band near 4.3 um is undoubtedly a key factor in producing the so-called greenhouse
effect.

9.4.3 Property Calculations for Polyatomic Molecules

As for the monatomic and diatomic cases, separation of energy modes implies that we
may determine thermodynamic properties for polyatomic gases by summing over the
contributions from each energy mode. As an example, the internal energy for a nonlinear
polyatomic can be evaluated by summing the translational contribution from Eq. (9.6), the
rotational contribution from Eq. (9.84), and the vibrational contribution from Eq. (9.88),
thus obtaining

3n—6
u Qvi/T
— =3 _.
RT + 21: eti/T — 1

i=

For the entropy, we must carefully allocate contributions from the translational and the
three internal energy modes, so that from Eqgs. (8.14) and (8.15), we have

N _ Banr Z[r 8anmtz -
Te‘{T< a7 >v+1 <N>+1}+Z{ < 9T )v“nz””’}’ 4:50)

where the summation occurs over the rotational, vibrational, and electronic modes. Imple-
menting Egs. (9.11), (9.77), (9.82), (9.84), (9.86), and (9.88), Eq. (9.90) becomes

s Qrm)** (kT)? 1| =13
Zo—4+41 {2 22 -
R +Ingo + n! WBP +in o\ Oy )0,

3n—6
Oui/ T o0/ T
+Z {eeu/r —In(1 — )

i=1

In summary, given the knowledge established in this chapter, analogous expressions could
be obtained for any thermodynamic property of an ideal gas by using appropriate con-
tributions relevant to monatomic, diatomic, linear polyatomic, or nonlinear polyatomic
molecules.
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EXAMPLE 9.6
Evaluate the entropy for NO, (J/K - mol) at 500 K and 1 bar.

Solution
From Section 8.4, we recognize that the entropy can be determined by summing the various
contributions from all four energy modes, i.e.,

PG G () )
R R/ R/ el R/ vor R vib.
The translational contribution, from Eq. (9.11), is

(i)tr o [(2nm)3/z(kT)5/2} e

R h3 P 2

so that

o 5

R (6.6261 x 10-34)3(1.0 x 10)
= 20.1280.

A more direct procedure is to use Eq. (9.12), i.e., the Sackur-Tetrode equation, thus
obtaining
s 5 3 5 3
(Te)n = ZIn7+3InM—In P~ 11516 = >In(500) + 5 In (46.0055) — 11516
= 20.1280.

From Eq. (8.15), the contribution from all internal energy modes is

Sint (8 In Zint

b _ T
R oT

) +1In Zy,.
|4

Hence, the electronic contribution, as obtained by using Egs. (9.77) and (9.78) with the
NO; term symbol (?4;) from Appendix K.3, becomes

(%) =Ingy=In2= 06931

The rotational contribution can be determined from Egs. (9.82) and (9.84); the result is

s 3 1 713
(2) =24m|! |
R/ vot 2 o ere,yerz
1

From Appendix K.3, the three rotational constants for NO, follow: B,; = 8.0012 cm™",
B,; =0.4336 cm™!, and B,; = 0.4104 cm~'. The resulting characteristic rotational tem-
peratures, as obtained from Eq. (9.83), are 6,, = 11.511 K, 6,, = 0.6238 K, and 6,, =
0.5904 K. Hence, the rotational contribution to the entropy becomes

s 3 1 2(500)3
L R — 9.9789
<R>m, p [2 (11.511) (0.6238) (0.5904)} :




200 * Thermodynamic Properties of the Ideal Gas

where 0 =2 from the V-shaped molecular structure of O-N-O. Finally, the vibrational
contribution, from Egs. (9.86) and (9.88), is

s [ 60u/T o,
(I_?)w-b = ; {T‘/T — —In(l—e WT)}.
The three vibrational frequencies, extracted from Appendix K.3, are w,; = 1616.8 cm™!,
wey = 1319.7 cm™!, and w,3 = 749.65 cm™!. The resulting characteristic vibrational tem-
peratures, as obtained from Eq. (9.87), are 6,1 = 2326.1 K, 6,, = 1898.7 K, and 6,5 =
1078.5 K. Therefore, the vibrational contribution to the entropy from the three normal
modes of NO, becomes

(%) — (0.0448 + 0.0871 + 0.2821) + (0.0096 + 0.0227 + 0.1229) = 0.5692.
vib

As we have now evaluated the contributions from all four energy modes, we find that
s s s s s
7% N <7e)tr + (E)el + <I_€>rot + <I_€>vib
= 20.1280 + 0.6931 + 9.9789 + 0.5692 = 31.3692.

Therefore, a final calculation gives, for the total entropy,

s = 31.3692(8.3145 J/K - mol) = 260.819 J/K - mol.




PROBLEM SET IV

Thermodynamic Properties of the Ideal Gas
(Chapters 8-9)

4.1

4.2

Consider the development of the Sackur—Tetrode equation for the translational
entropy of an ideal gas.

a. Evaluate the constant C in the expression
é c T5/2M3/2

N P
where T'is the temperature in K, M the molecular weight, and P the pressure in
bars.

b. Hence, show that the translational contribution to the entropy is given by
Sy S 3
r= ElnT—i— ElnM—lnP—1.1516.
c. The experimentally measured value of the entropy for vaporous neon at its
boiling point (27.1 K) and a pressure of one bar is 96.50 J/mol - K. To verify the
theoretical formulation leading to the Sackur—Tetrode equation, compare your

predicted value with the given experimental result.
Hint: Keep this problem in mind for future calculations.

We have shown that the total kinetic energy of a diatomic molecule can be expressed
as

m, . ; ,
T= §(X2 +Y + 2+ %()’cz + 7+ ),
where (X, Y, Z)and (x, y, z) are the center-of-mass and relative coordinates, respec-
tively, m is the total mass, and p is the reduced mass.
a. By converting to relative spherical coordinates, show that

T—1(2+2+2)+1 2+p3, +Pr2
_2m px py pz 2[ p9 Sin29 2/1«’

where I = ur? is the moment of inertia and
pr=mX py=mY p.=mZ
Dy = UF po =10 py = Isin®0¢.
b. Evaluate the classical partition function for pure translation, rotation, and vibra-
tion of a diatomic molecule.

201
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4.3

4.4

4.5
4.6
4.7

4.8

c. Compare your classical results to those based on quantum mechanics. Explain
any disparity and show that in the limit of high temperature, the quantum
mechanical partition function is equivalent to the classical partition function.

The relationship between atmospheric pressure and altitude is an important result
in atmospheric physics.
a. Using the classical phase integral, show that for an isothermal atmosphere
mgH
P = P exp <_W) ,
where P, is the pressure at sea level, g is the gravitational acceleration, and H is
the altitude above sea level.

b. At what altitude (km) does the atmospheric pressure decrease to e~! of its sea-
level value? Assume that the sea-level temperature is 300 K. Does your answer
overestimate or underestimate the actual e~! altitude? Explain.

c. In one of his fundamental experiments on sedimentation equilibrium, Perrin
observed the number of gamboge particles in water at 293 K. He found that
when the microscope was raised by 100 um, the mean number of particles in his
field of view decreased from 203 to 91. Assuming that the gamboge particles had
a mean volume of 9.78 x 1072! m?® and a density of 1351 kg/m?, determine an
experimental value for Avogadro’s constant if the density of water can be taken
as 1000 kg/m?>.

a. Calculate the entropy (s/R), enthalpy (4/RT), and constant pressure specific
heat (c,/R) for monatomic oxygen at P = 1.0 bar and 7 = 1000 K. Compare
your calculated property values with those in the appropriate JANAF table.
What is the entropy (s/R) for monatomic oxygen at P = 0.1 bar and 1000 K?

b. Compute c,/R for monatomic oxygen at 500 K and compare with your result

at 1000 K. Explain the difference. Would you expect the same trend to hold for
other atoms, e.g., helium, hydrogen, or argon? Explain.

Complete Problem 4.4, but at a temperature of 1500 K rather than 1000 K.
Complete Problem 4.4, but at a temperature of 2000 K rather than 1000 K.

Plot the distribution (N;/N) of molecules among the various (a) rotational levels
(/ =0-20) for CO and (b) vibrational levels (v = 0 - 5) for Br, at both 300 K and
800 K. Assume the rigid-rotor/harmonic-oscillator model for both CO and Br,.
Discuss the difference between the vibrational and rotational distributions, and the
general trend of each distribution with temperature.

Consider a monatomic gas having two nondegenerate electronic states, ¢y = 0 and
&1 = €.

a. Plot the electronic contribution to specific heat versus reduced temperature,
kT /e.

b. Determine analytically the value of reduced temperature at which the electronic
contribution to specific heat is a maximum.
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Plot the distribution (N;/N) of molecules among the various (a) vibrational levels
(v =0-15) for Cl, and (b) rotational levels (J/ = 0 — 30) for NO at both 500 K and
1000 K. Assume the rigid-rotor/harmonic-oscillator model for both CI, and NO.
Discuss the difference between the vibrational and rotational distributions, and the
general trend of each distribution with temperature.

Calculate the entropy (s/R), enthalpy (k£/RT), and constant pressure specific heat
(c¢p/R) for molecular oxygen (O,) at P =1.0 bar and T = 1000 K. Separate the
contributions arising from the translational, rotational, vibrational, and electronic
energy modes by assuming a rigid-rotor/harmonic-oscillator model. Compare your
calculated values with those in the appropriate JANAF table; explain any discrep-
ancy. The spectroscopic parameters for the first three electronic levels of O, are as
follows.

Term

symbol T, (cm™) w,(cm™) @.x. (em™') B,(cm™') a,(cm™') D,(cm™!)
32; 0 1580.19 11.98 1.4456 0.0159 4.84.1076
! A, 7869.5 1483.50 12.90 1.4264 0.0171 4.86-107°
12; 13120.9 1432.77 14.00 1.4004 0.0182 5.35.107°

Complete Problem 4.10, but at a temperature of 1500 K rather than 1000 K.
Complete Problem 4.10, but at a temperature of 2000 K rather than 1000 K.

Calculate the entropy (s/R),enthalpy (4/RT) and constant pressure specific heat
(¢p/R) for H,O at P = 1.0 bar and 7" = 1000 K. Compare your calculated values
with those in the appropriate JANAF table; explain any discrepancy.

Complete Problem 4.13, but at a temperature of 1500 K rather than 1000 K.
Complete Problem 4.13, but at a temperature of 2000 K rather than 1000 K.

Calculate the entropy (s/R),enthalpy (4/v RT), and constant pressure specific heat
(cp/R) for molecular oxygen (O;) at P = 1.0 bar and 7' = 1000 K using the semirig-
orous model for a diatomic gas. Compare your calculated values with those in the
appropriate JANAF table; explain any discrepancy.

Complete Problem 4.16, but at a temperature of 2000 K rather than 1000 K.

Calculate the entropy (s/R), enthalpy (%/RT), and constant pressure specific heat
(¢p/R) for molecular oxygen (O) at P = 1.0bar and 7" = 300-3000 K using the
semirigorous model for a diatomic gas. Compare your calculated values as a function
of temperature with those listed in the appropriate JANAF table. Explain any
discrepancy and indicate a revised procedure that you would use to obtain results
in exact agreement with the JANAF table.






10 Statistical Thermodynamics
for Ideal Gas Mixtures

Having dealt in the previous chapter with thermodynamic properties for pure ideal gases,
we are now prepared to apply statistical thermodynamics to ideal gas mixtures. We begin
by considering nonreactive mixtures, with assiduous attention given to equilibrium par-
ticle distributions and to the determination of mixture properties. We then move on to
reacting mixtures, with a special focus on calculating equilibrium constants and mixture
compositions. Specifically, equilibrium constants are developed for generic gas-phase reac-
tions involving monatomic, diatomic, or polyatomic species, including both dissociation
and ionization reactions. A useful feature of our exploration of mixture properties is the
opportunity to exploit from a different perspective, and thus to review somewhat from
Chapters 3 and 4 those concepts from statistical thermodynamics of most significance at
the dilute limit.

10.1 Equilibrium Particle Distribution for the Ideal Gas Mixture

We begin our discussion by focusing on the equilibrium particle distribution for a non-
reactive ideal gas mixture. For this purpose, let us consider M different species within
the mixture, each with independent energy levels and degeneracies given by ¢;; and g;;,
respectively, where the subscript i refers to a particular species and the subscript j refers
to a specific energy level for that species. As in Chapter 3, we seek the most probable
macrostate, but now with the explicit goal of identifying the most probable distribution
for an isolated system of M ideal gases.

Capitalizing on the Maxwell-Boltzmann method, we impose M + 1 constraints on our
isolated system, corresponding to mass conservation for each of M species plus energy
conservation among all species, so that

> Nj=N  i=12...M (10.1)
J

M

> Z Nijeij = E, (10.2)
]

i=1

where Nj; indicates the number of particles identified with the ith species in the jth energy
level, N; represents the total number of particles for the ith species, and E is the total
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energy for the ideal gas mixture. Because we have M independent nonreacting species, the
total number of microstates per macrostate is

M
W= ]‘[ W, (10.3)
i=1

where, in the dilute limit, the number of microstates per macrostate for the ith gas follows
corrected Maxwell-Boltzmann statistics, so that, from Eq. (4.4),

N;j
8ij
W = ]_[ NI (10.4)
]

Combining Egs. (10.3) and (10.4), we obtain

M gl]MJ .
W:HH T (10.5)
i=1 j

here, we note that, in comparison to Chapter 3, we have directly employed the known
statistics for the dilute limit.

Emulating the statistical procedures of Section 3.5, we now determine In W, apply
Stirling’s approximation, and optimize with constraints via the Lagrange method of unde-
termined multipliers. Therefore, applying the logarithmic function to Eq. (10.5), we have

M
InW= Z[N,] In g;; — In Nj;!],
izl

whereupon, following application of Stirling’s approximation, we obtain
M
InW= Nij|In{==)+1], 10.6
2 ; f [ (Ng 0o

which provides a summation over energy levels identical to that given by Eq. (4.3) for a
single component in the dilute limit. In preparation for applying the method of Lagrange
multipliers, we now differentiate Eq. (10.6) with respect to Nj;, thus deriving, after some
manipulation,

M .
dnw=Y"YIn <%> dN;j = 0. (10.7)
i=1 ij

Likewise, differentiating Eqgs. (10.1) and (10.2), we obtain the constraints in differential
form:

> dN;=0 i=12...M (10.8)
j

M
> eidN; =0. (10.9)
i=1

Letting «; be the undetermined multiplier for the ith species constraint and § the unde-
termined multiplier for the energy constraint, we may combine Egs. (10.7-10.9), thus
obtaining

M

Y [m <%> — - ﬁaij} dN; = 0. (10.10)
s ;

i=1
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We note that Eq. (10.10) contains M terms, corresponding to M different components
and thus M species constraints. Within each term, an additional summation occurs over
all energy levels for that particular component. We also note that each term is identical to
what Eq. (3.17) would give for a single component at the dilute limit. Therefore, for each

species, Eq. (10.10) mandates
8ij >
In{ =+ —; — PE&jj =0,
<Nij Pei
so that
Njj = gijexp [— (a; + Beij)] i=1,2,..., M. (10.11)

Comparing Eq. (10.11) to Eq. (4.9), as written for a single independent component, so
that

Ny = gij exp | LL—20 i=1,2, ..., M, (10.12)
kT
we find, as expected, that the Lagrange multipliers in the dilute limit are still given by
T _ L
= TkT P=5r
Now, following Section 4.3, we substitute Eq. (10.12) into Eq. (10.1), thus obtaining
N, =) Nj=e"/My" geulkT, (10.13)
J J
so that, dividing Eq. (10.12) by Eq. (10.13), we have
N;j gije*&‘j/kT
AU L A 10.14
N Z (10.14)

where, in analogy with Eq. (4.12), the partition function for the ith species can be defined
as

Zi=Y gye i/t (10.15)
j

Equation (10.14) represents the equilibrium particle distribution for each component of
an ideal gas mixture. As expected for independent species, this distribution is identical to
that obtained in Section 4.3 for a pure constituent at the dilute limit. In other words, inde-
pendent particles are uninfluenced by other particles in an ideal gas assembly, irrespective
of whether those particles are of the same species or from a different component in the
mixture.

Because the partition function for each constituent of an ideal gas mixture depends on
the temperature and volume of the entire assembly, the equilibrium distribution for each
species must similarly depend on only the temperature and volume of the whole mixture.
Consequently, each component of an ideal gas mixture behaves as if it alone existed in
an assembly at the same total volume, V, and temperature, T. This simple observation is
the proximate basis for the calculation of mixture properties in the dilute limit. From a
macroscopic perspective, the same result is encapsulated by the so-called Gibbs—Dalton
law, which is invoked in all classical textbooks when discussing the properties of ideal gas
mixtures. Ultimately, the Gibbs-Dalton law arises because quantum mechanics dictates
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that the translational energy of any independent particle is intrinsically proportional to
the assembly volume (Section 5.7).

10.2 Thermodynamic Properties of the Ideal Gas Mixture

Now that we have determined the partition function and particle distribution for the
components of a nonreactive ideal gas mixture, we are in a position to calculate mixture
properties. Considering first the internal energy, we substitute Eq. (10.14) into Eq. (10.2),
thus obtaining

M M
N; e
U= Z Z ]Vijgij = Z 7 Zgijsije ”/kT. (10.16)
i=1 i=1 <
Taking the partial derivative of Eq. (10.15) with respect to temperature, we find
0Z; 1 ;
< BTZ> T KT? Y gieie /M, (10.17)
V.N; j

so that, substituting Eq. (10.17) into Eq. (10.16), we obtain

M

1 (32

U= MkT2—< ) , (10.18)
i=1 Zi \ 3T )y y,

where the elective N, subscript on the partial derivatives indicates nonreactive conditions.
Given Eq. (4.32), we may write, for one component of an ideal gas mixture,

so that Eq. (10.18) becomes
M
dln Z;
— . 2 !
U_Zn,RT < 7 )VN. (10.20)
i=1 > INi

However, from Eq. (4.37) for the ith pure component,

In Z,
w = r7? (A4 (10.21)
oT Jyn,

thus, substituting Eq. (10.21) into Eq. (10.20), we obtain

M
U= Zniui, (10.22)
i=1

so that, as expected, the total internal energy of an ideal gas mixture is found by simply
adding contributions to the internal energy from each component of the mixture at the
same assembly temperature.

Shifting to the entropy, we may combine Egs. (3.19) and (10.6), thus giving

M P
S=kinw=kY Y N, [m (%) +1}. (10.23)
i=1 i
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Substituting Eq. (10.14) into Eq. (10.23), we have

S = kZZM,[ln( ) :’T+1}, (10.24)

so that, from Egs. (10.1), (10.16), and (10.18), we eventually find

S = ZNk[ (ar) +1n<%>+1] (10.25)

Upon substitution from Eq. (10.19), Eq. (10.25) becomes

S= Zn, [ <alnz)v’Ni+1n<%>+1] (10.26)

However, from Eq. (4.40) for the ith pure component,

8an,- Zi
i =R|T In| — 11; 10.27
K [ (%57 )V,N,.“(Ni>+ } (1027

thus, substituting Eq. (10.27) into Eq. (10.26), we obtain

M
S=Y s (10.28)
i=1

Consequently, the total entropy of an ideal gas mixture can be calculated by simply adding
contributions to the entropy from each component of the mixture at the same temperature
and assembly volume. In other words, there is no entropy of mixing when gases are com-
bined at the same temperature and total volume; however, as discussed in all textbooks
on classical thermodynamics, an entropy of mixing does occur if we try to combine gases
at the same temperature and total mixture pressure.

Because the internal energy and entropy are both additive with respect to their com-
ponent contributions, all other thermodynamic properties must also be additive at the
same assembly temperature and volume. On this basis, the additive rule for any ideal gas
property follows analogously from Egs. (10.22) and (10.28). As an example, for the Gibbs
free energy, we may write

M
G= Z n;gi,
im1

so that the specific Gibbs free energy for the mixture becomes

M
8= ingis
i=1

where x; is the mole fraction for the ith component of the mixture.

In essence, for any thermodynamic property, this additive feature arises from the lack
of atomic or molecular interactions among particles in an ideal gas mixture. Consequently,
if we define the partial pressure as that pressure contributed by the ith pure component at
the same assembly temperature and volume, we obtain, from either Eq. (9.9) or Eq. (4.31),

dlnZ;\  NkT
v ) vV

P MkT( (10.29)
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where, of course, the total number of particles is given by
M
N=)"N. (10.30)

Therefore, from Egs. (4.31), (10.29), and (10.30), we have

P NkT ZN XM:B,
i=1

which is Dalton’s law of partial pressures. Notice, again, the importance of the fact that
all component properties are functions only of the assembly temperature and volume, as
based on the same functional dependence for the constituent partition functions. In other
words, each component of an ideal gas mixture does indeed act as if it alone occupies the
total volume of the mixture at the given assembly temperature.

EXAMPLE 10.1
A pressure vessel contains a 50/50 mixture of He and Ar by volume at 500 K and 10 bar.
Assuming ideal gas behavior, calculate the specific entropy of the mixture (J/K mol). Note
that, for all inert gases, the first excited electronic state is at least 10 eV above the ground
electronic state.

Solution
From Eq. (10.28), the specific entropy for a 50/50 mixture of He and Ar by volume is

=2 () =05 () +05(3).

where s is the specific entropy of He and s, is the specific entropy of Ar. To calculate
the specific entropy for these two monatomic gases, we require their translational and
electronic contributions, as given by Egs (9.12) and (9.20):

) 5 3
(Te)n: ST+ >InM—InP - 11516

.
(%>el = % +In Lol = lngo.

From Appendix J.1, the ground-state term symbol for all noble gases is 1Sy, from which we
conclude that the ground-state degeneracy is gy = 1. Therefore, the only effective contri-
bution to the entropy comes from the translational mode. Now, because each component
of this ideal gas mixture acts as if it alone occupies the pressure vessel at 500 K, the pressure
used in the Sackur-Tetrode equation to determine the translational contribution of each
component must be the partial pressure, which is P, = P, = 5 bar. Hence, we have

S1

3
ﬁ_—l (500) + 3 In (4.0026) — In (5) — 1.1516

5 3
% = 3 In(500) + 3 In(39.948) — In(5) — 1.1516
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for helium and argon, respectively. On this basis, the dimensionless entropy for the mixture
becomes

5 3
% = 51 (500) + 7 [In (4.0026) + In (39.948)] — In(5) — 1.1516 = 16.581.

Hence, evaluating the specific entropy for the mixture, we obtain

s =16.581(8.3145 J/K - mol) = 137.865 J/K - mol.

10.3 The Reacting Ideal Gas Mixture

The reacting ideal gas mixture can initially be considered in a manner quite similar to that
used for the nonreactive mixture, except that we must now account for two neoteric factors
that will eventually produce substantially different results and conclusions. The first factor
is the obvious constraint imposed by atom conservation during chemical reactions. The
second factor concerns our choice for a zero of energy. Whereas for nonreactive mixtures,
we can calculate the total internal energy by referencing the particle energy for each
component to its lowest accessible level, the same cannot be done for reactive mixtures
owing to the release or absorption of chemical energy. Therefore, if we are to properly
account for this chemical energy, we must choose a zero of energy common to all species
within the gaseous assembly.

As indicated in Section 9.2.2, this common zero of energy is invariably chosen to be
the ground electronic state of each constituent atom in the reacting system. Recall that in
Section 10.1, g;; indicated the particle energy for the jth level, as determined relative to the
lowest accessible state of the ith pure component. In comparison, we now define elfj as the
particle energy, again for the jth level of the ith pure component, but now evaluated relative
to a common reference level chosen at the ground electronic state of any dissociated atom
in the gaseous assembly. Employing, for consistency, the D,-formulation of Table 9.2, the
particle energy for atoms or molecules, based on this common zero of energy, can then be

expressed as
. / P— P
atoms: &j; = &ij

10.31
molecules: &;; = &;j — Do, (1031)

where the dissociation energy, D.;, accounts for any heat produced or absorbed by chemical
reaction.

10.3.1 Equilibrium Particle Distribution for Reactive Ideal Gas Mixture

As in Section 10.1, the equilibrium particle distribution for a reactive mixture can always
be determined by identifying the most probable macrostate. Hence, we again have from
Eq. (10.7),

M
dnW=>Y"3"In (%) dNj =0,
i=1 ] ij

except that the Lagrange method of undetermined multipliers must now be applied to
an equilibrium chemical reaction. For pedagogical reasons, we temporarily choose this
reaction to be

vAA +vgB = C,
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where the v; are stoichiometric coefficients converting two atoms, A and B, to the molecule,
C. Therefore, for the three components of this reacting assembly, we have

din W = Zl (gA]>dNA]+Zln<iIB])dNB]+Zln(ifq>dNC]_O (10.32)
B Cj

]

Imposing particle-conservation constraints for both atomic species plus the usual constraint
on energy conservation, all in differential form, we also have

> dNg +Y vadNej =0 (10.33)
j j
Y dNgj+Y vgdNe; =0 (10.34)
i i
ZS/AJ' dNyj + ZS/Bj dNpj + Zt‘?’cj dNc¢j =0, (10.35)
j j j

where Eq. (10.33) denotes conservation of A-atoms, Eq. (10.34) denotes conservation of
B-atoms, and Eq. (10.35) indicates conservation of energy, as based on a common zero of
energy for each species involved in the chemical reaction.

From Egs. (10.32-10.35), the Lagrange condition becomes

dlnW = Z{ <&>—QA—,88AI}CINA]+Z{IH<NB)—aB—ﬂé‘/Bj}dNBj

+ Z{ln(f\]c] ) — qV4 — ABVR — ,BSC]}dNC/ =0, (1036)

Cj

where we have introduced the usual Lagrange multipliers, here denoted as oy, «p, and 8.
From Eq. (10.36), we obtain the three equilibrium conditions,

Nyj = gajexp [—(aa+ Beay)] (10.37)
Np;j = gpjexp [—(as + Besj)] (10.38)
Nej = gcj exp {—[vao + vgag + B(ec; — Do)]} (10.39)

where Eq. (10.31) has been used to reintroduce individual zeros of energy, as normally
prescribed for each pure constituent of a gaseous mixture. For simplicity, we have also
eliminated the second subscript on the dissociation energy since our chosen equilibrium
reaction manifests only a single molecular component.

We next sum each of the Egs. (10.37-10.39) over all possible energy levels, thus
obtaining

Na=) Ny=e"Z, (10.40)
J

Ng=) Ng=e*Zp (10.41)
j

Ne =) Nej = e neawntDAl 7. (10.42)
J
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where we have simultaneously invoked g = 1/kT and the partition function for each
species, in recognition of Eq. (10.15). Finally, dividing Egs. (10.37-10.39) by Eqgs. (10.40-
10.42), respectively, we have

Na: . o—eaj/ kT
Ng: .o—€Bj/ kT
TIZ = ngeZB’ (10.44)
N o—ecj/ kT
TCCI - gcfezc’ , (10.45)

so that the particle distribution describing corrected Maxwell-Boltzmann statistics for
each species is the same, whether the mixture is reactive or nonreactive.

10.3.2 Equilibrium Constant: Introduction and Development

We are now ready to introduce an expression depicting the equilibrium constant for our
chosen chemical reaction. Substituting Egs. (10.40) and (10.41) into Eq. (10.42), we have

Ne _ (Na\"(N8\" joosir
Ze  \Za 75 ’

Ne Zc D,/ kT

VA ANTVB VA 7VB
NA NB ZA ZB

so that

(10.46)

The particle number density and the species partition function per unit volume are defined
by

N;
= — 10.47
n= (10.47)
Z:
¢ = 7’ (10.48)
Therefore, Eq. (10.46) can be expressed as
K(T) = € = ¢ uiT, (10.49)

g ion
where K. is the equilibrium constant based on concentration, here in particles/cm®. We
recall, from Eq. (9.4), that the translational partition function is linearly related to the
volume; thus, Eq. (10.48) shows that the species partition function per unit volume, ¢;,
is a function only of temperature. On this basis, from Eq. (10.49), we conclude that the
equilibrium constant itself is also only a function of temperature.

Although K, is very useful for chemical kinetics, as we will see in Chapter 17, typical
composition calculations and comparisons to JANAF tabulations benefit from an equilib-
rium constant based instead on pressure (bar). Beginning from Eq. (10.29), we note that,
for a given temperature and volume,

P,
Ni=|—)N, 10.50
(Po> (1030)
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where N, represents the number of particles at a chosen reference pressure, P,, of 1 bar.
Substituting Eq. (10.50) into Eq. (10.46), we obtain
(Pc/P.) (Ze/N) — ppr

(Pa/P)"* (Pg/P)" — (Za/Ns)" (Zp/N.)"

(10.51)

Hence, if all pressures are defined in bars, the usual dimensionless equilibrium constant
based on pressure (Appendix F) becomes for the chosen chemical reaction,

_ (Pc/P,)
P (Pa/P) (P /P)™*’

On this basis, Eq. (10.51) becomes

(Zc /N). oD/ kT

KD = N Za i

(10.52)

where we have defined, using Eq. (10.29), the normalized partition function for each species

as
Z; kT
(ﬁ)o =Ziu Ziin (—POV> .

Substituting for the translational partition function from Eq. (9.4), we then have

Z,’ (2nm,-)3/2
<W) - wp KTY Zi i, (10.53)

which explicitly eliminates any volume dependence at a standard pressure of 1 bar. As
a result, the normalized partition function depends only on temperature, so that, from
Eq. (10.52), the equilibrium constant based on pressure must also be a function only of
temperature.

Equations (10.49) and (10.52) represent equilibrium constants based on concentration
and pressure, respectively, for our chosen reaction at chemical equilibrium. Analogous
equilibrium constants for generic reactions can easily be derived by implementing a semi-
classical approach based on the Gibbs free energy, as exploited in Section 10.4. Regardless
of the particular reaction, however, equilibrium constants always depend solely on tem-
perature because volumetric normalization of each species partition function effectively
eliminates the linear dependence on volume introduced by the translational energy mode.
Here, we see the persuasive power of statistical thermodynamics in explaining satisfacto-
rily an equilibrium concept often misunderstood in classical thermodynamics. Finally, we
note that equilibrium constants depend directly on species partition functions rather than
on their logarithms, as for all previous thermodynamic properties. Therefore, in contrast
to other such properties, accurate equilibrium constants mandate irrefutable calculations
of all associated partition functions.

10.4 Equilibrium Constant: General Expression and Specific Examples

The equilibrium constant introduced in the previous section is peculiar to a specific chemi-
cal reaction for which a diatomic molecule is in equilibrium with its constituent atoms. We
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now wish to develop a more robust K, expression based on the general chemical reaction,
Z v,~M,~ =0 s
i

where the M; represent various chemical symbols and the v; are related stoichiometric
coefficients, which are defined to be positive for products and negative for reactants. As
an example, for the equilibrium chemical reaction 3H; + N, = 2NH3, the stoichiomet-
ric coefficients for ammonia, hydrogen, and nitrogen are 2, —3, and —1, respectively.
Employing this nomenclature, the equilibrium constant based on pressure, from classical
thermodynamics (Appendix F), is

K,= ]‘[ (;) (10.54)

where P, =1 bar, thus mandating that all partial pressures be expressed exclusively in
bars. Similarly, from classical thermodynamics, the equilibrium constant can be related to
standard-state chemical potentials for each reactive species by
D Vil
In Kp = —T, (1055)

where p? is the chemical potential for the ith species, evaluated at P, = 1 bar.

As might be expected from Eq. (10.55), the crucial connection between classical and
statistical thermodynamics occurs through the chemical potential for each gaseous com-
ponent, which from Eq. (4.39) is

Mo é’
RT = In ( N) . (10.56)

Here, we have employed a common zero of energy for both atoms and molecules, so that
the partition function for the ith species becomes

’ —¢l./ kT
Zi= Y
J

Hence, from Eqgs. (10.31) and (10.56), the chemical potential at P, = 1 bar can be expressed

as
Z; D,

O=—RT|In( — , 10.57

& [“(N)fkT} (10.57)

where, by definition, the dissociation energy is D,; = 0 for any atom in the reactive mixture.
Substituting Eq. (10.57) into Eq. (10.55), next we have

Zi D.;
InK, = lZviln <W>O+X,~:w <kT)’

from which we obtain
Zi\" > i viDei
K, = — = . 10.58
U(N)f"p( KT ) (109
Equation (10.58) represents our desired result, i.e., the equilibrium constant based on

pressure for any reaction at chemical equilibrium. We thus realize that Eq. (10.52) is
merely a special case of Eq. (10.58). Finally, exploiting the similarity between Egs. (10.49)
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and (10.52), we may also establish an analogous expression for the generic equilibrium
constant based on concentration, i.e.,

K.=]]n" =[] ¢"exp <ZkV7TD) . (10.59)

EXAMPLE 10.2

The reaction A(v,J)+M = A(v,J — AJ)+ M describes rotational relaxation for a
generic diatomic molecule from rotational level, J, to rotational level, / — AJ, upon col-
lision with the nonreactive species, M. Employing the simplex model, show that the equi-
librium constant based on number density for this energy-transfer reaction is given by

207 6, AT
K=(1- —AT)|,
< 8 )eXp[ T & J)}

where the rotational degeneracy is g; = 2J + 1.

Solution
From Eq. (10.59), the equilibrium constant for this energy-transfer reaction is
K — n(,J —AJ)
n(v,J)

Now, from Eq. (4.14), the population ratio between the number density associated specif-
ically with (v, J) and the total number density describing all possible rotational and vibra-
tional levels is

n(v,])= 81 o |:_J(]+1)9r+v9v].
n Zrot Lvip T
Similarly, for the number density associated specifically with (v, / — AJ), we have
n(v,J —AJ) _ &i-aJ exp [_(] —AN)(J =AJ+1)6, + vev} _
n Zyot Lvip T
Dividing the latter by the former, we obtain for the equilibrium constant
nw,J—AJ) 2(J—-AJ)+1

K. = =
n(v,J) 2J +1
H-J-A —A 1]6,
><eXp{[J(JjL )—(J I(J J + )]9}
T
so that
K_ZJ—i—l—ZA]eX Q2J+1-AJ)AJO,
T 27 +1 T ’

On this basis, we find that

20T 0, AT
K=(1- —AT)|,
< 8 )eXp[ T )}

which verifies the given expression for the equilibrium constant.
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10.4.1 Dissociation of a Homonuclear Diatomic

We now discuss three special cases, so as to exercise our ability to consider various appli-
cations of Egs. (10.58) and (10.59). We begin with the dissociation of any homonuclear
diatomic,

A+M=22A+A+M,

where M represents a species energetic enough to break the chemical bond forming A,
and also sufficiently absorptive to permit bond formation upon collision of two A-atoms.
Applying Eq. (10.59) to this equilibrium reaction, we obtain
2
K= 24 DA (10.60)
b4,

where D, is the dissociation energy for A,. Similarly, applying Eq. (10.58), we obtain the
equilibrium constant based on pressure, as given by

(Za/N )i o~ D/kT

K,=—--2= 10.61
"= ZuiN), oen
Now, from Egs. (9.4) and (10.48),
Zy 2mm;k T\
b= = () (10.62)
so that, from Eq. (10.60), we have
(7”7"AkT)3/2 Z/% int _DKT
K. = : e DAT, 10.63
n Zp, int ( )
Similarly, from Eq. (10.53), Eq. (10.61) becomes
(w mA)3/2 5/2 fo int _D./k
K, = ~—"2— (kT)" | =™ oK 10.64
14 h3 Po ( ) ZAzyin[ e ( )

Equations (10.63) and (10.64) are completely accurate since no assumptions have been
made with respect to the internal partition functions. If, on the other hand, we assume
that only the ground electronic states are populated for both the atom and molecule, the
required internal partition functions can be approximated as

Zaint = 80.4 (10.65)
T
Zpyim = g°'2“2 (9_) [1—e /T (10.66)

where we have invoked the simplex model by implementing Egs. (9.26) and (9.47). On
this basis, Egs. (10.63) and (10.64) become

) V2 [ o2 .
K — (mmakT) (gO,A (9_) [1 — e /T e DAT (10.67)

h3 80, A, T

2 (mma)*? s f 8.4\ (6 0,/ T —
K,=——+—"— (kT —_— S N P A P 10.68
P P, (KT) P AV [1—e™"]e (10.68)
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The calculation of equilibrium compositions requires that we review some well-known
procedures of classical thermodynamics. Suppose that we begin with one mole of A, which
reacts to form an equilibrium mixture of A and A, at a specified temperature and pressure.
For this system, the overall mass-balance reaction,

Ay — na, Ay +nAA,
gives, through conservation of atomic species, the relation
21’1A2 +ny=2,

where n 4, and n 4 are the number of moles of A, and A, respectively. Defining the degree
of dissociation as

na na
== —,
2nA2 +ny 2
we also have
nyp=2ua nA2=1—Ol nA+nA2=1+oc. (1069)
From Egs. (10.19), (10.29), and (10.69), the partial pressures for A and A, can be expressed
as
20 l-—«
Py= p Py, = P
! <1+a> v <1+a) ’

where P is the total pressure. Hence, the equilibrium constant, from Eq. (10.54), becomes

o _ (PaP) 4 (P)

P (Pagp)  1-a?\P.

(10.70)

so that the only unknown quantity is the degree of dissociation. Combining Eqs. (10.64)
and (10.70), the degree of dissociation can be obtained implicitly from

2 3/2 2
= T (kry (—ZA"'"‘ ) e DT, (10.71)

1 — (Xz 4h3P ZAZ,[}’![

Therefore, though K, is a function solely of temperature, the degree of dissociation
depends on both temperature and pressure, as expected from classical thermodynam-
ics. Having solved for the degree of dissociation, the number of moles for each species and
thus their mole fractions can ultimately be determined from Eq. (10.69). On this basis, the
equilibrium composition during homonuclear dissociation is clearly influenced by both
temperature and pressure. In summary, for all chemical reactions, once K, is determined
from statistical thermodynamics, classical thermodynamics can always be used to calculate
the equilibrium composition.

EXAMPLE 10.3
Calculate the equilibrium constant based on pressure for the reaction, N, + M = N + N +
M, at 3000 K.

Solution
From Eq. (10.64), the equilibrium constant is

(”mN)3/2 5/2 Zj%l int \ —D.jk
K, = ~———— (kT — oA,
v="p KDz )¢
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Now, from Examples 9.2 and 9.5, the internal contributions to the partition function at
3000 K are

ZN.int = ZN.e = 4.0010
Zny.int = Zet Zg_y Zeorr = (1.0000) (778.80) (1.0139) = 789.63.
From Appendix K.1, the dissociation energy for molecular nitrogen is
D, =9.759 eV (1.602 x 1071 J/ev) — 1.5634 x 10718 J.

Hence, we have
72, 4.0010)? 1.5634 x 1018
( N,mr)e—no/kr_( 0010) p[ 2634 x 10 i|=8.2211x10_19.

Znty.mt = (789.63) P | T (1.3807 x 10-23) (3000)

Evaluating the equilibrium constant, we thus obtain
[ (14.0067) (1.6605 x 10-27)]""2
P (66261 x 10-34)* (1.0 x 105)

5/2

[(1.3807 x 107%) (3000)]

x (8.2211 x 107"%) = 1.949 x 107",

10.4.2 The Homonuclear-Heteronuclear Conversion Reaction

The conversion from two homonuclear diatomics to a single heteronuclear diatomic can
be represented at chemical equilibrium by

A; + B, = 2AB.

From Eq. (10.58), the equilibrium constant based on pressure for this reaction becomes
(Za/N): Ahy
" ZaN). (ZuN), (‘ﬁ)’
where, for convenience, we have converted to the classic enthalpy of reaction for the
hypothetical ideal gas at absolute zero (kJ/mol),

(10.72)

Ahy = _NAZ viDoj = No(Ds 4, + Dq 5, — 2D, aB). (10.73)
i

for which N4 is Avagadro’s number. Based on Egs. (10.53) and (10.66), the normalized
partition function for any diatomic molecule confined to its ground electronic state can be
written as

Z 2my;)>? T
<W) _ Grmi) ™ ’; Z”P) (kT)’? <—g°*9 > [1—e /T, (10.74)
° [ O;Upj

where we have again presumed the simplex model with 7' /6, > 30. Substituting Eq. (10.74)
into Eq. (10.72) for each species, we eventually find that

3/2
K., = < milB ) / g(z),AB 4er,Azer, B,
: ma,Mp, 80,4,80,B, 67 A5
[1 _ e_eu.Az/T] [1 _ e—euBz/T] < Aha)
X 5 exp|——=|.
[1 _ e—9r.AB/T] RT
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Because the total number of moles is invariant for this particular equilibrium reaction,
we find, as might have been expected from Eqgs. (10.58) and (10.59), that the above K,
expression is equivalent to that for K..

10.4.3 The lonization Reaction

The ionization of an atomic species, for example in a plasma or flame, can be represented
chemically by the reversible reaction

A=At e,
for which the equilibrium constant based on concentration becomes, from Eq. (10.59),
¢e¢A+ 1
K. = —— ), 10.75
= e (- (1075)

where [ is called the ionization potential. From Egs. (10.62) and (10.65), the partition
function per unit volume for either atomic species is

2rmkT\*
¢ = ( i > 80,i- (10.76)
Similarly, for the electron,
2xmkT\?
¢e=2(%) , (10.77)

where here the factor of two accounts for the two possible intrinsic spin states of an electron.
Recognizing that the masses of the ionized and parent atom are essentially equivalent, we
obtain, by combining Egs. (10.75-10.77),

2nmek T\ "
K.=2 (%) (g(’—f‘> eI, (10.78)
h 80.4

EXAMPLE 10.4
Using the simplex model, show that the equilibrium constant for the chemical reaction
O, + %NQ =2 NO; is given by

PN\ Znoy.im o)
Ky —andf () D ()
*\kT ZOZ.W 211\1/22,int r

where the thermal de Broglie wavelength is
h

\/anikT’

and the constants «; = 1.724 and «, = 4320 K.

A =

Solution
From Egs. (10.58) and (10.73), the equilibrium constant based on pressure is

Zl' Vi Zi V,'DO,' Z,‘ Vi Ah?
6= T1(5) oo (5 ) <TH(E) o ()

o
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where, from Eq. (10.53),

Z:\ _ (2zmkT\>? (kT 2o (KT 4
N o_ h2 P, Jint = A?PO iint+

Applying these expressions to O, + %Ng 2 NO,, we obtain

__ ZoN. <_Aha>
(Zo,/N), (Zx,/N)!? RT )"

so that, via substitution, we may verify

P\'"?  Zno,.i K
_ 3/2 o NO,,int __2
Kp=rihy] (kT> Zo, imZIl\;/z o ( T>7

P

o.int
where
K1 = A:Oz
Ao,
Ahg
Ky = R .

On this basis, k1 and k, may be evaluated as follows:

o (o, _ (46.008\E
" \mo, ) " \32000) T

_ Ahg 35927 J/mol
27 7R T 83145 J/K - mol
where here Ahg is the standard enthalpy of formation for NO, at absolute zero, as obtained
from the appropriate JANAF table in Appendix E. Hence, we have verified the given
numerical values for «; and «,.

= 4320 K,

Problems enhancing your understanding of this
chapter are combined with those for Chapter 11
in Problem Set V.






11 Concentration and Temperature
Measurements

To this point, we have applied statistical mechanics and spectroscopy to the calculation
of thermodynamic properties for both nonreactive and reactive mixtures of ideal gases.
From a diagnostic perspective, spectroscopy and statistical thermodynamics can also be
linked to determine the concentration and temperature in a gaseous mixture. The funda-
mental strategy is to deduce from a given spectroscopic measurement the number density
(particles/cm?) associated with a chosen internal energy level, n;, ;, and then to apply rel-
evant Maxwell-Boltzmann distributions to evaluate concentration or temperature. From
Eq. (4.14), we may thus determine the total number density, n, for an atom or molecule
by invoking

Rint j 8int,j Eint,j
—L = - 11.1
n Lint xp ( kT ) ( )

where, from Section 8.4, the degeneracy and partition function need include only those
internal energy modes accessed by the implemented spectroscopic technique. Similarly,
from Eq. (4.15), the temperature can be determined from a ratio of level populations via

Rint,m 8int,m Eint,m — Eint,n
=—eXp|—"7m———57 |, (112)
Rint,n 8int,n kT

where the subscripts m and n refer to specific energy levels of an atom or molecule.

In general, the number density corresponding to a specific energy level can be obtained
by optically probing suitable transitions with an available light source, such as a Xe-arc
lamp, a pulsed laser, or a continuous wave laser. Equation (11.2) indicates that the temper-
ature can be evaluated by simultaneously or sequentially probing two different signatures
in the spectrum, while Eq. (11.1) implies that only a single spectral line is required to
determine the number density, although knowledge of the temperature appears necessary.
Fortunately, in many cases, an energy level can be chosen whose population is relatively
insensitive to wide variations in temperature. Nonetheless, whether exploiting Eq. (11.1)
or (11.2), a fundamental relation is required between n;,,; and an optical parameter of
the chosen measurement. Such relations can be developed once we understand mode
temperatures and the basic theory describing the various interactions of radiation with
matter.

223
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thermocouple

N, flow

—> | © Figure 11.1 Measurement of 7;, behind a shock wave.
T=300K

shock

11.1 Mode Temperatures

The specific temperature characterizing a single energy mode can be defined by applying
Eq. (11.2) to the population distribution for that mode. Hence, the rotational temperature
becomes

T, = Erot,n — Erot,m 7 (113)
k ln (grot,nnrol,m>
grot,m nrot,n
where the indices n and m now refer to two different rotational energies, whether these
levels are monitored via microwave, infrared, visible, or ultraviolet spectroscopy. Anal-
ogous definitions, of course, exist for the remaining energy modes, whether translation,
vibration, or electronic.

The significance of such mode temperatures can be understood by considering the
thermal history of N, upon its passage through a shock wave. Suppose that this shock
is stabilized in a tube by flowing N, in an opposite direction, such that the temperature
sufficiently far downstream can be measured by an appropriate thermocouple, as shown in
Fig. 11.1. Suppose, also, that the initial N, temperature is 300 K and that a final equilibrium
temperature can be achieved rather promptly behind the shock wave. Since a thermocouple
monitors the kinetic energy of molecular motion, it inherently provides the translational
temperature, 7. Nevertheless, at thermal equilibrium, only a single temperature is pos-
sible, so that the mode temperatures are related through 7;; = T,;, = T;,s = T;,. In other
words, at thermal equilibrium, a thermocouple also measures the rotational, vibrational,
and electronic temperatures.

If, however, the thermocouple were used to monitor the translational temperature as
a function of distance behind the shock wave, we would find that 7}, follows the schematic
profile shown in Fig. 11.2. Because the temperature ratio across a normal shock can be
expressed in terms of the specific heat ratio, y = ¢,/c,, the latter can be evaluated at
each plateau, as also displayed in Fig. 11.2. Neglecting both dissociation and electronic

Figure 11.2 7;, versus distance behind a shock wave.

v

distance
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Table 11.1 Excited modes for N,

y Cy Excited modes
5 3

3 5 R tr

7 5

3 5R tr + rot

2 IR tr + rot + vib

excitation, which is certainly reasonable for N, at temperatures below 3000 K, the indicated
specific heat ratios can be converted to ¢, values via the well-known relation

¢+ R
Y= .
Cy

From classical equipartition theory, these ¢, values may be interpreted in terms of
mode excitations, as delineated in Table 11.1. We thus recognize that thermal equili-
bration is a dynamic process; that is, the rotational and vibrational temperatures ulti-
mately coalesce with the translational temperature, but in distinct temporal stages.
Hence, the ¢, value designating the first plateau of Fig. 11.2 represents only translational
excitation, as insufficient collisions have occurred to pass kinetic energy to the rotational
and vibrational modes. Further collisions eventually produce equivalent rotational and
translational temperatures (y = 7/5), followed by full equilibration with the vibrational
mode (y =9/7). We thus conclude that the rotational mode inherently responds much
more rapidly than the vibrational mode to changes in the translational temperature. This
behavior reflects more effective collisional energy exchange with the rotational as com-
pared to the vibrational mode, which should be expected based on the much smaller
energies for the former as compared to the latter. Therefore, we conclude that spectro-
scopic measurements monitoring 7, are normally preferable for practical thermometry,
as compared to those monitoring 7 or T,;.

11.2 Radiative Transitions

Concentration and temperature measurements are usually conducted by employing UV—-
visible spectroscopy, although infrared spectroscopy is adopted in some cases. For atoms,
electronic transitions must obviously be exploited, while, for molecules, rovibronic lines
are typically used within a chosen electronic system. Among potential atoms, those
with low-lying electronic levels are preferable, thus bolstering the opportunity for ther-
mal equilibration. Similarly, for molecules, rovibronic levels are favored because of the
enhanced probability of equilibration between the rotational and translational energy
modes.

Whether the transitions involved are electronic or rovibronic, a conceptual framework
is obviously mandatory for the fundamental analysis of radiative transitions. To this end,
we now introduce the required nomenclature by considering the simple two-level model
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shown in Fig. 11.3, where u indicates the upper 7 u
and / the lower energy level. For an atom, elec-
tronic transitions are, of course, well represented
by this two-level model. For a molecule, on the

other hand, a two-level model holds only at A B Bu Qu
exceedingly short excitation times (~2 ns), as

thermal collisions can quickly provide the kinetic

energy needed to shift population within the 3 Y Y l
upper rovibronic level to other rotational levels  gjgure 11.3 Rate coefficients for radiative
within the same electronic state. and nonradiative transitions.

In general, the rate of population transfer
into or out of the lower and upper energy levels, respectively, can be written as

di’ll

E =n, Ay — m Byp, +n,Bup, + Quny, (114)
dn,

dt = _nuAul + nlBlupv - nuBullou - Qulnu, (115)

where the first term in each rate equation represents spontaneous emission, the sec-
ond term stimulated absorption, the third stimulated emission, and the last nonradia-
tive quenching owing to collisions with nearby atoms or molecules. Here, n; and n,
represent number densities in the lower and upper energy levels, while the parame-
ters Ay, By, and By are denoted as the Einstein coefficients for spontaneous emission,
absorption, and stimulated emission, respectively. In essence, A,; represents the proba-
bility per unit time that an atom or molecule in the upper level will undergo a radiative
transition to the lower level. Similar definitions apply to B,p, and By,p,, where p, is
the radiative energy density at frequency v (J/m>-s~!). On this basis, the rate coeffi-
cients for spontaneous emission, A,;, and quenching, Q,;, have units of s~!. Similarly, the
Einstein coefficients for stimulated absorption and emission, By, and By, have units of
m?/J - §2.

As for the Bohr model of Chapter 5, spontaneous emission and stimulated absorption
represent energy shifts for an atom or molecule upon release or absorption of a single
photon. Hence, the upper and lower energy levels, ¢, and ¢, are related to the transition
frequency, v, by

ey — & = hvy,

where the discrete energies represent electronic or rovibronic levels for atoms or molecules,
respectively. While spontaneous emission inherently produces isotropic radiation, stimu-
lated emission, by comparison, generates an additional coherent photon in phase with
the incident photon. More importantly, electronic quenching is inevitably exacerbated at
higher pressures because of the greater rate of binary collisions, as discussed further in
Section 16.1.

If we now sum Egs. (11.4) and (11.5), we obtain

d
T () =0 (11.6)
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so that
n, +n; =ny, (11.7)

where nj represents the initial number density within the lower energy level prior to
radiative interaction. Equation (11.7) is basically a statement of conservation of mass. In
general, nj can also be taken as the total number density in the nascent two-level system,
since nearly the entire population before excitation is typically associated with the lower
energy level.

11.2.1 Spectral Transfer of Radiation

If we now consider only optical transitions, we may demonstrate that the temporal
change in number density within the lower energy level is related to an accompanying
change in spectral energy density, p,. To ensure only radiative interactions, we require
Qun, = 0, sothat Eq. (11.4) represents the effective photon emission rate per unit volume
(photons/s - m?). This underlying condition typically holds for either low pressures ( Q. =~
0) or weak transitions (n, >~ 0). Recognizing that the energy per photon is 4v, we may thus
convert Eq. (11.4) to a local spectral power density, p, (W/m? - s71), so that

py=hv <%> Y(v) =hvAun,Y(v)+ hv [Byn, — Bun]p, Y(v), (11.8)
where Y(v) is a line profile function, which accounts for the inevitable variation in transition
probability owing to energy quantization. On this basis, Y(v) can be taken as a probability
density function, normalized in the usual way via

/ Y(v)dv =1, (11.9)

where, here, we need integrate only over the spectral line width. As discussed in Sec-
tion 11.2.3, the line profile function simply affirms that absorption and emission of light do
not occur precisely at vy, owing to both Doppler and collisional broadening of the spectral
transition.

Preferentially, Eq. (11.8) can be cast in terms of the spectral irradiance, I, (W/m? - s71),
by considering a differential length along some optical path, ds. We thus obtain

dl, = p,ds = hv (Q./47) Ayn,Y (v)ds + (hv/c) [Byn, — Bum] LY (v) ds, (11.10)

where Q. represents a small solid angle that takes into account the isotropic nature of
spontaneous emission. In developing Eq. (11.10), we have made use of the fundamental
relation

I, = pyc. (11.11)

which is derived in nearly all textbooks on electromagnetic theory. Dividing through by
Q., Eq. (11.10) can finally be converted into the steady-state, one-dimensional radiative
transfer equation

dl, B hv
ds ~— \dx

h
) AunaY (v) + 7" [Buntu — Bumi] J,Y (v), (11.12)
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where J, is the spectral radiance or intensity (W/m? - sr - s~'), which is equivalent to the
spectral irradiance per unit solid angle. For most applications, propagation of radiation is
confined to a small solid angle, 2.. Hence, the Q. /4 factor in Eq. (11.10) is the fraction of
the total spontaneous emission that falls within the solid angle of the propagating beam.

11.2.2 The Einstein Coefficients

Relations among the Einstein coefficients for spontaneous emission, stimulated absorp-
tion, and stimulated emission can be developed by assuming both thermodynamic and
radiative equilibrium. Given radiative equilibrium, Eq. (11.8) becomes

Auny, + [Bull’lu - Blung] oy = 0. (1113)
At thermal equilibrium, n, and n; are related by Eq. 4.15, so that
ny 8u (eu — 81):| 8u _hv/kT

L LS ¢ ) Loy =L , 11.14

nooog P [ kT g ( )

as ¢, — & = hv for interaction with light at resonant frequency v. Combining Egs. (11.13)
and (11.14), we obtain for the spectral energy density

Aul

0y = 11.15
(gl/gu) By ek — By, ( )
or
AM Blt
Py = (Au/Bu) (11.16)
<nglu> /KT _ 1
guBul

For radiative equilibrium, the spectral energy density follows the Planck distribution for
a blackbody, which, from Eq. 14.17, is

5 Swhv?/c?

Comparing Egs. (11.16) and (11.17), we find that
8rhv?
Ay = 3 B (11.18)
and also
Blu 8u
— == 11.19
Bu g ( )

Although Eqgs. (11.18) and (11.19) have been derived by invoking thermodynamic and
radiative equilibrium, these expressions also hold away from equilibrium as the Einstein
coefficients are fundamental microscopic parameters. Because A,;, By, and By, are thus
interrelated, only A, values (s—!) are typically compiled in the literature. Such values are
generally determined from spectroscopic measurements, time-dependent solutions to the
Schrodinger wave equation, or a combination thereof. Indeed, the Einstein coefficient for
spontaneous emission is fundamentally related to the transition dipole moment, M,,, i.e.,
167303

Ay = 20
" 3e hcd T

(11.20)
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where M, is given quantum mechanically by Eq. 6.102. From this quantum viewpoint,
we recognize that the Einstein coefficients are sizable for allowed transitions and nearly
negligible for forbidden transitions. Equation (11.20) also attests that spectroscopic signals
become more intense at greater frequencies, so that ultraviolet spectroscopy is normally
much more useful than infrared spectroscopy for most diagnostic purposes.

11.2.3 Line Broadening

As indicated previously, the line profile function, Y(v), varies with the mechanism of
line broadening. For our purposes, a simple introduction to the two most important line-
broadening mechanisms is sufficient. These two mechanisms are Doppler broadening,
which gives a Gaussian profile, and collisional broadening, which gives a Lorentzian profile.
Typically, Doppler broadening dominates at lower pressures while collisional broadening
dominates at higher pressures.

Doppler broadening is a manifestation of the Doppler effect of classical physics. The
random translational motion of gaseous particles implies that atoms or molecules can be
moving toward or away from an observer. A distribution of radiative frequencies thus
occurs because of the resulting Doppler shift. By averaging this Doppler shift over the
possible particle speeds, which we will discuss in Section 15.2, the line profile function for
this case can be shown to be

2 /2 — )
Yo(v) = 5 n?exp[—mz%}, (11.21)
D

where the full-width at half-maximum (FWHM) for the Doppler profile is

2. [2In2kT
Avp = 2o [ZRERD (11.22)
C m

The resulting Gaussian profile is shown in Fig. 11.4. We note, from Eq. (11.22), that a
careful measurement of the line profile can be employed to determine the temperature.
It also turns out that the center frequency, v,, shifts notably with changes in flow velocity,
so that any displacement in center frequency could also be used to measure the fluid flow
rate.

In contrast to Doppler broadening, collisional broadening is a manifestation of the dis-
ruption of radiation by collisions. In essence, a greater collision rate produces shorter wave
packets, which inherently broaden the spectral signal. This behavior can be understood
from Fourier analysis, in that more Fourier overtones are needed to describe a sharper
temporal pulse. The resulting line profile accounts for the statistical distribution of possible
collision times, so that

AVC 1
Y, = . 11.23
c(v) 27 (v —v,)% + (Avc/2)? ( )
Here, the collisional FWHM is
27F
Ave = —, (11.24)



230 * Concentration and Temperature Measurements

where Z* is the collisional frequency (collisions

per second). In comparison to the Doppler case,

the collisional FWHM broadens substantially with
increasing pressure owing to an enhanced collision ~ Y()
rate at greater density (see Section 16.2.1). There-

fore, careful measurements of the collisional pro- Yo)
file can sometimes be used to monitor the pressure
of a gaseous assembly. We note, finally, that the
Lorentzian profile resulting from collisional broad-  Figure 11.4 Line profile functions for
ening displays broader wings than the Gaussian Doppler and collisional broadening.
profile produced by Doppler broadening, as shown

in Fig. 11.4.

Yp()

Vo v

11.3 Absorption Spectroscopy

In absorption spectroscopy, a beam of light is passed through the medium of interest and
its decay is monitored by a suitable detector, as shown in Fig. 11.5. For the sake of sim-
plicity, we undertake our analysis of spectral absorption by beginning with the atomic
rather than the molecular case. On this basis, the upper and lower levels can be taken as
denoting the first excited and ground electronic states, respectively, so that n,/n; <<
1 at thermodynamic equilibrium. Consequently, for a weak light source, Eq. (11.10)
becomes

dl,

= —k,ds, (11.25)

v

where the spectral absorption coefficient (cm™") is defined by
k, = (hv/c) Byun Y(v). (11.206)

Assuming a homogeneous medium, we may integrate Eq. (11.25) over the interaction
length L, thus obtaining the familiar Beer—-Lambert attenuation law,

I(L) = L,(0) e ™1, (11.27)

where 1,(0) is the incoming irradiance at L = 0.
The experimentally measured quantity of interest in absorption spectroscopy is the
integrated absorption, W, (s~!), defined by

Wi, = / [1 — é((g))} dv =/[1 —e " av, (11.28)

beam
\ detector
source . M

Figure 11.5 Typical experimental setup for absorption spec-
troscopy.
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A

Figure 11.6 Typical line profile obtained in absorption spec-
troscopy.

v

as displayed in Fig. 11.6. For typical experiments, we employ a weakly absorbing line and
either a broad-band or a scanning narrow-band light source, so that integration over the
spectral line profile gives

W = / k, Ldv (11.29)

since e &L ~ 1 — k, L. Hence, substituting from Eq. (11.26), we have
Wiw = Ki L, (11.30)

where K}, is the line strength (integrated absorption coefficient), expressed by
h
K = / k, dv = ( ”“’) Bun. (11.31)
C

The desired quantity is 7;, which can be determined by combining Eqs. (11.30) and
(11.31), thus giving

cWy,

n=-_———-,
hvulBluL

(11.32)
where W, is evaluated from the normalized area under the absorption line and the Einstein
coefficient, By, is obtained from appropriate tabulations in the literature. The total number
density, n, can then be determined from n; via Eq. (11.1), so that

ny &l
=4z ). 11.33
NE P (%7 (1133)
By employing another low-lying electronic energy level, a second population density, 7,
can be determined in the same way, and thus the electronic temperature can be obtained
from Eq. (11.2), i.e.,
Ek — &l

Ty=— k=8
"7 kin(ge /gimy)

(11.34)

Moving now to molecules, we can apply the same two-level model to individual rovi-
bronic levels within two different electronic states. Hence, from Egs. (11.30) and (11.31),
we may write

KJ!/J/
h\j Bj”j’ ’

n(J") = (11.35)

where ¥ is the wave number corresponding to the line center and J” is the rotational
quantum number identifying the rovibronic level in the lower electronic state. The
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total number density can then be obtained from Egs. (7.19), (9.53), and (11.1), so
that
Zel ZR,vI’l(J//)

he ,
"Tees+neiT ey P {ﬁ[n +G) + R >]} : (11.36)

where we have presumed an electronic degeneracy, g, = ¢(2S + 1). However, we note
that the electronic degeneracy should be unity if the rovibronic transition used in the
measurements actually corresponds to an individual spin-split, A-doubled level.

Analogous to the atomic case, the rotational temperature can be determined by using
two different rotational levels within the same lower vibronic level. Hence, assuming equiv-
alent rotational and translational temperatures, we have from Eq. (11.36)

n(J{) he o 1Y) hc ”
(211”4‘1“1) exp { T [T + G(v) + F,(J] )]} = (212/,711) exp {k_T [T. + G(v) + F,(J3 )]}
so that
n(J)  QJ'+1) hc " "
)~ @) {kT [R5) = R )]} | (1L37)

Substituting Eq. (11.35) into Eq. (11.37) for each rovibronic level, we find that

Ky Ky hce ,
In|] —— | —In = F,(J)) = F,(J])], 11.38
|:(2]” +1)Byy ]1 |:(2J” +1)Byy :|2 kTmt[ (72 (Dl ( )

where we have presumed that 71 >~ ¥,. Therefore, manipulating Eq. (11.38), the rotational
temperature becomes

"R ~ RO

T = (11.39)

LT W g 7
(2.]”—}—1)B]/f]/ 1 (2.]”—{-1)3]//]/ 2

While Eq. (11.39) provides the rotational temperature when using two rovibronic tran-
sitions, a more accurate rotational temperature can usually be determined by employing
a large number of rovibronic lines in the spectrum. From Eq. (11.38), we find that, for
multiple lines,

kT Ky
F,(J") o — 1 11.40
() o= n[(ZJ”—i—l)B,,,,J (11.40)
so that the resulting Boltzmann plot shown in Fig. 11.7

rot

hc

offers a straightforward method by which a linear slope F () _ KT

can be used to determine the rotational temperature.
However, we should understand that while a nonlinear
Boltzmann plot surely indicates nonequilibrium conditions,
the anticipated linear plot does not necessarily guaran-
tee rotational equilibrium, as intense chemical reactions,
for example, can sometimes produce a “rotationally hot”  Figure 11.7 Boltzmann plot.

In[K /(20" + 1)Byy]
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population distribution. Therefore, as in most optical experiments, caution is required so
as to properly interpret the measured rotational temperature.

EXAMPLE 11.1

Atomicmagnesium is monitored using a broad-band absorption measurement taken across
the two-meter smokestack of an incinerator at 1 bar. At a measured exhaust temperature
of 500 K, the integrated absorption at 4571 A is found to be 1.35 x 10 s~1. If the Einstein
A-coefficient for the electronic transition at this wavelength is known to be 2.2 x 104 s~ 1,
determine the concentration of atomic magnesium, in parts per million (ppm), leaving the
incinerator.

Solution

The given wavelength of 4571 A indicates a wave number of (4571 x 1078)~! =
21877 cm™!, which, from Appendix J.1, clearly corresponds to an electronic transition
from the ground 3s—1S state (/) to the first excited 3s3p —3Py 1 ; state (u). At ppm levels
of atomic magnesium, the number density for Mg in the ground state can be related to the
integrated absorption via Eq. (11.32), i.e.,

cW,

"= ]’ll)u]BluL’
thus indicating that B, must be evaluated from A,. Hence, from Egs. (11.18) and
(11.19),

3
gu guc gu
Bu=2By=5“ _4,=_5"_4,
fu g ! 8rgihv3 ul 8w gihv? ul

Now, from the above term symbols, g =1and g, =1+ 3+ 5 = 9. Hence,

(9)(2.2 x 10* s71)

= 1.135 x 10* cm’/J - 5.
87(6.6261 x 10-3 J - 5)(21877 cm-1)3 x 107 em’/J -5

Bl u =

Given W, = 1.35 x 10'! s7!and L = 200 cm, the number density in the ground electronic
state is

Wi

"= hﬁulBluL

(1.35 x 101 s71)
(6.6261 x 1073 J-5) (21877 cm=1) (1.135 x 102* cm3/7J - s2) (200 cm)

= 4.103 x 10" ecm 3.

For atomic spectroscopy, the electronic mode is obviously the only internal energy mode
of significance. Hence, from Eq. (11.33), the total number density in the exhaust stream
can be determined from

&
n = Z,exp (k_[T) n = Zn,
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as ¢ = 0 for the ground electronic state. From the data of Appendix J.1, the electronic
partition function for atomic magnesium at 500 K is

(1.4387) (21877)
500
Consequently, for atomic magnesium at this temperature, the total number density is the
same as that in the ground electronic state, so that n = 4.103 x 103 particles/cm?. To
convert to parts per million (ppm), we invoke Eq. (9.10) to determine the total number
density for an ideal gas at 500 K and 1 bar; thus,
P (1.0 x 10° dyne /cm?)

kT (1.3807 x 10-16 dyne - cm /K)(500 K)
Therefore, the exhaust concentration of atomic magnesium, in ppm, is

co_ 4.103 x 1013
PP 449 x 1019

Z61=g0+glexp<—8—l>=1+9exp|: i|=1+4.13x1027:1.

kT

= 1.449 x 10" ecm 3.

(10°) = 2.83 ppm.

11.4 Emission Spectroscopy

A potential problem for absorption spectroscopy is that the measured concentration or
temperature is averaged along a line of sight through the medium. In contrast, emis-
sion spectroscopy normally permits point measurements, as the isotropic emission can
be focused onto a suitable detector, as shown in Fig. 11.8. Unfortunately, because an emis-
sive signal inherently reflects nonequilibrium conditions, emission spectroscopy can be
plagued by the invalidity of Egs. (11.1) and (11.2). On the other hand, at high tempera-
tures and pressures, such as in plasmas, the emissive signal is not only more intense, but
equilibration is more likely, so that emission spectroscopy can sometimes be applied quite
successfully to both concentration and temperature measurements.

11.4.1 Emissive Diagnostics

For purely emissive conditions, we have no large external source of radiation so that p, = 0;
hence, Eq. (11.8) becomes

Py = hv Aun, Y(v). (11.41)

However, as in Fig. 11.8, the measured signal is obtained by focusing only a portion of
the isotropic emission onto a suitable photodetector. The power, P;(W), at the detector is
given by

P = (QC/4JZ)VC/pU dv, (11.42)

detector
! Figure 11.8 Typical experimental setup for emission spectroscopy.
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where €2, is the solid angle of the collection optics and V; is the collection volume, which
usually is less than 0.1 mm?. Combining Egs. (11.41) and (11.42), we have for the number
density in the upper level

4 Pd

P L 11.43
" hvulAuch‘/c ( )

In general, n,/n; << 1; thus, an emissive signal should intuitively be much less than an
absorptive signal. However, an absorptive signal must be recovered from the pervasive
background caused by its light source, whereas an emissive signal is essentially free of
background radiation. Hence, emission spectroscopy typically offers a much larger signal-
to-background ratio and thus a lower detection limit.

Equation (11.43) implies that a concentration measurement using emission spec-
troscopy requires careful calibration, as knowledge of the collection volume, V,, is very
difficult to obtain in any reasonable experiment. Fortunately, in comparison, an emissive
measurement of temperature is usually quite straightforward. In particular, when employ-
ing two emitting lines with the same optical setup, the ratio

n_m _ anAnl Pd,m, (1144)

Ny Vot At P
derived from Eq. (11.43), proves to be independent of all unknown calibration factors.
Therefore, temperature can be easily determined from a combination of Egs. (11.2) and
(11.44).

11.4.2 The Problem of Self-Absorption

A problem that must be considered for any emissive measurement is the potential for
radiative trapping or self-absorption. In developing Eq. (11.42), we assumed that p, = 0.
However, for strong emission, p, becomes significant owing to emissive radiation so that
the signal can be reabsorbed by the surrounding gas. This particular situation can be
understood by casting Eq. (11.12) in the form

dl,
ds =& — KvJva (1145)
where
hv
&y = — Aun, Y(v) (11.46)
4
is called the spectral emission coefficient and
h
Ky = _V [Blunl - Bulnu] Y(U) (1147)
c

is the effective spectral absorption coefficient. Comparing Egs. (11.26) and (11.47), we
observe that x, = k, when n, /n; << 1, which represents the usual situation at reasonable
temperatures.

Defining the optical depth corresponding to a path length L,

L
o= [t (1149
0
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we have
dt =k, ds. (11.49)
Hence, Eq. (11.45) can be converted to
‘jijt” - i— — . (11.50)

Presuming a homogeneous medium (»; and n, independent of position), the solution to
Eq. (11.50) is

Jy = 1,0y e " i— [1— e 0. (11.51)
v

Based on Eq. (11.51), the behavior of the spectral intensity depends critically on the optical
depth, «, L. If k, L << 1, we say that the medium is optically thin, while if «, L >> 1, we
say that it is optically thick. For an unexcited medium (e, = 0), we again obtain the Beer—
Lambert law, as given by Eq. (11.27). In comparison, for the emissive case with no external
illumination, Eq. (11.51) becomes

J, = i— [1—e®H]. (11.52)
Hence, for an optically thin medium, expansion of the exponential factor gives J, = ¢, L,
which is essentially equivalent to Eq. (11.41). As a result, we find that radiative trapping
can always be eliminated by creatively ensuring optically thin conditions.

If, on the other hand, the optical depth of the mediumrises, Eq. (11.51) indicates that the
spectral distribution of the observed radiation departs from that of the radiating species
and instead approaches that for the source function, ¢,/x,, over a progressively wider
range of frequencies. Given a nonuniform medium, in which the temperature decreases
toward the boundary, self-absorption can lead to a noticeable dip in the center of the line
profile for the emitted radiation. In the worst-case scenario, we find, from Egs. (11.46),
(11.47), and (11.52), that a homogeneous medium in thermal equilibrium under optically
thick conditions («, L >> 1) has spectral radiance

v AL[
A . — (11.53)
Ky dm By, (nl/nu) — Bu
However, at thermodynamic equilibrium, Eq. (11.14) holds, so that
Au/4n B,
J = (CAu/dmBa) (11.54)
(nglu> ehv/kT _ 1
guBul
thus, from Egs. (11.17-11.19),
c 1B
JU=_ BZL: B, 11'55
47_[ pl) 47T v ( )

where, for a blackbody, J 2 = 18/47 because of the isotropic nature of its radiation. Hence,
a homogeneous, optically-thick gas at constant temperature will generate the spectral
radiance of a blackbody. A massive, gaseous source such as the Sun displays blackbody
behavior at all wavelengths owing to a combination of collisional broadening and optically-
thick conditions.
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detector

Figure 11.9 Typical experimental setup for fluorescence spec-
troscopy.

11.5 Fluorescence Spectroscopy

Emission spectroscopy is inherently a powerful analytical tool because of its high signal-to-
background ratio as compared to absorption spectroscopy, but unfortunately spontaneous
emission occurs only for a sufficiently high upper-level population, that is, in a very hot
medium. Fluorescence spectroscopy, on the other hand, can exploit the analytical advan-
tages of emission spectroscopy at all temperatures via the excitation of atoms or molecules
with an intense radiative source, such as a laser. For this technique, as displayed in Fig. 11.9,
thermal equilibration before excitation is usually not an issue, but interpretation of the
resulting signal can be problematic. In particular, the induced population in the upper
level, n,,, must somehow be related to the initial population in the lower level, n, and thus
to the total number density. As for all emissive methods, fluorescence spectroscopy can
be complicated by radiative trapping; thus, fluorescence signals must always be examined
carefully to ensure the existence of optically-thin conditions («, L << 1).

If an atom or molecule is excited by a laser beam of the appropriate wavelength, steady-
state conditions are generally achieved within approximately 100 psec. Hence, for a typical
pulsed laser, Eq. (11.5) becomes

Blupvnl
n, =

_ , 11.56
Aul + Qul + Bulpv ( )

where p, represents the spectral energy density of the light source. For our two-level
model, Eq. (11.7) holds; thus, substituting for n; in Eq. (11.56), we obtain, after some
manipulation,

1+ 24 4
Blu Blu,ov

n, [ Bu M]l (11.57)

ny
where nj is the number density affiliated with the lower level before laser excitation.
Two distinct cases are now possible. For low laser energies, Eq. (11.57) becomes

B.py
n,=———nyj, 11.58
¢ Aul + Qul ! ( )

whereas, for high laser energies, we obtain

By,
L (11.59)

n,=————n.
Blu + Bul

Equation (11.58) represents the linear fluorescence method favored by analytical chemists;
in comparison, Eq. (11.59) represents saturated fluorescence spectroscopy. In either case,
we have successfully related the number density in the upper energy level after excitation
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to that in the lower level prior to laser excitation. Because the measured fluorescence
signal arises from emission caused by laser-induced population in the upper level, we may
solve for the desired quantity, ny, by utilizing Eq. (11.43). We then obtain

Qu 4 Py
i=l1+=—=) — 11.60
i < + Aul hvul Szc‘/cBlu:Ov ( )

for linear fluorescence and

8 4 Pd
n =1+ —) —_— (11.61)
! ( 8u hvul Aul Qc ‘/c
for saturated fluorescence, where we have also used Eq. (11.19). In each case, P, represents

the measured fluorescence signal at the detector, which remains proportional to n;.

The total number density can now be obtained by using Eq. (11.1) combined with
either Eq. (11.60) or Eq. (11.61), depending on the chosen fluorescence method. In both
cases, utilization of two transitions can again provide the temperature from Eq. (11.2). As
in emission spectroscopy, determination of the total number density requires calibration,
whereas determination of the temperature does not when based on a common calibration
factor for the ratio of populations. As an example, employing saturated fluorescence,
Eq. (11.61) gives quite simply

@ _ Vun Aun Pim
n vumAum Pd,n 7
if we assume that the degeneracy ratio, g;/g,, is the same for both transitions.

For linear laser-induced fluorescence (LIF), typically Q,;/ A,y >> 1,sothat Eq. (11.60)
can be expressed as

AuB\
Pd _ hvu/ ( ul lu> c

o) 2 Verien (11.62)

47

Consequently, we find that the fluorescence signal, Py, is proportional to the energy density
of the laser, p,, and inversely proportional to the quenching coefficient, Q,;. Because Oy
is linearly related to pressure and also depends on the identity of the collision species, LIF
is best used under laboratory conditions, for which we can either measure or predict the
pressure, temperature, and quenching environment. Such is the case for most applications
in analytical spectroscopy. In comparison, utilization of fluorescence spectroscopy under
practical conditions often requires laser-saturated fluorescence (LSF). Equation (11.61)
shows that, in this case, ;] is independent of both Q,; and any variation in the irradiance
of the laser. However, a problem with LSF concerns the large laser powers needed to
fully saturate molecular transitions. Required laser irradiances at atmospheric pressure
are on the order of 10 W/cm?, with even greater irradiances needed at higher pressures.
Another difficulty is that fully saturated conditions are never achieved across the entire
spatial irradiance profile created by any actual laser beam.

EXAMPLE 11.2

Laser-saturated fluorescence measurements of the hydroxyl radical (OH) are performed
in a combustion system. The fluorescence signals for the Py(11) and P;(16) rovibronic
lines within the electronic transition X?T1(v = 0) — A’X(v = 0) are found to be 11.5 and
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1.45 mV, respectively. The wave number and transition probability for each of these lines
are

Pi(11): 31869.5cm™" A, =3.54 x 10° s~}
Pi(16): 314921 cm™! A, =298 x 107 s
Determine the flame temperature. For consistency with the two-level model, assume that

fluorescence detection occurs at the same wavelength as laser excitation for each spectral
line.

Solution
From Eq. (11.61), the number density in the lower rovibronic level for either transition
before laser excitation is given by

A7 P
o (1p8) B
8u hvulAuch‘/c

From Egs. (6.32) and (6.85), the total degeneracy for any rovibronic level is

g = 8el&ror = $(2S +1)(2J + 1),

presuming that each rovibronic transition incorporates all spin-split, A-doubled sublevels.
On this basis, the degeneracies for the lower and upper levels associated with the P;(11)
line are

g=2)2)2-11+1)=92 gu=1)2)2-10+1)=42.
Similarly, for the P;(16) line, the degeneracies for the lower and upper levels become
g=2)2)(2-16+1)=132 au=02)2-15+1)=62.

If we assume that the fluorescence power at the detector is converted to an electrical signal
with equal efficiency at the two spectral wavelengths, we may form the ratio,

ny (16) _ [T+ (g1/8)]ie (Vur Au)yy (Pd,l6>
np (1) [1+ (& /&)1 (vuwAuw)ie \ Panr

(3129 (31869.5 (3.54 x 103 (145 — 0.1487

- \3.190 ) \31492.1 ) \2.98 x 105 ) \11.5) '
From Eq. (11.37), the ratio of rovibronic populations in the ground vibrational level for
the ground electronic state of OH before laser excitation can be expressed as

n; (16)  (2-16+1) he
njo an) _ @-11+1) P {‘k—T [Fo(16) — Fo(ll)]} :

Now, from Eq. (7.21), the rotational energy in the ground vibrational level of the ground
electronic state for either transition is

Fo(J)=ByJ(J +1) = D.J*(J +1),
where, from Appendix K.1,
By = B, — 0.5a, = 18.911 — 0.5(0.7242) = 18.549 cm ™.



240 * Concentration and Temperature Measurements

Hence, the rotational energies for the two rovibronic levels are
Fy(16) = (18.549) (16) (17) — (19.4 x 10~%) (16)* (17)* = 4901.8 cm™!
Fy(11) = (18.549) (11) (12) — (19.4 x 107%) (11)* (12)* = 2414.7 cm™".

Therefore, substituting for the rotational energies, the calculated ratio of rovibronic pop-
ulations becomes

ny (16) 01487 — (§> exp {_ (1.4387) [4901.8 — 2414.7] } .
n; (11) 23 T
Solving for the flame temperature, we obtain
3578.2
=———— =1578 K.
In (9.6488)

11.6 Sodium D-Line Reversal

Flame and plasma temperatures are often measured using the sodium D-line reversal
method. Here, NaCl is added to the flame or plasma to create sodium atoms at high
temperatures (1000-3000 K). Under such conditions, sodium emits radiation at two wave-
lengths, 5890 and 5896 A, the so-called D-lines. If a tungsten strip lamp is used to backlight
the flame, as shown in Fig. 11.10, the flame temperature can be accurately measured by
visually looking for the reversal point through an inexpensive spectrometer. The reversal
point corresponds to that radiance from the tungsten lamp which causes the intensity of
the D-lines to be equal to that of the strip lamp. For lamp intensities less than the reversal
intensity, the D-lines appear in emission; for lamp intensities greater than the reversal
intensity, the D-lines appear in absorption. Hence, at the reversal point, the spectrum
shows no emission or absorption.

We may demonstrate that a thermodynamic temperature can be measured via this
method by considering Eq. (11.51), which was derived for an externally radiated, emissive,
and homogeneous medium. At the reversal point J, = J,(0), so that

1,(0) = J,(0) e 4 22[1 — 71, (11.63)
Ky

where J,,(0) is the incident spectral radiance from the strip lamp. Equation (11.63) indicates
that

7,(0) = i_ (11.64)

v

and thus the measured temperature is independent of the optical thickness of the medium.
Furthermore, we have previously shown that at thermal equilibrium (Egs. 11.53-11.55)

JE= (11.65)

9
Ky

Figure 11.10 Experimental setup for sodium D-line reversal
method.

strip lamp spectrometer
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so that, from Eq. (11.64), J 8 = J,(0). Hence, the flame temperature must be equal to the
temperature of a blackbody at the radiance of the strip lamp. This temperature, often
called the brightness temperature, can be determined by calibrating the tungsten lamp with
an optical pyrometer.

The sodium D-line method is useful, not because of the pair of D-lines, but because the
D-lines appear in the yellow, where detectors, including the human eye, are very sensitive to
small changes in the spectral radiance. Typically, a temperature of 2000 K can be measured
with an accuracy of +40 K. Nevertheless, because sodium line reversal is a line-of-sight
method, we must never forget that the measured temperature for a nonuniform profile
will always be weighted toward the highest temperatures along the optical path.

11.7 Advanced Diagnostic Techniques

This chapter has been concerned with absorption, emission, and fluorescence methods
for determining species concentrations and temperature. These techniques represent the
simplest approaches that can be used to monitor the above properties in gaseous mixtures.
However, you should realize that advanced diagnostic strategies are often available which
are more suitable for specific applications. While such methods were not considered in this
elementary discussion, many have actually become quite robust in the past few decades
owing to the commercialization of tunable lasers. Examples of reliable coherent sources for
diagnostic purposes include injection-seeded Nd: YAG lasers, diode lasers, and picosecond
lasers.

The plethora of advanced diagnostic techniques built on statistical thermodynamics and
spectroscopy has been reviewed by Eckbreth (1996). Among these techniques, Rayleigh
scattering has traditionally been employed for density and temperature measurements,
spontaneous Raman scattering for temperature and major species concentrations, and
planar LIF for images of selected species distributions. Laser-induced breakdown spec-
troscopy can be used to determine the atomic composition of complex mixtures; similarly,
atomic concentrations have been monitored successfully via methods based on multipho-
ton photoionization or LIF. In comparison, cavity ring-down spectroscopy, laser-induced
polarization spectroscopy, and degenerate four-wave mixing can be employed specifically
for determining concentrations of minor molecular species. Coherent anti-Stokes Raman
scattering is generally applied to measurements of temperature and major species concen-
trations in turbulent reactive flows. Finally, laser-induced incandescence is often used for
monitoring particle sizes and number densities.






PROBLEM SET V

Chemical Equilibrium and Diagnostics
(Chapters 10-11)

5.1

5.2

A vessel contains an ideal monatomic gas at constant temperature 7. The vessel is
initially divided into two equal parts by a partition, such that each part contains N
atoms at volume V. The partition is then removed.

a.

Using the methods of statistical thermodynamics, determine the change in
entropy accompanying this isothermal mixing process.

. Provide a physical explanation for your answer in part (a). In particular, carefully

distinguish between those conditions for which the mixing process is reversible
versus irreversible.

. Determine the above entropy of mixing by assuming that the atoms are distin-

guishable rather than indistinguishable. The difference between this result and
that obtained in part (a) was the first historical indication of the inadequacy of
classical vis-a-vis quantum mechanics. The predicted disagreement with reality
constitutes the famous Gibbs paradox of the nineteenth century.

. What is the source of the Gibbs paradox from a quantum mechanical viewpoint?

A classical thermodynamics viewpoint?

A vessel of volume V contains an ideal monatomic gas at temperature 7. The
number of atoms of mass m within the vessel is N. The electronic partition function
for the gas can be taken as Z,; = g,.

a.

Determine the chemical potential for this gas assembly.

b. Thermodynamic adsorption on a surface can be modeled by confining N; <« N

atoms of the above gas to a surface of area A= [? and temperature 7 located
within the vessel. If the adsorbed atoms are free to move anywhere on the sur-
face, show that the translational partition function for this two-dimensional ideal

gas is
2rmkT
Z, = (7}12 ) A.

. The force binding an atom to this surface can be modeled by an harmonic

oscillator normal to the surface. If the potential well of the oscillator can be

243
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5.3

54

5.5
5.6
5.7

Chemical Equilibrium and Diagnostics (Chapters 10-11)

characterized by a binding energy ¢, and a characteristic binding temperature
0p = hv/k, determine the chemical potential of the adsorbed ideal gas.

d. According to classical thermodynamics, the chemical potentials of the above
two- and three-dimensional ideal gases must be equal to one another at phase
equilibrium. Use this condition to determine the equilibrium number of atoms
adsorbed per unit area of the surface when the pressure of the surrounding gas
is P.

Two dissimilar ideal gases, A and B, are initially separated by a partition within
an insulated tank. There are Ny molecules of A in volume V5 and Ng molecules
of B in volume V3. The two gases are at the same pressure and temperature. The
partition is then broken and the gases are permitted to mix.

a. Employing appropriate partition functions, show that the entropy change upon

mixing is given by
S = —RZI’L[ lnxl',
i

where n; and x; are the number of moles and mole fraction, respectively, for the
ith gas.

b. If gases A and B are identical, demonstrate that no change in entropy occurs
when the partition is broken.

Consider the equilibrium reaction O, = 20.

a. Determine the equilibrium constant K, at 1000 K. Compare with the JANAF
value and explain any discrepancy.

Hint: See Problem Set V.

b. Find the degree of dissociation for an equilibrium mixture of O, and O at a
pressure of 0.01 bar. Determine the partial pressure of oxygen atoms under
these conditions.

Complete Problem 5.4, but at a temperature of 1500 K rather than 1000 K.
Complete Problem 5.4, but at a temperature of 2000 K rather than 1000 K.

Consider the chemical reaction H,O + M = H + OH + M.

a. Using the rigid-rotor/harmonic-oscillator model, show that the equilibrium con-
stant for this reaction is given by

kT? he
(T) — YLQ/T) l_[(1 9u1/T) exp <_§7(3)’

where k is a constant, 6, is the characterlstlc vibrational temperature for OH, 6,;
are the characteristic vibrational temperatures for H,O, and A#Aj is the standard
enthalpy of reaction at absolute zero.

b. Develop an expression for « in terms of appropriate parameters from statisti-
cal thermodynamics. The ground electronic state for each species in the above
reaction is as follows: (1) H, 2S1; (2) OH, 2IT; (3) H,O,'4;.
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The molecular hydrogen—deuterium exchange reaction is given by
H, + D, =2 2HD,

where atomic deuterium (D) is that isotope of atomic hydrogen (H) having a molec-
ular weight M =2 gm/gmol. Using the rigid-rotor/harmonic-oscillator model and
assuming a temperature 7 3> 6,, show that the equilibrium constant for this partic-
ular reaction is given by K, = 3v/2«(T), where

[l — exp(_ev,Hz/ T)][l — eXp(—@U,DZ/ T)]
[1 —exp(—6,up/ T)J?

" ox ~ 26unp — bon, — b,
P 2T '

k(T) =

Hint: Because of the Born—-Oppenheimer approximation, the isotopic molecules H,
D, and HD have the same ground-state internuclear potential and term symbol.

Consider the equilibrium gas-phase reaction
L+M=221+M,

where the term symbols for the ground electronic states of atomic and diatomic
iodine are %P3, and 12;, respectively. The main vibrational and rotational param-
eters for diatomic iodine are w, = 214.50 cm~! and B, = 0.03737 cm™!; the disso-
ciation energy D, = 1.542 eV.

a. Show that if the zero of energy is placed at the bottom of the harmonic oscilla-
tor potential, the vibrational partition function for a diatomic molecule can be
expressed as

1
Zib = 5
b= 2sinh(6, /27)

where 0, = hcw,/ k.

b. Using the rigid-rotor/harmonic-oscillator model, show that the equilibrium con-
stant for this reaction is given by

K, = AT**sinh(B/ T)exp(—~C/ T),

where A, B, and C are constants. Assume that Z,; = g, for both atomic and
diatomic iodine.

c. Evaluate the constants A, B, and C.

An excellent approximation to the rovibrational energy levels of many diatomic
molecules can be obtained by considering vibrational anharmonicity, but neglecting
centrifugal stretching and rotation—vibration coupling.

a. Employing these assumptions, develop a suitable expression for the difference
in energy, AG(v) + AF(J), between any two rovibrational levels in terms of
Av=0v —v" AT =J —J", Av: =) — ()2 and AJ? = (J')2 = (J")~

b. The number densities associated with selected rovibronic levels in the ground
electronic state of the hydroxyl radical have been measured in a flame using the
laser absorption method. The results are as follows:
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5.12
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v J 1,y (molecules/cm?) v J 1,7 (molecules/cm?)
0 5 2.4 x 10" 1 5 -
0 10 1.1 x 10 1 10 7.2 x 10'?

The rotational and vibrational temperatures are defined to be those temperatures
that describe the equilibrium distribution among the rotational and vibrational
energy levels, respectively. Determine these temperatures for OH using the mea-
sured number densities. Is the OH molecule in thermal equilibrium?

c. Determine the missing value of n,;.

Analytical chemists often determine the concentrations of metal impurities in a
liquid sample by vaporizing the sample into a small flat-flame burner. Suppose
that an absorption measurement is to be made of atomic calcium on a burner that
has an effective optical path length of 1 cm. The integrated absorption for the
4s%(1Sy) — 4s4p('Py) transition of calcium is found to be 0.17 cm~!. The Einstein
A-coefficient for the associated spectral line is 2.18 x 10% s~

a. Determine the flame temperature at which 1% of the total population of calcium
atoms would reside in the first excited electronic state.

b. Show that the number density in the ground electronic state is given by

o 8 8 Wi,
: 8u 14ul)\2L '
where Wy, (s7!) is the integrated absorption, A (cm) is the wavelength of the
electronic transition, and L (cm) is the optical path length.

c. Determine the total number density of atomic calcium in the flame (atoms/cm?).

The National Institute of Standards and Technology provides tabulations of the
electronic energy levels and associated Einstein coefficients, A, for alarge number
of atomic species. The following table gives relevant data for selected electronic
levels of the hydrogen atom.

Energy Wavelength
Configuration Classification (cm™') Transition (A) Ay (s7h
1s 251/2 0
2p 2Pipnan 82259 2p—1s 1216 6.27 x 108
3[) 2P1/2_3/2 97,492 3p — 1s 1026 1.67 x 108

a. Anemission spectrum obtained from a hydrogen plasma shows that the intensity
of the spectral line corresponding to the 3p-1s transition is 0.57% of that from the
2p-1s transition. Determine the temperature of the plasma. Assume thatinduced
emission and absorption are negligible.

b. What assumption is required to calculate the plasma temperature?
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5.13 Laser-induced fluorescence (LIF) measurements of the sodium atom are to be used
to determine the flame temperature in a laboratory combustor. The following table
provides relevant data for selected electronic transitions of sodium.

5.14

5.15

Energy Wavelength
Configuration  Classification  (cm™!)  Transition (A) Ay (57
3s 2S1/2 0
3p 2P 16956 3p (*P3n) — 35 5890.0 6.22 x 107
3p 2Py 16,973
Ss 281, 33201 55— 3p 3P1p) 61542 2.60 x 10°
a. Demonstrate that, for normal LIF, the fluorescence signal (V) is given by

Q. Ve 8u 2
S == G - - )"u L OIUv
e <47T> (87TQu1> <81>( A

where 7 is the optical efficiency, G is the gain of the detector (V/W), Q. is the
solid angle of the collection optics, V. is the collection volume, Q,, is the rate
coefficient for collisional quenching, g, and g; are the relevant degeneracies, A,
is the laser wavelength, A, is the Einstein coefficient for spontaneous emission,
n; is the initial population of the lower level, and 1, is the spectral irradiance of
the laser beam.

. The LIF signals at 5890.0 A and 6154.2 A are found to be 8.64 V and 74.2 nV,

respectively. If [, and Q,; are invariant with laser wavelength, determine the
flame temperature. For consistency with the two-level model, you may assume
that fluorescence detection occurs at the same wavelength as laser excitation for
each spectral line.

Laser-saturated fluorescence measurements of the potassium atom are performed
in a coal combustion system. The following table provides relevant data for selected
electronic transitions of potassium.

Energy Wavelength
Configuration ~Classification  (cm~!)  Transition (A) Ay (s
4s 251/2 0 4p (2P1/2) — 4s (2S1/2) 7699.0 3.82 x 107
4p 2Pip 12,989  4p (3P3p) — 4s (3S1p)  7664.9 3.87 x 107
4p 2Pin 13,046 65 (3S12) — 4p (PP3pn) 6938.8 5.40 x 10°
6s 281 27459 65 3S1p) — 4p CP1p)  6911.1 2.72 x 10°

If the LIF signals at 6938.8 A and 7699.0 A are found to be 0.14 mV and 8.92 V,
respectively, determine the flame temperature. For consistency with the two-level
model, you may assume that fluorescence detection occurs at the same wavelength

as

laser excitation for each spectral line.

Absorption measurements of the hydroxyl radical (OH) are performed on a flat-
flame burner having an effective length of 6 cm. The integrated absorptions for
the P1(6) and Q;(9) rovibronic lines of the X?>T1(v = 0) — A?X* (v = 0) electronic
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transition are found to be 0.39 cm~! and 0.51 cm ™!, respectively. The frequency and
transition probability for each of these lines are

P(6): D =32180.8cm™! Ay =415x10°s7!

01(8): 7 =32297.4cm™! Ay =636 x10° s71,
Hint: The given A, values represent each spin-split, A-doubled line in the OH
spectrum.

a. Show that the population in the ground-state rovibronic level is given by

o 8 87 Wy,
! 8u 14ul)\2L ’
where W, (s7!) is the integrated absorption, A, (s~!) is the Einstein coefficient

for spontaneous emission, A (cm) is the wavelength of the rovibronic transition,
and L (cm) is the optical path length.

b. Evaluate the flame temperature (K).

c. Determine the total number density for the hydroxyl radical (cm~3). For sim-
plicity, evaluate the OH partition function by using the rigid-rotor/harmonic-
oscillator model.

d. What assumptions are required for your calculations?
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12 Thermodynamics and Information

Having applied statistical mechanics to nonreactive and reactive gaseous mixtures, we
now shift from our study of the dilute limit to fundamental statistical interpretations of
undoubtedly the three most salient concepts in classical thermodynamics, namely, work,
heat, and entropy. We first introduce a unified microscopic viewpoint for reversible work
and heat, followed by an exploration of the statistical foundations underlying the sec-
ond law of thermodynamics. We then develop a more robust statistical definition of the
entropy, which leads directly to a novel interpretation of this pivotal property in terms of
statistical information. We complete this chapter by showing how such information can
provide a more general stochastic formulation for physical phenomena, with statistical
thermodynamics being a particularly cogent example of the power of information theory.

12.1 Reversible Work and Heat

We recall from classical thermodynamics that, for a simple closed system, reversible work
can be evaluated via

Wy, = —=PdV, (12.1)
while reversible heat can be expressed as
80y =TdS. (12.2)
On this basis, the first law of thermodynamics becomes (Appendix F)
dU =8Qey + Wy, =TdS — PdV. (12.3)

In comparison, from Eq. (4.19), statistical thermodynamics gives

dU:d{ZNjej}=Zsdej+Zdesj. (12.4)
i i i
However, from Eq. (3.30), we may write, for any system of independent particles,
de;j
P=-) N;i(=2Z),
2 ()

251
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dV=0 dS=0
dS#0 dV#0
/ @ \
® @
6Qrev¢ 0 6vvrev #0
6VV}'L'V =0 6Qrev= 0

Figure 12.1 Influence of reversible heat addition followed by reversible adiabatic expansion
on the energy and population of depicted energy levels for an ideal gas. The large black dot
identifies the most probable energy level.

for which ¢; is solely a function of volume. Consequently, from Eq. (12.1), reversible work
can be expressed as

§Woew = Y Njde;. (12.5)
J

Comparing Egs. (12.3) and (12.4), we then have, for reversible heat,

8Qrw = Y _&;dNj. (12.6)
J

Despite their apparent simplicity, Eqs. (12.5) and (12.6), when taken together, admit
some striking implications. Equation (12.5) shows that, from a microscopic viewpoint,
reversible work occurs via a change in quantized energy, but with no change in popula-
tion. In contrast, Eq. (12.6) indicates that reversible heat manifests itself microscopically
through a change in population, but with no change in quantized energy. Moreover, these
interpretations for reversible heat and work apply to all independent particles, whether
such particles are distinguishable or indistinguishable.

12.2 The Second Law of Thermodynamics

We now apply the microscopic interpretation of reversible heat and work in the previous
section to the development of a wholly statistical foundation for the second law of ther-
modynamics. Consider an ideal gas undergoing a two-step reversible process, composed of
(1) reversible heat addition at constant volume followed by (2) reversible adiabatic expan-
sion. For clarity in our upcoming discussion, the influence of these two subprocesses on
both the energy and population of the quantized levels associated with any gaseous assem-
bly is displayed in Fig. 12.1. We note that, for analytical convenience, no work is permitted
in the first subprocess while no heat is exchanged in the second subprocess.

Recall that reversible heat addition intimates no change in energy, ¢, for the quantized
levels, but an increase in energy of the most probable level owing to the resulting rise
in temperature. For simplicity, this energy enhancement for the most probable level is
portrayed in Fig. 12.1 by the upward displacement of a large black dot upon completion
of the heat-transfer process. In contrast, reversible adiabatic expansion implies no change
in the quantum number identifying the most probable level, but a decrease in energy,
gj, for all levels owing to the resulting rise in volume. Therefore, in Fig. 12.1, the large
black dot identifying the most probable level is displaced downward upon completion of
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the expansion process. Comparing these two subprocesses, we note that any variation in
entropy is apparently accompanied microscopically by a change in particle distribution
among the available energy levels for the system.

Remarkably, the stark two-step process portrayed in Fig. 12.1 can engender new insights
regarding the second law of thermodynamics. Our approach here is to presume that the
most probable energy is the same at the beginning and end of this two-step process. On
this basis, we observe that all of the heat energy provided to the system during the first
subprocess must be converted to work energy during the second subprocess. However,
from Fig. 12.1, we also find that, despite specifying the same initial and final temperatures,
the original state of the system is actually unrecoverable because of irreversible changes in
both the energy and population of each quantized level. Hence, we must conclude that no
cyclic process is possible whose sole result is the absorption of heat from a single reservoir
and the conversion of all this heat into work external to the system. From classical ther-
modynamics, we recognize this conclusion as the Kelvin—Planck statement of the second
law of thermodynamics. Therefore, from a microscopic perspective, we have verified that
the full conversion of heat to work is impossible in a cyclic process because the working
substance can never be brought back to its initial thermodynamic state. Consequently,
a reversible cyclic process always mandates the loss of heat to a second reservoir. From
classical thermodynamics, the unfortunate outcome from this conclusion is a limited ther-
modynamic efficiency for heat engines and, similarly, a limited coefficient of performance
for refrigerators.

12.3 The Boltzmann Definition of Entropy

We now explore analytically the implied relation between entropy and population dis-
tribution suggested by Fig. 12.1. From Eq. (4.14), the probability of occurrence for any
energy state is

]\/[ e—ag/kT

P=" =",
N Z

(12.7)

where the partition function, from Eq. (4.13), can be expressed as
Z — e*é‘,‘/kT.
%

Combining Eqs. (12.2) and (12.6), followed by multiple implementation of Eq. (12.7), we
can relate the entropy to the probability of each state by

1
ds = ?Zi:e,- dN; = —kzi:ln(P,-Z) d(P,N). (12.8)
After appropriate mathematical manipulations, Eq. (12.8) becomes

ds = —Nk{ZlnP,— dP +1nZZdP,~} - —NkZlnPl- dP

= —Nkd [Z P In P,»i| (12.9)
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for any isolated system, as
Y PdinP =) dP =0
i i
follows from
Yp=1
Hence, based on Eq. (12.9), we have
S = —NkZPi In P, (12.10)
i

which is called the Boltzmann definition of entropy. From Problem 2.5, we may show that
this important expression holds, as expected, for both distinguishable and indistinguish-
able particles. More importantly, Eq. (12.10) demonstrates conclusively that the entropy
depends solely on the probability of occurrence for each quantum state. In other words,
the entropy of an isolated system undergoes change only when the state probabilities, P,
shift owing to an increase or decrease in temperature.

12.4 Information Theory

In 1948, Claude Shannon postulated an entirely new approach to chaotic processes through
his development of what we now call information theory. At that time, the electronics
industry was concerned with the limitations posed by various communication schemes,
particularly their susceptibility to random errors. In response to this concern, Shannon
proposed that the uncertainty owing to possible errors in any message could be encapsu-
lated by

UW) =In W, (12.11)

where W is the number of possible ways for coding random information. As might be
expected from this rather heuristic strategy, Eq. (12.11) is actually quite intuitive; the
defined uncertainty increases with rising W, can be easily summed for independent events,
and becomes zero if W = 1.

By considering the number of ways that N distinguishable letters can be arranged to
provide any coded message, we find from Eq. (2.28) that

N!

W= m
[T N:!
i=1

: (12.12)

where M represents the number of letters in the alphabet and N; indicates the expected
number of appearances for each letter in typical prose, given that

> N.=N. (12.13)

Substituting Eq. (12.12) into Eq. (12.11) and applying Stirling’s approximation (Appen-
dix D.2), we obtain

UW)=NInN-> NInN,
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so that, from Eq. (12.13),

UW)= - NIn(N,/N)=—-NY_ PP, (12.14)

where P, = N;/N defines the probability or relative frequency for each possible letter.
The clear analogy between Eqs. (12.14) and (12.10) prompted Shannon to dub /(W) the
information entropy. On this basis, Shannon defined information as

I= Zgln P, (12.15)

where, from Eq. (12.14), we note that / is simply the negative of the mean uncertainty per
symbol, so that information itself always regresses with rising uncertainty.

Employing information theory, we are now in a position to identify the specific condi-
tions leading to minimum information about any thermodynamic system. Our strategy is
to use again the method of Lagrange multipliers, along with the obvious constraint

Yop=1 (12.16)
which, in differential form, becomes

> dP =0. (12.17)

Introducing the usual Lagrange multiplier, «, from Egs. (12.15) and (12.17) we obtain

dl =) [InP—a]dP, =0,

so that
P, = ¢* = constant. (12.18)

Hence, we find, from Eq. (12.18), that the least information or greatest uncertainty about
a system occurs when we are forced to assume that all events are equally likely. This totally
random situation is, of course, the impetus for our basic statistical assumption of equal
a priori probabilities. From the viewpoint of information theory, any explicit knowledge
of various probabilities delimiting the system of interest constitutes greater information.
Therefore, shifting to a thermodynamic perspective, we have shown that maximizing the
entropy, in essence, identifies that isolated system characterized by the greatest possible
uncertainty.

Finally, an interesting question at this point is what happens to the entropy defined by
Eq. (12.10) when we invoke total randomness, as presumed for thermodynamic equilib-
rium. Based on Eq. (12.18), the probability of each state at equilibrium is simply the inverse
of the total number of states in the system, which is equivalent to the total degeneracy, g,
as summed over all energy levels. Consequently, from Egs. (12.10) and (12.16) we have

S = —NkZ P.In(g7') = Nking,

so that

S=klngN =klnW, (12.19)
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where W represents the total number of microstates for a system composed of N inde-
pendent particles. Equation (12.19) is identical to Eq. (3.19); hence, we have derived from
Eq. (12.10) and information theory the Boltzmann relation introduced in Chapter 3. More
fundamentally, we have shown that, at thermodynamic equilibrium, the Boltzmann rela-
tion follows naturally from its more general formulation, as its associated equilibrium
states are inherently those displaying the greatest randomness or, if you will, the least
information.

12.5 Spray Size Distribution from Information Theory

In the previous section, we showed that statistical thermodynamics can be formulated
alternatively in terms of information theory. We also suggested that information theory
could offer greater analytical utility as compared to statistical mechanics. Hence, informa-
tion theory might be applicable to a wider variety of physical phenomena governed by
stochastic processes. As an example, we consider here the distribution of droplet sizes in
liquid sprays (Li and Tankin, 1987), a subject of importance to many industrial processes
such as spray painting and fuel injection.

For a liquid spray, we have two constraints, one given by Eq. (12.16) and the other
by

m=Y"pnViP, (12.20)

i
where 71 is the total mass flow rate for the spray, p the liquid density, 71 the total number
of droplets produced per unit time, V; the volume for an individual droplet, and F; the
fraction of total droplets having that volume. While 72 varies considerably for a given
nozzle, it mainly depends on the pressure drop through the nozzle and the liquid viscosity.

Applying next the Lagrange method of undetermined multipliers, Eqs. (12.15), (12.16),
and (12.20) can be summed in differential form, thus giving, via information theory,

dr=>3" [m P+a+ ,BphV,-] dP, =0, (12.21)

where, as usual, « and 8 are the Lagrange multipliers. From Eq. (12.21), we find that
P, = exp [— (a+ ,BphVi)], (12.22)

so that, substituting Eq. (12.22) into Eqgs. (12.16) and (12.20), we obtain from these
constraints

Z exp [ ,B,onV] (12.23)

ey pitVi exp [—ﬂpﬁw] — 1. (12.24)

Combining Egs. (12.23) and (12.24), we thus have for the total mass flow rate

_ 2 prViexp[—ponVi]
2 exp[—ppnVi]

(12.25)
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Converting, for convenience, to continuous variables, we can express the volume for
any droplet as
D3

_r= 12.2
1% = (12.26)

where D is the diameter of the droplet. On this basis, the probability for droplets having
volumes between V and V + dV becomes, from Eq. (12.22),

P(V)dV = e “exp[—BpnV]dV.

Hence, from Eq. (12.26), the probability of obtaining diameters between D and D+ dD
can be expressed as

nBpnD?

P(D)dD = %Dze’“ exp [ ] dD. (12.27)

After integration over all possible droplet sizes, Eq. (12.23) becomes

e” :/ exp [—BpnV]dV,
0

so that, from Eq. (12.26) and Appendix B,

00 .D3 00 2 1
e“:f/ D?exp | - ZPP" dD:z/ vexp |- PP v = L (1208)
2 0 6 3 0 n

Similarly, from Eq. (12.25),

o pnVexp[—BpaV]dV
m= 59 - 5
Jo exp[—BpaV]dV

substituting again from Eq. (12.26) and utilizing Appendix B, we have

o Z [y paD’exp [-%’;’W] dD _ IR [ x3 exp [—%’”Z] dx _ l (1229
fOOO D?exp [_%]dD foooxexp [—T”%Tmz]dx B

Now, combining Egs. (12.28) and (12.29), we obtain
m
¢ =— 12.30
o= (12.30)
which, from Eq. (12.20), defines the mean volume of the droplets in the spray. Upon
substitution of Egs. (12.29) and (12.30) into Eq. (12.27), the desired probability density

function, based on our criterion of least information, becomes

P(D)=2 (%) D2 exp [_ ”péh,DS] . (12.31)

n

Consequently, Eq. (12.31) would be the expected droplet-size distribution based on
a completely random spray formation process. Surprisingly enough, this expression is
replicated by the so-called Nukiyama-Tanasawa distribution, which has received consid-
erable experimental confirmation. Therefore, we have verified that a steady-state spray is
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often best understood by invoking a random rather than an evolutionary model. The tri-
umph of this statistical approach demonstrates the power of information theory when
dealing with physical phenomena not amenable to description using classical conser-
vation equations. Indeed, for this reason, thermodynamic properties can be calculated
with substan