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Preface

Practical MATLAB® Applications for Engineers introduces the reader to the concepts of
MATLAB® tools used in the solution of advanced engineering course work followed by
engineering and technology students. Every chapter of this book discusses the course
material used to illustrate the direct connection between the theory and real-world appli-
cations encountered in the typical engineering and technology programs at most colleges.
Every chapter has a section, titled Background, in which the basic concepts are introduced
and a section in which those concepts are tested, with the objective of exploring a number
of worked-out examples that demonstrate and illustrate various classes of real-world prob-
lems and its solutions.
The topics include
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Continuous and discrete signals
Sampling

Communication signals

DC (direct current) analysis
Transient analysis

AC (alternating current) analysis
Fourier series

Fourier transform
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Standard filters
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1

Time Domain Representation of Continuous
and Discrete Signals

This time, like all time, is a very good one, if we know what to do with it. Time is the
most valuable and the most perishable of all possessions.

Ralph Waldo Emerson

1.1 Introduction

Signals are physical variables that carry information about a particular process or event
of interest. Signals are defined mathematically over a range and domain of interest, and
constitute different things to different people.

To an electrical engineer, it may be

A current
A voltage
Power
Energy

To a mechanical engineer, it may be

A force

A torque

A velocity

A displacement

To an economist, it may be

Growth (GNP)
Employment rate

Prime interest rate

Inflation rate

The stock market variations

To a meteorologist, it may be

Atmospheric temperature
Atmospheric humidity

Atmospheric pressures or depressions
Wind speed

To a geophysicist, it may be

Seismic waves

e Tsunamis

¢ Volcanic activity
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To a physician, it may be
¢ An electrocardiogram (EKG)
¢ An electroencephalogram (EEG)
e A sonogram
For a telecommunication engineer, it
may be

Audio sound wave (human voice or music)

Video (TV, HDTYV, teleconference, etc.)

Computer data

Modulated-waves (amplitude modulation [AM],

frequency modulation [FM], phase modula-

tion [PM], quadrature amplitude modulation

[QAM], etc.)

e Multiplexed waves (time division multiplex-
ing [TDM], statistical time division multiplex-
ing [STDM], frequency division multiplexing
[FDM], etc.)

From a block box diagram point of view, signals constitute inputs to a system, and their
responses referred to as outputs. Since many of the measuring, recording, tracking, and
processing instruments of signal activities are electrical or electronic devices, scientists
and engineers usually convert any type of physical variations into an electrical signal.

Electrical signals can be classified using a variety of criteria. Some of the signal’s clas-
sification criteria are

a. Signals may be functions of one or more than one independent variable generated
by a single source or multiple sources.

b. Signals may be single or multidimensional.

c. Signals may be orthogonal or nonorthogonal, periodic or nonperiodic, even, odd,
or present a particular symmetry.

. Signals may be deterministic or nondeterministic (probabilistic).
. Signals may be analog or discrete.
. Signals may be narrow or wide band.

QR -~ 0o

. Signals may be power or energy signals.

In any case, signals are produced as a result of a process defined by a mathematical relation
usually in the form of an equation, an algorithm, a model, a table, a plot, or a given rule.

A one-dimensional (1-D) signal is given by a mathematical expression consisting of one
independent variable, for example, audio. A 2-D signal is a function of two independent
variables, for example, a black and white picture. A full motion black and white video can
be viewed as a 3-D signal, consisting of pictures (2-D) that are transmitted or processed at
a particular rate. The dimension of a video signal can be increased by adding color (red,
green, and blue), luminance, etc.

Deterministic and probabilistic signals is another broad way to classify signals. Deter-
ministic signals are those signals where each value is unique, while nondeterministic
signals are those whose values are not specified. They may be random or defined by statis-
tical values such as noise. In this book, the majority of the signals are restricted to 1-D and
2-D, limited to one independent variable usually either time (t) or frequency (f or w), and
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Analog signal Discrete signal
10 10
£ s g s
0 0
¢ 012345678910
n

FIGURE 1.1
Analog and discrete signal representation.

deterministic such as current, voltage, power, or energy represented as vectors or matrices
by MATLAB®.

In this book, following the widely accepted industrial standards, signals are classified
in two broad categories

¢ Analog
e Discrete

Analog signals are signals capable of changing at any time. This type of signals is also
referred as continuous time signals, meaning that continuous amplitude imply that the
amplitude of the signal can take any value.

Discrete time signals, however, are signals defined at some instances of time, over a time
interval t € [t), t;,]. Therefore discrete signals are given as a sequence of points, also called
samples over time such as t = nT, for n = 0, =1, £2, ..., =N, whereas all other points are
undefined.

An analog or continuous signal is denoted by f(t), whereas a discrete signal is represented
by f(nT) or in short without any loss of generality by f(n), as indicated in Figure 1.1 by dots.

An analog signal f(t) can be converted into a discrete signal f(nT) by sampling f(t) with a
constant sampling rate T (a time also referred as T,), where 7 is an integer over the range
—o0 < < += large but finite. Therefore a large, but finite number of samples also referred
to as a sequence can be generated. Since the sampling rate is constant (T), a discrete signal
can simply be represented by f(nT) or f(n), without any loss of information (just a scaling
factor of T).

Continuous time systems or signals usually model physical systems and are best
described by a set of differential equations. The analogous model for discrete models is
described by a set of difference equations.

Signals that occur in nature are usually analog, but if a signal is processed by a computer
or any digital device the continuous signal must be converted to a discrete sequence (using
an analog to digital converter, denoted by A/D), or mathematically by a finite sequence of
numbers that represent its amplitude at the sampling instances.

Discrete signals take the value of the continuous signals at equally spaced time intervals
(nT). Those values can be considered an ordered sequence, meaning that the discrete sig-
nal represents mathematically the sequence: f(0), f(1), (2), f3), ..., f(n).

The spacing T between consecutive samples of f(t) is called the sampling interval or the
sampling period (also referred to as T)).
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1.2 Objectives
After completing this chapter the reader should be able to

® Mathematically define the most important analog and discrete signals used in
practical systems

® Understand the sampling process

¢ Understand the concept of orthogonal signal

¢ Define the most widely used orthogonal signal families

® Understand the concepts of symmetric and asymmetric signals

¢ Understand the concept of time and amplitude scaling

¢ Understand the concepts of time shifting, reversal, compression, and expansion

¢ Understand the reconstruction process involved in transforming a discrete signal
into an analog signal

e Compute the average value, power, and energy associated with a given signal

¢ Understand the concepts of down-, up-, and resampling

® Define the concept of modulation, a process used extensively in communications
® Define the multiplexing process, a process used extensively in communications
® Relate mathematically the input and output of a system (analog or digital)

¢ Define the concept and purpose of a window

¢ Define when and where a window function should be used

¢ Define the most important window functions used in system analysis

¢ Use the window concept to limit or truncate a signal

* Model and generate different continuous as well as discrete time signals, using the
power of MATLAB

L]
1.3 Background

R11 The sampling or Nyquist-Shannon theorem states that if a continuous signal f(t)
is band-limited* to f,, Hertz, then by sampling the signal f(t) with a constant period
T = [1/(2.£,)], or atleast with a sampling rate of twice the highest frequency of f(t), the
original signal f(t) can be recovered from the equally spaced samples f(0), AT), f2T),
f(T), ..., finT), and a perfect reconstruction is then possible (with no distortion).

The spacing T (or T,) between two consecutive samples is called the sampling period

or the sampling interval, and the sampling frequency F, is defined then as F, = 1/T.

R.1.2 By passing the sampling sequence f(nT) through a low-pass filter* with cutoff fre-
quency f,, the original continuous time function f(f) can be reconstructed (see
Chapter 6 for a discussion about filters).

* The concepts of band-limit and filtering are discussed in Chapters 4 and 6. At this point, it is sufficient for the
reader to know that by sampling an analog function using the Nyquist rate, a discrete function is created from
the analog function, and in theory the analog signal can be reconstructed, error free, from its samples.
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FIGURE 1.2
The impulse function §(t).

R1.3

R14

R1.5

Analytically, the sampling process is accomplished by multiplying f(t) by a se-
quence of impulses. The concept of the unit impulse §(#), also known as the Dirac
function, is introduced and discussed next.

The unit impulse, denoted by &(t), also known as the Dirac or the Delta function, is
defined by the following relation:

T S(Hydt =1

—oo

meaning that the area under [6(¢)] = 1,

where

o) =0, fort+0
S =1, fort=20

d(t) is an even function, that is, 8(t) = §(—¢).
The impulse function J(#) is not a true function in the traditional mathematical
sense. However, it can be defined by the following limiting process:

by taking the limit of a rectangular function with an amplitude 1/7 and width 7,
when 7 approaches zero, as illustrated in Figure 1.2.

The impulse function §(t), as defined, has been accepted and widely used by engi-
neers and scientists, and rigorously justified by an extensive literature referred as
the generalized functions, which was first proposed by Kirchhoff as far back as
1882. A more modern approach is found in the work of K.O. Friedrichs published
in 1939. The present form, widely accepted by engineers and used in this chapter is
attributed to the works of S.L. Sobolov and L. Swartz who labeled those functions
with the generic name of distribution functions.

Teams of scientists developed the general theory of generalized (or distribu-
tion) functions apparently independent from each other in the 1940s and 1950s,
respectively.

Observe that the impulse function 4(t) as defined in R.1.4 has zero duration, unde-
fined amplitude at t = 0, and a constant area of one. Obviously, this type of func-
tion presents some interesting properties when analyzed at one point in time, that
is, att = 0.
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R.1.6 Since §(t) is not a conventional signal, it is not possible to generate a function that
has exactly the same properties as 5(t). However, the Dirak function as well as its
derivatives (dd()/dt) can be approximated by different mathematical models.

Some of the approximations are listed as follows (Lathi, 1998):

sin(nt/a)

o 1
o(t) = limit,_, {al: t/a

}} (using sinc’s)

ejt/ﬂ
- (using exponentials)
mjt

() = limitaﬁo{

—t2/442

o(t) = limit,_, {e\/_} (using Gaussian)
aNm

R.1.7 Multiplying a unit impulse §(t) by a constant A changes the area of the impulse to
A, or the amplitude of the impulse becomes A.

R.1.8 Theimpulse function §(f) when multiplied by an arbitrary function f{f) results in an
impulse with the magnitude of the function evaluated at ¢ = 0, indicated by

oWfit) = f0)S(t)

Observe that f(0) §(t) can be defined as

0V6(5) = 0 fort #0
f()(t)_{f(O) fort =0

R.19 A shifted impulse §(t — t;) is illustrated in Figure 1.3. When the shifted impulse
Ot — t;) is multiplied by an arbitrary function f(t), the result is given by

St — 1) fiH) = fit,) - 5t — )
d[s()]

R110 The derivative of the unit Dirak §(t) is called the unit doublet, denoted by FTa '),
is illustrated in Figure 1.4.
A
Amplitude S /4y
A o)
1
3(t—ty) a—p
>
t
-1
T >
0 t, t
FIGURE 1.3 FIGURE 1.4

Plot of 8(t — t,). Plot of 6(t)" as a approaches zero.
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R.1.11

R.1.12

R1.13

R.1.14

Figure 1.4 indicates that the unit doublet cannot be represented as a conventional
function since there is no single value, finite or infinite, that can be assigned to 6(t)’
att = 0.

Additional useful properties of the impulse function §(f) that can be easily proven
are stated as follows:

a. [ fe —t)dt = fit,)
b [ -t o0t =f(—t,)
e [T FE=t)s — )t = ft, 1)

The unit impulse §(t), the unit doublet §(1), and the higher derivatives of §(t) are
often referred as the impulse family. These functions vanish at t = 0, and they
all have the origin as the sole support. At t = 0, all the impulse functions suffer
discontinuities of increasing complexity, consisting of a series of sharp pulses going
positive and negative depending on the order of the derivative.

As was stated d(t) is an even function of ¢, and so are all its even derivatives, but
all the odd derivatives of §(f) return odd functions of ¢.

The preceding statement is summarized as follows:

o(t) = o(—t), o'(t)=—d(—t)
or in general
G (t) = 6**(—t) (even case)

621 (t) = =62 1(—t) (odd case)

A train of impulses denoted by the function Imp[(t);] defines a sequence consisting of
an infinite number of impulses occurring at the following instants of time #T, ..., —T,
T, 2T, 3T, ..., nT, as n approaches «. This sequence can be expressed analytically by

oo

Imp[(H)y] = Y, o(t — nT)

Hn=—oo

illustrated in Figure 1.5.

Imp[(t)r]

RESEERE

2T -T 0 T 2T 3T 4T

FIGURE 1.5
Plot of Impl(t)].
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10

f(t)
[(6)]

ImpT(t)

4T 3T 2T -T 0 T 2T 3T 4T 5T 6T

10

f(t)+ ImpT(?)
[9)]

0
-4T 3T 2T -T 0o T 2T 3T 4T 5T 6T

FIGURE 1.6
Plots illustrating the sampling process.

The expansion of the function Imp[(t);] results in

=)

Impl(t);]= 3, &(t —nT)

n=—oo

= 5(t + nT) - 8(t + T) + 8(t) + 8(t — T)++-- + &(t — nT)

R1.15 The sampling process is modeled mathematically by multiplying an arbitrary ana-
log signal f(t) by the train of impulses defined by Imp|[(t).]. This process is illustrated
graphically in Figure 1.6.

Analytically,

©

f0)- Y 8t —nT)= 3 FWt—nT)

n=—oo n=—oo

and the expanded discrete version of f(f) is given by

F) =3 FRI(E— k)= + F(-2)6(t +2)+ F—13(E + 1)+ FO)5(0)

k=—o

+ fMot — 1)+ f(2)o(t — 2) +--- + f(n)o(t — n)

assuming that T = 1, without any loss of generality.
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In general, the set of samples given by f(—n), f(—n + 1), ..., f(0), f(1), ..., f(n — 1), f(n),
can be real or complex. f(n) is called a real sequence if all its samples are real and a
complex sequence if at least one sample is complex.

Observe that any (discrete) sequence f(1) can be expressed by the equation

fy =3 fR)(n— k)

k=—0o

Examples of analog signals are often encountered in nature such as sound, tem-
peratures, pressure, growth, and precipitations waves.

Discrete time signals or events are usually man-made functions such as weekly
pay, monthly payment of a loan or mortgage, or the (U.S. presidential election
every 4 years.

Discrete signals are often confused with digital signals and binary signals. A
digital signal f(nT) or in short f(n) is a discrete time signal whose values are one of
a predefined finite set of values.

A binary signal is a discrete signal whose values consist of either zeros or ones.

An analog or continuous time function or signal can be transformed into a digital
signal using an A/D. Conversely, a digital signal can be converted into an analog
signal by means of a digital to analog converter (D/A).

Digital signals are frequently encoded using binary codes such as ASCII* into
strings of ones and zeros because in this format they can be stored and processed
by digital devices such as computers, and are in general more immune to noise and
interference.

R.1.16 The discrete impulse sequence () also called the Kronecker delta sequence (named

after the German mathematician Leopold Kronecker [1823-1891]) is defined ana-
lytically as follows and illustrated in Figure 1.7.

50) = 1 forn=0
(m) = 0 forn#0

Note that the discrete impulse is similar to the analog version 4(%).

R.1.17 A discrete shifted impulse (1 — m) is illustrated in Figure 1.8.

d(n—m)
1
1
-2 -1 0 1 2 3 m-1 m m+1
FIGURE 1.7 FIGURE 1.8
Plot of the discrete impulse 8(n). Plot of &(n — m).

* The ASCII code is defined in Chapter 3 of Practical MATLAB® Basics for Engineers.
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u(t)

v

FIGURE 1.9
Plot of the step function u().

The discrete shifted impulse function §(n — m)m — 1 --- m --- m + In is defined as

1 forn=m

5(n—m)={

0 forn#m

R.1.18 Let us go back to the analog world. The analog unit step function denoted by u(t) is

R.1.19

illustrated in Figure 1.9.
Analytically, the analog unit step is defined by

;) = 1 fort=0
MD=10 fort<0

The step is related to the impulse by the following relations:

du(t)
dt

= 5(t)

or in general

d — —
E[u(t - to)] - 5(t to)

©

[ oyt = u(t)

—o0

or in general

ut—t,) = [ o(x—t,)dr = 0 fort<t

£ {1 for t >t

The derivative of the unit step constitutes a break with the traditional differen-
tial and integral calculus. This new approach to the class of functions called sin-
gular functions is referred to as generalized or distributional calculus (mentioned
in R.14).

The analog unit step u(f) can be implemented by a switch connected to a voltage
source of 1 V that closes instantaneously at ¢ = 0, illustrated in Figure 1.10.
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swclosesatt=0

O)(O . A u(t—tp)

— 1V vt) = u(t)

il '
L 0 to
FIGURE 1.10 FIGURE 1.11
Circuit implementation of u(t). Plot of u(t — t).
u(n)
| T
n
-2 -1 0 1 2 3
FIGURE 1.12
Plot of u(n).

R1.20 A right-shifted unit step, by t, units, denoted by u(t — t) is illustrated in Figure 1.11.
The shifted step function u(t — ¢,) is defined analytically by

1 fort=t,
0 fort<t,

u(t—tO)Z{

R.1.21 A unit step sequence or the discrete unit step u(n) is illustrated in Figure 1.12.
The unit discrete step u(n) is defined analytically by

B 1 forn=0
u(n) = 0 forn<O

R.1.22 A unit discrete step sequence u(n) can be constructed by a sequence of impulses
indicated as follows:

u(n) = i o(n—k)
k=0

Observe that 6(n) = u(n) — un — 1).

R.1.23 A shifted and amplitude-scaled step sequence, Au(n — m) is illustrated in Figure 1.13.
The sequence Au(n — m) is defined analytically by

A forn=m

Au(n—m)Z{

0 forn<m



12 Practical MATLAB® Applications for Engineers

pul(tr)
A
1
n > ¢
m-1 m m+1m+2 m+3 —1/2 0 /2
FIGURE 1.13 FIGURE 1.14
Plot of u(n — m). Plot of pul(t/z).

R.1.24 The analog pulse function pul(t/7) is illustrated graphically in Figure 1.14.
The function pul(t/7) is defined analytically by

1 for —t/2=t=r1/2

pul(t/©) = {o for —t/2>t and t>1/2

R.1.25 The analog pulse pul(t/1) is related to the analog step function u(f) by the following
relation:

pult/t) = ut + ©/2) — u(t — 1/2)
R.1.26 The discrete pulse sequence denoted by pul(n/N) is given by

ln/N) = 1 for —-N/2=n<N/2
pulln/N) =30 (o N/2>n and n>N/2

For example, for N = 11 (odd), the discrete sequence is given by

In/11) = 1 for-5=n=>5
pul(n )= 0 for 5>n andn>>5

The preceding function pul(n/11) is illustrated in Figure 1.15.
Observe that the pulse function pul(n/11) can be represented by the superposition
of two discrete step sequences as

puln/11) = u(n + 5) — u(n — 6)

R.1.27 The analog unit ramp function denoted by r(t) = tu(t) is illustrated in Figure 1.16.
The unit ramp is defined analytically by

5 = t fort=0
=10 fort<0
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1.5}

Amplitude

0.5+

o
-
N
w
N
[¢;]
o]

0
6 -5 -4 -3 -2 -

FIGURE 1.15
Plot of the function pul(n/11).

A rtt)

FIGURE 1.16
Plot of the analog unit ramp function r(f) = tu(f).

R.1.28 The more general analog ramp function r(t) = tu(t) (with time and amplitude scaled)
is defined by

At fort=t,
0 fort<t,

Ar(t — ty) = {

where A represents the ramp’s slope and ¢; is the time shift with respect to the
origin.

R1.29 The discrete ramp sequence denoted by r(n — m)u(n — m) is defined analytically
by

n forn=m

r(n —m)u(n — m) = {

0 forn<m
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R.1.30 The analog unit parabolic function py(t) u(t) is defined by

i'tK fort=0 and K=2,3,...
px()u(t) = K!
0 fort <0

R.1.31 The discrete unit parabolic function p(n) u(n) is defined by

i'nK forn=0 and K=2,3,...
px(mu(n) = K!
0 forn <0

R.1.32 Observe that
a. The unit ramp presents a sharp 45° corner at t = 0.
b. The unit parabolic function presents a smooth behavior at t = 0.
c. The unit step presents a discontinuity at t = 0.
R.1.33 The step, ramp, and parabolic functions are related by derivatives as follows:
a. (d/d)ir@)] = u()
b A p,) = ruct)
¢ @/alp, 0] = p,a)

Observe that the first relation makes sense for all t # 0, since at t = 0 a discontinu-
ity occurs, whereas the second and third relations hold for all ¢.

R.1.34 Note that, in general, the product f() times u(t) [f(t)u(t)] defines the composite func-
tion given by

t) fort=0
sowe =) 7

R1.35 A wide class of engineering systems employ sinusoidal and exponential* signals as
inputs. A real exponential analog signal is in general given by

fit) = Aet
where e = 2.7183 (Neperian constant) and A and b are in most cases real constants.
Observe that for f(t) = Ae”,
a. f(t) is a decaying exponential function for b < 0.
b. f(t) is a growing exponential function for b > 0.

The coefficient b as exponent is referred to as the damping coefficient or constant.
In electric circuit theory, the damping constant is frequently given by b = 1/, where
7 is referred as the time constant of the network (see Chapter 2).

Note that the exponential function f(t) = Ae” repeats itself when differentiated
or integrated with respect to time, and constitutes the homogeneous solution of

* Recall that sinusoids are complex exponentials (Euler), see Chapter 4 of Practical MATLAB® Basics for
Engineers.
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R.1.36

R.1.37

the system differential equation.* Note also that when b is complex, then by Euler’s
equalities f(t) presents oscillations.

Finally, the more common equation f(f) = Ae " u(t) is defined analytically by
Ae’ fort=0
0 fort <0

-]

An exponential sequence can be defined by f(n) = Aa", for — = n < %, where a can
be a real or complex number.

The following example illustrates the form of an exponential function for various
values for A and b.

Let us explore the behavior of the exponential function, by creating the script file
exponentials that returns the following plots:

a. fy(t) = 42

b. f,(t) = 4e*?

c. f5(t) = 4e"u(t)

d. f,(t) = —4e"?u(t)

for A = =4 and b = *1/2, over the range —3 = t = 3, using 61 elements.

MATLAB Solution

°

% Script file: exponentials

t = -3:.1:3;

ftl = 4*exp(-t./2);

ft2 = 4*exp(t./2);

ut 1 = [zeros(1l,30) ones(1,31)]; % step with 61 elements

ft3 = ftl.xut _1;

subplot(2,2,1);

plot(t, £tl);

axis([-3 3 -.5 18]);xlabel(‘t (time)’)
title(“f1l(t)=4*exp(-t/2) vs. t’);
ylabel (*Amplitude [f1(t)]’)
subplot(2,2,2);

plot(t, ft2); xlabel(‘t (time)’)
axis([-3 3 0 20]);

title(“f2(t) = 4*exp(t/2) vs. t’);
ylabel(‘Amplitude [£2(t)]’);
subplot(2,2,3);

plot(t, ft3);

axis([-3 3 -.5 5]);

title(“£3(t) =4*exp(-t/2)*u(t) vs. t’);
xlabel(‘t (time)’)

ylabel (‘Amplitude[£3(t)]’);
subplot(2,2,4);

fta =-1.%ft2.*ut 1;

plot(t, ft4);

axis([-3 3 -20 11);

title(“f4(t) = -4*exp(-t/2)*ult) vs. t’)
xlabel(*t (time)’); ylabel(*Amplitude[f4(t)]’);

The script file exponentials is executed and the results are shown in Figure 1.17.

* See Chapter 7, Practical MATLAB® Basics for Engineers.
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f1(t) = 4*e(-t/2) versus t f2(t) = 4*e(t/2) versus t
T T 20
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f3(t) = 4*e(-t/2)*u(t) versus t f4(t) = —4*e(-t/2)*u(t) versus t
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(0] (O]
2 2 S-10
S =
S €
< 1¢} <_45}
0 t (time)
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FIGURE 1.17

Plots of £,(t), f,(t), f,(t), and f,(t) of R.1.37.

R.1.38

R.1.39

R.1.40

R.1.41

A real exponential discrete sequence is defined by the equation of the form
fn) = ac”

where a and c are real constants.
Observe that the sequence given by f(n) can converge or diverge depending on
the value of ¢ (less than or greater than one).

Recall that the general sinusoidal (analog) function is given by
ft) = A cos(wt + a)

where A represents its amplitude (real value); w is referred as the angular frequency
and is given in radian/second; » = 2nf, where f is its frequency in hertz, or cycles
per second (f = 1/T); and « is referred as the phase shift in radians or degrees
(27 rad = 360°) (see Chapter 4 of the book titled Practical MATLAB® Basics for Engi-
neers for additional details).

Recall that sinusoidal and exponential functions are related by Euler’s identities;
introduced and discussed in Chapter 4 of the book titled Practical MATLAB® Basics
for Engineers, and repeated as follows:

et = cos(wt) + jsin(wt)

A sinusoidal discrete sequence is defined by the following equation:

fn) = Acos(2nn/N + «)
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R.1.42

R.1.43

R.1.44

R.1.45

R.1.46

R.1.47

R.1.48

where A is a real number and represents its amplitude, N the period given by an
integer, a the phase angle in radians or degrees, and 27/N its angular frequency in
radians.

Clearly, a discrete time sequence may or may not be periodic. A discrete sequence
is periodic if f(n) = fin + N), for any integer n, or if 277/N can be expressed as r7,
where r is a rational number.

For example, cos(3n) is not a periodic sequence since 3 = rm, and clearly r cannot
be a rational number. On the other hand, consider the sequence cos(0.2rn), that is
periodic since 0.2 = rror r = 0.2 = 2/10, where r is clearly a rational number, then
the period is given by N = 27/ 0.2 or N = 10.

Observe that for the case of a continuous time sinusoidal function of the form f(t) =
Acos(w,t), f(t) is always periodic, with period T = 2n/w,, for any w,,.

The most important signal, among the standard signals used in circuit analysis,
electrical networks, and linear systems, in general, is the sinusoidal wave, in either
of the following forms:

f(t) = sin(wt)

ft) = cos(wt)
or most effective as a complex wave

f(t) = & = cos(wt) + jsin(wt) (Euler’s identity)

Let f,(t) be the family of exponential signals of the form

fn(t) = pfwnt
where

wn =nw, forn=0,*1,*2, .., *ox

where w, is called the fundamental frequency, wn’s are called its harmonic fre-
quencies (see Chapter 4, where w, = 2n/T). This family possesses the property
called orthogonal, which means that the following integral over a period shown

for the products of any two members of the family is either zero or a constant
given by 2m/w,

T/w, 2n/w, forn=m
[ £ £ ma=
—/w, 0 forn#m

where f,,()* denotes the complex conjugate of f,,(t). For example, if f,,(t) = ¢, then
fu®)* = e, For the special case in which the orthogonal constant is one, the family
is called orthonormal.

There are a number of orthonormal families. Some of the most frequently used
orthonormal families in system analysis are

a. Hermite
b. Laguerre
c. sinc (where sinc,(t) = sin(t — nm)/[nt — nm)])

The Hermitian orthonormal family of signals are generated starting from the
Gaussian signal

Her, = e 1t"24

and all other members are generated by successive differentiations with respect to .
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The first members of the Hermitian family are indicated as follows:
Her, = te t"?4
Her, = (# — 1)e t"?*
Her; = (3 — 3t)e 1"
Her, = (t* — 61> + 3)e "

R.149 The polynomial factors in the expressions defined by Her,, are referred as the Her-
mitian polynomials, and the orthogonal interval is over the range —% =t = +®. The
script file Hermite, given as follows, returns the plots of the first five members of the
Hermite’s family, over the range —5 = t = +5, in Figure 1.18.

MATLAB Solution
% Script file: Hermite
t =-5:.1:5;
Her 0 = exp(-t.”2./4);
Her 1 = t.*exp(-t."2./4);
Her 2 = (t.”2-1).*exp(-t.*2./4);
Her 3 = (t.”3-3.%t).*exp(-t."2./4);
Her 4 = (t."4-6*t."2+3).*exp(-t."2./4);
plot(t,Her O0,’*:’,t,Her 1,’d-.’,t,Her 2,’h--',t,Her 3,’s-’,t,Her 4,'p:’)
xlabel(‘time’)
ylabel(* Amplitude’)
title(‘First five members of the Hermite family’)
legend(‘Her 0',’Her 1’,’Her 2',’Her 3',’Her 4')
First five members of the Hermite family
4 T T T T T T T T
ﬁ -4 Her0
b % 4 =0 Her1
i r & % ﬁﬁ% *| —& Her2
gf % * % % [ & Her3
2t ¥ * F % ¢ |-%- Her4
& i i : *
y -
[} | 3 !
E 0 ; % LI
S ; " \ '
£ Y Dggﬂ #
; *
4 F " kK /
i : par *
13 ® /
w |‘ L ?
2k ' * * 4
1, %4
=1 £ Hd
4 ! 1 1 ] ] 1 1 |
-5 -4 -3 -2 -1 0 1 2 3 4
time
FIGURE 1.18

(See color insert following page 374.) Plots of the Hermite family of R.1.49.
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R.1.50 The Laguerre orthonormal family of signals are generated starting from the func-

R.1.51

tion given by
Lag,=e¢*? fort>0

and by successive differentiations with respect to t the other members of the family
are generated, indicated as follows:

Lag, = (1 — t)e™*?
Lag, = (1 — 2t + 0.582)e™?
Lag; = (1 — 3t + 0.67t> — 0.166t3)e ™2

The polynomial factors in the expressions shown in R.1.50 are referred as the
Laguerre’s polynomials, over the orthogonal interval given by 0 = t = +«. The
script file Laguerre returns the plots of the first four members of the Laguerre’s
family, over the range 0 = t = 5, are shown in Figure 1.19.

% Script file: Laguerre

t = 0:.1:15;

Lag 0 = exp(-t./2);

Lag 1 = (1-t).*t.*exp(-t./2);

Lag 2 = (1-2.*t+.5.*%t."2).*exp(-t./2);
Lag 3 = (t.73-3.%t).*exp(-t."2./4);

plot(t,Lag _0,’*:’,t,Lag _1,’d-.’,t,Lag _2,’h--',t,Lag _3,’s-’)
xlabel (‘time’)

ylabel (‘Amplitude’)

title(‘First four members of the Laguerre family’)
legend (‘Lag 0’,’Lag 1’,’Lag 2’,’Lag 3’)

First four members of the Laguerre family
2 TEeat T T

Amplitude

0 5 10 15
time

FIGURE 1.19
(See color insert following page 374.) Plots of the Laguerre family of R.1.51.
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R.1.52 The family of time-shifted sinc functions are given by
sinc,(t) = sin(t — nn)/[r(t — nn)]
forn =0, £1, =2, ..., = forms and orthonormal family, over the range —» =t = +x,
and are referred to as the sinc family.
R.1.53 The first five members of the sinc family are given as follows:
sinc,(t) = sin(t)/[nt]
sinc,(t) = sin(t — n)/[n(t — n)]
sinc,(t) = sin(t — 2n)/[n(t — 2n)]
sincs(t) = sin(t — 3n)/[n(t — 3n)]
sinc,(t) = sin(t — 4n)/[n(t — 4n)]
The script file sinc_n, shown as follows, returns the plot of the first four members of
the sinc family, over the range —5m = t = +57, indicated in Figure 1.20.
MATLAB Solution
% Script file: sinc _n
t =-5*pi: 0.25:5*pi;
Sinc 0 = sin(t) ./ (pi*t);
Sinc 1 = sin(t- pi ) ./ (pi*(t-pi));
Sinc 2 = sin(t- 2*pi ) ./ (pi*(t-2*pi));
Sinc 3 = sin(t-3*pi ) ./ (pi*(t-3*pi));
plot(t,Sinc _0,’*:’,t,8inc _1,’d-.’,t,Sinc _ 2,’h--’,t,Sinc _ 3,’s-’)
xlabel(‘time’)
ylabel (‘Amplitude’)
title(‘First four members of the sinc family’)
legend(‘sinc 0’,’sinc 1/,’sinc 2’,’sinc 3')
First four members of the sinc family
0-35 ¥ T T T T T T
-#- sinc 0
03 F i& ?’m ﬁi —» sinc 1 |]
i .
;¥ 4 ¢ o |[—% sinc 2
Foag UF x| B _sinc3
0.25 £ : &l
0.2 r =
(0]
T 015 | g
E—
g 01r =
0.05 4
0 L -
-0.05 el
_0'1720 -15 -10 -5 0 5 10 15 20
time
FIGURE 1.20

(See color insert following page 374.) Plots of the sinc family of R.1.53.
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R.1.54

R.1.55

R.1.56

R.1.57

R.1.58

R.1.59

R.1.60

R.1.61

Another important class of signals are the signals used in the transmission and
processing of information such as voice, data, and video, referred to as telecom
(telecommunication) signals. Telecom signals are, broadly speaking, composed of

a. Modulated signals
b. Multiplex signals
An exponential analog-modulated sinusoidal signal is given by

ft) = Ae™ cos(wt + o)

where the sinusoidal term is called the carrier, and the exponential Ae” is called the
envelope of the carrier that can represent a message or in general information.

An exponential discrete modulated sinusoid sequence is defined by
fn) = ac” cos(2nn/N + o)

Recall that g, ¢, N, and a were defined in R.1.38 and R.1.41.

Modulated signals are used extensively by electrical, telecommunication, com-
puter, and information system engineers to deliver and process information.
The modulation process involves two signals referred as

a. The carrier (a high-frequency sinusoidal)
b. The information signal (i.e., the message that can be audio, voice, data, or video)

The modulation process is accomplished by varying one of the variables that defines
the carrier (amplitude, frequency, or phase) in accordance with the instantaneous
changes in the information signal. Information such as music or voice (audio) con-
sists typically of low frequencies and is referred to as a base band signal. Base band
signals cannot be transmitted in its maiden form because of physical limitations
due to the distances involved in the transmission path, such as attenuation. Hence,
to obtain an economically viable system that can, in addition, support a number of
additional information channels (multiplexing), the information signal has to be
boosted to higher frequencies through the modulation process.

AM is the process in which the amplitude of the high-frequency carrier is varied
in accordance with the instantaneous variations of the information signal. This
process is accomplished by multiplying the high-frequency carrier by the low-
frequency component of the information signal.

AM signals present a constant frequency (which corresponds to the carrier’s fre-
quency) and phase variation.

A special type of AM signal used in the transmission of digital information is the
amplitude shift keying (ASK) signals also known as on-off keying (OOK).

FM is a type of modulation in which the frequency of the carrier is varied in accor-
dance with the instantaneous variations of the amplitude of the information signal.
These types of signals present a constant magnitude and phase.

A special type of FM signal used in the transmission of digital information is
the frequency shift keying (FSK) signal employed to modulate information that is
originated from digital sources such as computers.

Modulators and demodulators used to transmit digital information are referred
to as modems that stand for modulator-demodulator.

PM is a technique in which the phase of the carrier signal is varied in accordance
with the instantaneous changes of the information signal.
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R.1.62

R.1.63

R.1.64

R.1.65

R.1.66

R.1.67
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Phase shift keying (PSK) is a special case of PM signals, in which the phase of the
analog high-frequency carrier is varied in accordance with the information signal
that is digital in nature. PM and FM are commonly referred to as angle modulation
(for obvious reasons).

AM is also referred as linear modulation. It is a modulation technique that is band-
width efficient. The bandwidth requirements vary between BW and 2 BW, where BW
refers to the bandwidth of the information signal or message m(t).* It is inefficient as far
as power is concerned and its performance is poor in the presence of noise (compared
with angle modulation FM or PM). AM is widely used in commercial broadcasting
systems such as radio and TV, and in point-to-point communication systems.

Angle modulation (FM or PM) is commonly referred to as nonlinear modulation,
and its most important characteristics are

* High BW requirements

* Good performance in the presence of noise

* High fidelity

Angle modulation is used in commercial broadcasting such as radio and TV with a
superior quality of the reception of the information signal m(t), compared with AM.

The time domain representation of the analog modulation signals is presented as
follows:

a. AM signal = Am(t) cos(wt)
b. FM signal = A cos [wct + anpj; m(k)dk]
¢. PM signal = A cos[w,t + 2mk,m(t)]

where w, denotes the high-frequency carrier, m(t) refers to the information or mes-
sage signal, A represents the carrier amplitude, and k, and k; are constants that
represent deviations.

Signals or sequences can be left- or right-sided.
a. A right-sided or causal sequence (or signal) is defined by f(1) = 0, for n < 0.
b. A left-sided or noncausal sequence (or signal) is defined by f(1) = 0, for n > 0.
c. A two-sided sequence (or signal) is defined for all n (—% < n < +x).
A symmetric or even function (or sequence) is defined by
ft) = f(—t) (analog case)
and
f(n) = f(—n) (discrete case)
An asymmetric or odd function (or sequence) is defined by the following relations:
f(t) = —f(—t) (analog case)
and

f(n) = —f(—n) (discrete case)

* For a formal definition of BW see Chapter 4. At this point, it is sufficient for the reader to associate BW with
the signal quality.
* For the case of continuous signals just replace 7 by t.
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R.1.68 Any real function or sequence can be expressed as a sum of its even part ( f,) plus its

R.1.69

R.1.70

R1.71

R.1.72

R.1.73

odd part ( f,) as indicated by the following equation:
f) = £ + f,1)

where f,(t) = 1/2[f(t) + f(—t)] and f,(t) = 1/2[f(t) — f(—t)] for the analog case, and
f(n) = f,m) + f,(n), where f,(n) = 1/2[f(n) + f(—n)l and f,(t) = 1/2[f (n) — f(—n)] for

the discrete case, assuming the sequences are real.

The average value of the function f(t) in the interval —T/2 =< t = T/2 is given by

T/2
fue = lim {; J f(t)dt}

-T/2

Observe that the average value f,,, is contained in the even portion of f(t){f.(t)},
since the contribution of the odd portion is always zero.

The general algebraic rules governing even and odd symmetric functions are sum-
marized as follows:

. The sum of two even functions is also even.

. The product of two even functions is also even.
The product of two odd functions is even.

. An even function squared becomes even.

a

b

c.

d

e. An odd function squared becomes even.

f. The sum of two odd functions is also odd.

g. The sum of an even plus an odd function is neither even nor odd.
h. The product of an even by an odd function is odd.

Any analog signal f(t), or discrete sequence f(n), of the independent variables either
t or 1, can be transformed with respect to the independent variable (¢ or n) in the
following ways:

a. Time transformation
i. Reversal or reflection returns f(—t) or f(—n).
ii. Time scaling by a returns f(at) or f(an) {expansion (a < 1), or compression
(a> 1}
iii. Time shifting by ¢, returns f(t — ;) or f(ln — ny). If t, > 0 then f(t) is shifted to
the right by ¢, and if t, < 0 then f(t) is shifted to the left by .
b. Amplitude transformation
i. Inversion returns —f(t) or —f(n).

ii. Amplification or attenuation by A returns A f(t) or A f(n). If A > 1, which means
amplification and if A < 1, which means attenuation.
iii. Direct current (DC) shifting by A returns A + f(f) or A + f(n). If A > 0, which
means f(t) moves up by A and if A < 0, which means f(t) moves down by A.
Recall that given a continuous time signal f(t), the signal f(t — ¢,) is the signal f(t)
shifted ¢, units to the right, and f(t + t,) represents the signal f(t) shifted ¢, units to
the left, where t; and ¢, are positive, real numbers.

For example, let f(t) be the function shown in Figure 1.21.
Sketch the functions f(t — 1), fitt — 2), f(tt + 1), and f(t + 2).
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f(t)
1
5 1\ t
\/—1 1
_______ -2
FIGURE 1.21

Plot of f(t) of R.1.73.

1

f(t-1)

FIGURE 1.22
Plots of f(t — 1), fitt — 2), f(t + 1), and fit + 2) of R.1.73.

R.1.74

R.1.75

R.1.76

R.1.77

ANALYTICAL Solution

The functions f(t — 1), f(t — 2), f(t + 1), and f(t + 2) are shown in Figure 1.22.

Given the continuous time signal f(t), then by multiplying the independent variable
t by —1, a reverse time function f(—t) is created. The same can be said about the
sequence f(n) and its discrete reverse time sequence f(—n).

For example, using the function defined in R.1.72, the reverse function f(—t) is
shown in Figure 1.23.

Given the function f(t), then by multiplying the independent variable t by a real
constant 4, the function experiences the following changes:

a. If a > 1, then f(t) is compressed in time by a factor of 1/a.

b. If a <1, then f(t) is expanded in time by a factor of a.

For example, using the function defined in R.1.72, sketch the plots for f(2t) and f(t/2).
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f-t)

FIGURE 1.23
Plot of f(—t) of the function defined in R.1.75.

f(2t)

s [

f(t/2)

FIGURE 1.24
Plots of f(2t) and fit/2) of R.1.73.

ANALYTICAL Solution

The functions for f(2t) and f(t/2) are shown in Figure 1.24.

Note that the concepts and definitions presented for the case of continuous time
functions such as compression, expansion, time reversal, inversion, and time and
amplitude shifting are equally applicable for the case of discrete sequences by changing
the independent variable f to .

R.1.78 Time signals (or sequences) encountered in real-world problems are in general real
functions of t (or n). But sometimes it is useful to work with complex signals or
sequences when performing systems analysis. Complex sequences can easily be
expressed in terms of their real and imaginary parts of f(t) or f(n) as illustrated in
the following expressions:

f(n) =reall f(n)] + j imag[ f(n)] = a(n) + jb(n), for the discrete case
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R.1.79

R.1.80

R.1.81

R.1.82

R.1.83

R.1.84

R.1.85

R.1.86
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or

f(t) =reall f(t)] + jimag[ f(t)], for the analog case

The complex conjugate sequence of f(n) is denoted by f*(1), where
f*(n) = real[f(n)] — jimag[f(n)] = a(n) — jb(n)

Let f(n) be a complex sequence, where f(n) = a(n) + jb(n). This sequence can further
be decomposed into

fm) = la,m) + a,m)] + jlb,m) + b,(n)]

where the subscripts e and o denote the even and odd parts, respectively, of the a(n)
and b(n) of f(n).

The same relation holds when # is replaced by ¢ for the analog case.
A signal or sequence is periodic (with either period T or N) if the following rela-
tions hold

ft) = f(t + kT) (analog)
or
f(n) = f(n + kN) (discrete)

forany k = 0, 1, *2, *3, ...

When the signal or sequence does not satisfy the preceding relations, it is nonpe-

riodic. A periodic signal is defined for all t (—, ). Periodic signals or sequences are
basically ideal concepts. Most practical signals are basically nonperiodic.

The energy E of a signal f(t) or sequence f(n) is defined by

E= [[f@f dt <o

where |f(t)|?|= f(t) - f(t)*, for the continuous case, and

+oo

E= 2 ‘f(n)‘ZAn<oo

n=—ow

for the discrete case.

A finite length sequence with finite magnitudes will always have finite energy or
an infinite sequence with a finite number of samples may not have infinite energy.
A signal f(t) defined over the range ¢, = t = t,, with a finite number of maxima and
minima, is associated with a finite energy content E (in joules).

Let the energy of the signal f(t) exist and be finite, then the signal f(t) is referred to
as an energy signal.

The average power of a finite discrete sequence f(n) (or time-limited signal f(t)) is
defined by the following equations:

1 1 2
P, = —t, ﬂf(t)‘ dt (analog case)

fo
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R.1.87
R.1.88

R.1.89

R.1.90

R.191

R.1.92

R.1.93

R.1.94

and by

Pav = 1
2N

+N
2 .
11 %‘f (”)‘ (discrete case)

Periodic signals are referred to as power signals, since they possess infinite energy.

An infinite energy signal with finite power is referred to as a power signal. A finite
energy signal with infinite power is referred as an energy signal.

Recall that the MATLAB function stem returns the plot of a discrete sequence,
whereas the plot command returns the plot of an analog (continuous) signal.

Recall that if z is complex then the MATLAB command plot(z) returns the continu-
ous plot of imag(z) versus real(z), whereas the command stem(z) returns the discrete
plot of real(z) versus n.

The discrete unit impulse sequence §(n) of length N can be obtained by using the
MATLAB statement

Imp = [1zeros(1, N — 1)]

Imp consists of an N-element row vector with one as the first element, followed
by N — 1 zeros, with the implicit assumption that the first element corresponds to
n = 0, of the sequence §(n).

The shifted unit impulse d(n — k) of length N can be created by using the following
MATLAB statement:

Impk = [zeros(1, k — 1)1zeros(1, N — k)]

Another way to generate a unit impulse sequence of length n = 2N + 1 with the
unit impulse located at k, where k may be anywhere over the range —N <n <N, is
by the following function file:

function [k,n] = Impfun(nl,n2,n3)
n = n2:1:n3;
k = [(n - nl)==0];

For example, the following script file sequence_impulse returns the discrete plot of
the signal x(n) = §(n — 3), using a 21-element sequence over the range —10 = n = 10,
and the function file Impfun:

MATLAB Solution

°

% Script file: sequence impulse

n = -10:1:10;
[k,n] = Impfun(3,-10,10);
stem(n,k)

title(* \delta(n - 3) vs. n’)
xlabel(‘time index n’)
ylabel (‘Amplitude’)

a = min(n);

b max(n);

c min(k)-.5;

d = max(k)+.5;

axis([a b ¢ d]);grid on;

See Figure 1.25.



28 Practical MATLAB® Applications for Engineers

d(n —3) versus n
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FIGURE 1.25
Plot of x(n) = 6(n — 3) of R.1.94.
A
stepfun(n, no)
no no+N n

FIGURE 1.26
Plot of stepfun(n, no) of R.1.97.

R.1.95 A unit step sequence of length N can be generated using the following MATLAB

command:
un = [ones(1, N)]

R.1.96 The shifted (or delayed) unit step sequence u(n — k) can be created by executing the
following MATLAB command:

unk = [zeros(1, k — 1) ones(1, N)]

Observe that the total number of elements of the sequence unkis N + k — 1.

R.197 The MATLAB function stepfun(n, no) returns the shifted step (by #o units to the
right) sequence shown in Figure 1.26. Recall that the stepfun(n, no) can be used with
either analog or discrete arguments, defined as

1 forn=no

stepfun(n, no) = u(n — no) = {0 for n < no
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The step function called Heaviside is indicated as follows:

function stepseqg = Heaviside(x)
stepseq = (x>=0);

R.198 For example, write a program that returns u(t) and u(t — 2), using the function
Heaviside, over the range —10 = t = 10.

MATLAB Solution

>> x = -10:0.1:10;

>> stepfun = Heaviside(x);
>> subplot(2, 1, 1);

>> plot(x, stepfun)

>> xlabel(‘t (time)’)

>> title(‘u(t) vs. t’)

>> ylabel(*Amplitude.’)

>> axis([-10 10 ,0.5 1.5])
>> subplot(2, 1, 2);

>> stepfun = Heaviside(x-2);
>> plot(x, stepfun)

>> axis([-10 10 ,0.5 1.5])
>> title(u(t-2) vs. t’)

>> ylabel(‘Amplitude.’);

>> xlabel(‘t (time)’);

See Figure 1.27.
u(t) versus t
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FIGURE 1.27
Plots of u(t) and u(t — 2) of R.1.98.

R1.99 The MATLAB function sign(t) is defined as follows:

1 t>0
sign(t)=< 0 t=0
-1 t<0

The sign(t) function is illustrated in Figure 1.28.
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sign(t)

FIGURE 1.28
Plot of the function sign(t) of R.1.99.

Note that the function sign(t) can be created by using the step functions indicated
as follows:

sign(t) = u(t) — u(—t) = —1 + 2u(t)
R.1.100 The MATLAB symbolic toolbox calls the impulse function () by using the name
Dirac(t).

R.1101 The MATLAB symbolic toolbox calls the step function u(t) by using the name
Heauviside(t).

R1.102 The MATLAB symbolic toolbox calls the function sign(t) by using the name
signum(t).

R.1.103 Let us gain some experience by using the MATLAB symbolic toolbox in evaluat-
ing the following expressions:

a [ d(ydt =

b. fzu(t)dt -

0

J.j; sign(t)dt =
u(t)‘t:3 =
u(t)‘t:ﬂ =

[tuctydt =

e

®

[eaY

2
L tu(t)dt =

7 ™

2
j_ltu(t)dt =

. 2 . _
i f_ltszgn(t)dt =

MATLAB Solution
>> syms t a

>> area _ impulse = int(‘Dirac(t)’, -inf, inf) % area of the impulse
o(t)
area impulse =
1
>> area step = int(‘Heaviside(t)’, -2, 3) % area of the step

from -2 to +3
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R.1.104

area step =

3
>> area sign = int(‘signum(t)’, -2, 3) % area of the sign from
-2 to +3
area sign =
1
>> stept 3 = vpa(‘Heaviside(3)’) % evaluates u(t) at t =3
stept 3 =
1
>> stepmin 2 = vpa(‘Heaviside(-2)’) % returns u(t) at t = -2
stepmin 2 =
0

o°

>> differstep = diff(‘Heaviside(t)’) returns d(u(t))/dt

differstep =
Dirac(t)
>> intramp = int(‘Heaviside(t)’*t) % returns the integral
of t u(t) dt
intramp =
1/2*Heaviside(t)*t"2
>> area rampl2 = int(‘Heaviside(t)’*t,1,2) % area of [t u(t)] from

t =1 to t =2

area rampl2

3/2
>> area ut 12 = int(‘Heaviside(t)’*t,-1,2) % area t u(t) from t = -1
to t =2
area ut 12 =
2
>> area _signt = int(‘signum(t)’*t,-1,2) % area sign(t)*t from t=-1
to t=2
area _ sign =
5/2

Create the script file plot_ramp that returns the plot of ¢ u(t) versus t, over the range
—1 =t = 3, using ezplot.

MATLAB Solution

)

% Script file: plot ramp

ramp = (‘Heaviside(t)’'*t) % returns the ramp over
-1 = t =3
ezplot(ramp, [-1 +3]) % see plot Figure 1.29

title(‘heaviside(t)*t vs. t’);
xlabel(‘t’); ylabel(‘t*u(t)’) ;
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heaviside (t)*t versus t

t*u(t)

FIGURE 1.29
Plot of tu(t) of R.1.104.

R.1105 The MATLAB command square(t, a) returns the periodic square wave with period
T = 2 = m, over the range defined by ¢, where 4 is a constant that indicates the per-
cent of the period T for which the square wave is positive.

R.1.106 For example, create the script file squares that returns the plots over two cycles of
the square sequences, with period T = 27, with the following specs:

a. f,(t) versus t, with mag[f,(t)] = 1, during 50% of the period T and maglf,(t)] = —1,
during the remaining 50%

b. f,(t) versus t, with maglf,(t)] = 2, during 25% of the period T and maglf,(t)] = -2,
during the remaining 75%

c. f3(t) versus t, with mag[f;(t)] = 3, during 33% of the period T and maglf;t)] = —3,
during the remaining 67%

d. f,(t) versus t, with maglf,(t)] = 4, during 75% of the period T and maglf,(t)] = —4,
during the remaining 25%

MATLAB Solution
% Script file: squares

t = 0:.1*pi:4*pi;

f1 =square(t,50);

f2 =2*square(t,25);

f3 =3*square(t,33);

f4 =4*square(t,75);
subplot(2,2,1)

plot(t,f1)

ylabel(*f1(t)’)

axis([0 4*pi -1.5 1.5])
grid on;
title(‘Square(t,50) vs t')
subplot(2,2,2)

plot(t,f2)
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ylabel( ‘f2(t)’)

axis([0 4*pi -2.5 2.5])
grid on;
title(‘2*Square(t,25) vs t’)
subplot(2,2,3)

plot(t,£3)

axis([0 4*pi -4.5 4.5])

grid on;

ylabel(* £3(t) ');xlabel(* t (time)’)

title('3*Square(t,33) vs t’)
subplot(2,2,4)

plot(t,f4)

axis([0 4*pi -5.5 5.5])

grid on;

title(‘4*Square(t,75) vs t’)

ylabel(* f4(t) ‘);xlabel(* t (time) ')

The script file squares is executed and the results are shown in Figure 1.30.

Square(t,50) versus t 2*Square(t,25) versus t

f2(t)

f4(t)

t (time) t (time)

FIGURE 1.30
Plots of the function square of R.1.106.

R.1.107 The MATLAB command sawtooth(t, b) returns a triangular wave, with magni-
tudes between —1 and +1, and a period of T = 27m. The scalar b, between 0 and
1, indicates the percent of the period T with positive slope, where the maximum
occurs at the end.
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R.1.108

R.1.109

R.1.110
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For example, create the script file triangles that returns the plots over two cycles of
the triangular sequences, with period T = 27, with the following specs:

a. f;(t) versus t, with positive slope during 50% of the period T, and a swing from
—1to+1

b. f,(t) versus t, with positive slope during 25% of the period T, and a swing from
—2to +2

c. f3(t) versus t, with a positive slope during 33% of the period T, and a swing from
—3to +3

d. f,(t) versus t, with a positive slope during 75% of the period T, and a swing from
—4to +4

MATLAB Solution
% Script file: triangles

t = 0:0.1*pi:4*pi;

f1 = sawtooth(t,.5);

f2 = 2*sawtooth(t,.25);

f3 = 3*sawtooth(t,.33);

f4 = 4*sawtooth(t,.75);
subplot(2,2,1)

plot(t,£f1)

ylabel (“f1(t)’)

axis ([0 4*pi -1.5 1.5])

grid on;

title (‘Sawtooth(t,.50) vs t')
subplot(2,2,2)

plot(t,£2)

ylabel( ‘f2(t)’)

axis ([0 4*pi -2.5 2.5])

grid on;

title (‘2*Sawtooth(t,.25) vs t’)
subplot (2,2,3)

plot (t,£3)

axis ([0 4*pi -4.5 4.5])

grid on;

ylabel(* £3(t) ');xlabel(* t (time)’)

title(‘'3*Sawtooth(t,.33) vs t’)
subplot(2,2,4)

plot(t,f4)

axis([0 4*pi -5.5 5.5])

grid on;

title(‘4*Sawtooth(t,.75) vs t’)
ylabel(* f4(t) ‘); xlabel(® t (time) ’)

The script file triangles is executed and the results are shown in Figure 1.31.
The MATLAB function sinc(x) evaluates the function defined by

sin(mx)

sinc(x) =
X

For example, the script file sincs returns the plot of the function sinc(x) over the
range 5 = x = 5, illustrated in Figure 1.32.
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Sawtooth(t,.50) versus t 2*Sawtooth(t,.25) versus t

t (time) t (time)

FIGURE 1.31
Plots of the function sawtooth of R.1.108.

sinc(x) versus x for -5<x<5

Amplitude [Sinc(x)]

FIGURE 1.32
Plot of the function sinc of R.1.110.

35
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R.1.112

R.1.113
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MATLAB Solution
% Script file: sincs

X = -5:0.1:5;
y = sinc(x);
plot(x, vy)

title(‘sinc(x) vs. x for -5<x<5’)
xlabel(*x’);

ylabel(‘Amplitude [Sinc(x)]’);
grid on;

The MATLAB function tripuls(t, c) returns a symmetric triangle with its base along
the horizontal axis, with length ¢, centered at ¢ = 0.

For example, create the script file triang that returns the plots of triangles with the
following specs:

a. f;(t) versus t, with peak[f,(t)] = 1 and a base length = 3
b. f,(t) versus t, with peakl[f,(t)] = 2 and a base length = 5
c. f;(t) versus t, with peak[f;(t)] = 3 and a base length = 10
d. f,(t) versus t, with peakl[f,(t)] = 4 and a base length = 12

MATLAB Solution
% Script file: triang
t = -6:0.1:6;

f1 = tripuls(t,3);
f2 = 2*tripuls(t,5);
£f3 = 3*tripuls(t,10);

f4 = a*tripuls(t,12);
subplot(2,2,1)

plot(t,£fl)

ylabel (*Amplitude [f1(t)]");
xlabel(® t (time)’)

axis([-6 6 -0.5 1.5])
title(‘tripuls(t,3) wvs. t’)
subplot(2,2,2)

plot(t,£2)

ylabel( ‘Amplitude [£2(t)]’)
xlabel(® t (time)’)

axis([-6 6 -0.5 2.5])
title(*2*tripuls(t,5) vs. t’)
subplot(2,2,3)

plot(t,£3)

axis([-6 6 -0.5 4.5])
ylabel(* Amplitude [£3(t)] ');xlabel(* t (time)’)
title(*3*tripuls(t,10) vs. t’)
subplot(2,2,4)

plot(t,f4)

axis([-6 6 -0.5 5.5])
title(‘4*tripuls(t,12) wvs. t’)
ylabel(* Amplitude [f4(t)] '); xlabel(* t (time) ‘)

The script file triang is executed and the results are shown in Figure 1.33.

The MATLAB function rectpuls(t, d) returns a symmetric rectangle with width d,
centered at t = 0.
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Plot of the function tripuls of R.1.112.

R.1.114 For example, create the script file rect_pulses that returns rectangle plots with the
following specs:

a. f,(t) versus t, with mag[f,(t)] = 1 and width = 1
b. f,(t) versus t, with mag[f,(t)] = 2 and width = 3
c. f3(t) versus t, with mag[f;(t)] = 3 and width = 6
d. f,(t) versus t, with maglf,(t)] = 4 and width = 9

MATLAB Solution
% Script file: rect pulses

t = -6:.1:6;

f1 = rectpuls(t,l);

f2 = 2*rectpuls(t,3);

f3 = 3*rectpuls(t,6);

f4 = 4*rectpuls(t,9);

subplot(2,2,1)

plot (t,f1)

ylabel (' Amplitude [f1(t)]’);xlabel(‘t (time)’);
axis ([-6 6 -0.5 1.5])

title(‘Rectpuls(t,1l) wvs. t’)

subplot(2,2,2)

plot(t,f2)

ylabel( ‘Amplitude [f2(t)]’); xlabel(‘t (time)’);
axis([-6 6 -0.5 2.5])

title(‘2*Rectpuls(t,3) vs. t’)

subplot(2,2,3)
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plot(t,£3)
axis([-6 6 -0.5 4.5])
ylabel(* Amplitude [£3(t)]’);xlabel(* t (time)’)
title(‘3*Rectpuls(t,6) vs. t')
subplot(2,2,4)
plot(t,£f4)
axis([-6 6 -0.5 5.5])
title(‘4*Rectpuls(t,9) vs. t’)
ylabel (' Amplitude [f4(t)] '); xlabel(* t (time) V)
The script file rect_pulses is executed and the results are shown in Figure 1.34.
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Plots of the function rectpuls of R.1.114.

R.1.115

R.1.116

R1.117

The MATLAB function y = pulstran(t, d, f’) returns a symmetric train of continu-
ous or discrete functions " with d periods over the range defined by ¢.

A more general MATLAB function is [f, t| = gensig(‘type’, T, range, Ts) that returns
the periodic function f defined by type (sin, square, or pulse), over the range t, with a
sampling rate T,

For example, use the gensig command to create three cycles of a square periodic
wave, with period T = 3 and a sampling rate Ts = 0.1 (Figure 1.35).

MATLAB Solution

>> [squar,t] = gensig(‘square’,3,9,0.1);

>> plot(t,squar)

>> axis([0 9 0 1.2])

>> ylabel(‘Amplitude’);xlabel(*time’)

>> title(‘Plot using [squar,t] = gensig(square,3,9,0.1)")
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Plot using (squar, t) = gensig(square,3,9,0.1)
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FIGURE 1.35
Plot of R.1.117.

R.1.118 As an additional example, create the script file triang_pulses that returns the plots
of triangular waves with 3, 4, 5, and 2 cycles, respectively, and unit magnitude,
over therange 0 =t = 1.

MATLAB Solution
Script file: triang pulses

o°

% echo on

t =0:0.001:1;

subplot(2,2,1)

dl = [0:.33:1]; % 3 cycles
vyl = pulstran(t,dl,’tripuls’,.25);

plot (t,y1)

title ('3 triangular cycles’);

axis ([0 1 -0.5 1.5]);

ylabel (‘Amplitude’) ;

subplot(2,2,2)

da = [0:.25:1];

y2 = pulstran(t,da,’tripuls’,.25); % 4 cycles
plot(t,y2);

title(‘4 triangular cycles’);

axis([0 1 -0.5 1.5]);

ylabel(*‘Amplitude’) ;

subplot(2,2,3)

d3 = [0:.20:1]; % 5 cycles
y3 = pulstran(t,d3,’tripuls’,.1);

plot(t,y3);

title('5 triangular cycles’);

axis ([0 1 -0.5 1.5]);

xlabel(‘time’)

ylabel (‘Amplitude’) ;

d4 = [0:.5:1]; $ 2 cycles
subplot(2,2,4)

y4 = pulstran(t,d4,’tripuls’,.4);

plot (t,y4)



40 Practical MATLAB® Applications for Engineers
title (‘2 triangular cycles’);
axis ([0 1 -0.5 1.5]);
ylabel (‘Amplitude’) ;
xlabel (‘time’);

The script file triang_pulses is executed and the results are shown in Figure 1.36.
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FIGURE 1.36

Plots of R.1.118.

R.1.119 Recall that system concepts such as transfer function, filter, and input and output
signals were introduced in Chapter 7 of the book titled Practical MATLAB® Basics
for Engineers.

The MATLAB command [h, t] = impulse(P, Q, t) returns as output i, when the
input is a Dirac impulse applied to a filter or system whose transfer function is
given by P/Q, where P and Q are polynomials expressed as row arrays whose coef-
ficients are arranged in descending order of s (where s = jw is the Laplace variable)
and t is the time interval of interest (see Chapter 4 for more information).

R.1120 The MATLAB command [gs, t] = step(P, Q, t) returns the step response of a linear
system with a transfer function defined by H = P/Q, over a time interval ¢.

R.1121 The MATLAB function hn = dimpulse(P, Q, n) returns the discrete impulse response

consisting of n samples, applied to the discrete transfer function H(z) = P(z)/Q(z),
where P(z) and Q(z) represent the vector polynomial consisting of its coefficients
arranged in decreasing powers of z, where z = ¢/**

* See Chapter 5 for more information about z.
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R.1.122 For example, let

H(z) < 2247+ 2524225
z2 4+ 0.5z +0.68

Create the script file disc_imp that returns the discrete response in the form of a table
and a plot for the sequence of length 1 = 10. The results are shown in Figure 1.37.

MATLAB Solution

)

% Script file: disc _imp

clc; clf;
n =10;
P = [2.24 2.5 2.25];

Q = [1 .5 .e8];

hn = dimpulse(P,Q,n);

nn = 0:1:9;

results = [ nn’ hn];
disp(‘*************************************************************w

I

disp(*The impulse response sequence h(n) for the first 10 samples is:’);

. AAAAAAAAAAAAAAA

disp(® ");
. AAAAAAAAAAAAAAA

disp(® ");

disp(results);
disp ‘*************************************************************q

(
(
disp(® n h(n)’);
(
(
(

yzero = zeros(l,10);

stem(nn,hn); hold on; plot(nn,yzero)
title(‘Discrete impulse response h(n) vs n’)
xlabel(‘time index n’);

ylabel(‘Amplitude [h(n)]’);

The script file disc_ imp is executed and the results are shown as follows:

khkhkkkhkhkkkhhkhkkhkhkhkkhkhhhkhkhhhkhkhhhkhhhhhhhhkhkhhhkhhhkhdhhkhkdhhkhkhhrhkdhhkkhhx

The impulse response sequence h(n) for the first 10 samples is:

AAAAAAAAAAAAAAAAAAAAA

n h(n)

0 2.2400
1.0000 1.3800
2.0000 0.0368
3.0000 -0.9568
4.0000 0.4534
5.0000 0.4239

6.0000 -0.5203
7.0000 -0.0281
8.0000 0.3679
9.0000 -0.1648

hhkhkkkhhkkkhhhkhkhdhkhkhhhkhhhhhhkhdhhkhdhkdhhhhkhkhdhkhkhdhkdhdhhkhkddhkhdrrhkdhhhkdhx
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Discrete impulse response h(n) versus n
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FIGURE 1.37

Discrete impulse response h(n) of R.1.122.

R.1.123

R.1.124

The MATLAB function un = dstep(P, Q, n) returns the discrete step response with
length 1 of the system defined by the transfer function H(z) = P(z)/Q(z).

For example, create the script file disc_step that returns the discrete response in the
form of a table and a plot for a sequence of length n = 10, for the system defined in
R1.122.

MATLAB Solution
% Script file: disc _ step

clec; clf;

n = 10;

P = [2.24 2.5 2.25];

Q = [1 .5 .e68];

un = dstep(P,Q,n);

nn = 0:1:9;

results = [nn’ un];
disp(‘****************************************************************’)I-

disp(‘The discrete step sequence u(n) for the first 10 samples is:’);
disp(‘AAAAAAAAAAAAAA,)

disp(® n u(n)’)

disp(‘AAAAAAAAAAAAAA,)

disp(results);
disp(‘****************************************************************’);
yzero = zeros(l,10);

stem (nn,un); hold on; plot (nn,yzero)
title (‘Discrete step response u(n) vs n’)
xlabel (‘time index n’);

ylabel (‘Amplitudelu(n)]’);
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The script file disc_step is executed and the results are given as follows and in
Figure 1.38.

khkkhkkhkkhkhkkhhkkhhkhkkhkhkkhkhkhhkhhkhkkhhkkhhkkhhkhkhkhkkhhkhhhhhkhhkkhhkkhhkhhdhkhhkkhhkkhhkhhhkkhhkkhhdxkxx*x

The discrete step sequence u(n) for the first 10 samples is:

AAAAAAAAAAAAAAAAAAAA

n u(n)

0 2.2400
1.0000 3.6200
2.0000 3.6568
3.0000 2.7000
4.0000 3.1534
5.0000 3.5773
6.0000 3.0570
7.0000 3.0289
8.0000 3.3968
9.0000 3.2320

khkhkkkkhkkkhhkhkkhhkhkhhhkhkhhhkhkhhhkhhhkhhhhkhkdhhhkdhhkhdkhrkhkdhrhkdhkrrkhhhxk

Discrete step response u(n) versus n
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FIGURE 1.38
Discrete step response of R.1.124.

R.1.125 The MATLAB function [y, n] = filter(b, a, x) defined in Chapter 7 of the book titled
Practical MATLAB® Basics for Engineers returns the output sequence y, when the
relation input (x) output (y) is given by the following system difference equation:

N1 N2
Y yn—k =Y bx(n—1)
k=0 1=0

R.1.126 A discrete sequence may consist of either a finite or infinite number of samples.
A finite length sequence is characterized by a finite number of nonzero sam-
ples. An infinite length sequence extends infinitely to the right or the left of
the n-axis (discrete time). In either case, the infinite or finite sequences can be
represented by a sum of weighted time-shifted impulse samples.
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R.1.127

R.1.128

R.1.129

R.1.130

R.1.131

R.1.132

R.1.133
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Reconstruction of an analog signal f(t) from the discrete sequence f(n) can be
accomplished, if the analog signal f(t) is band-limited and converted into the dis-
crete sequence f(n) by sampling it with a rate above the Nyquist/Shannon rate.

Recall that the sampling theorem (Nyquist/Shannon) states that an analog signal
f(t), band-limited to fm hertz, must be sampled at a rate greater than twice its high-
est frequency fm, to be able to reconstruct f(t) from its samples given by f(n) (R.1.1).

The reconstruction process is done by passing the sequence f(n) through an ideal
analog low-pass filter with a cutoff frequency of fin (see Chapters 4 and 6 for infor-
mation regarding frequency domain and filtering).

Since ideal sharp rectangular filters, with a cutoff frequency of fm are unrealiz-
able, the practical sampling rate is often five or six times the frequency fm. At this
point let us analyze the reconstruction process in the time domain, where the
reconstructed signal f(t) can be approximated by the following equation:

s sinc(t — nT)
f()y= Zf e
where
sinc(t) = S
mt

If a discrete time signal f(n) was originally obtained by sampling a band-limited
continuous time signal by using the Nyquist/Shannon sampling rate, then the
process of up- or down-sampling the time continuous signal f(t) means that the
original signal is sampled now by a higher or lower sampling rate.
The term up-sampling refers to increasing the sampling rate by an integer factor
L. This process means that interpolation is required by placing additional samples
between the original sampled function f(n). This process is accomplished by a low-
pass filter scaled to a cutoff frequency w, = /L.
The MATLAB function interp returns the sequence fL that consists of increasing
the sequence f(n) defined by a vector f by an integer factor L.

The function interp can take any of the following forms:

a. fL = interp(f, L)
b. fL = interp(f, LN, a)
c. [fL, h] = interp(f, LN, a) (with default values of L = 4 and a = 0.5)

The resampled vector fL has a length given by length(fL) = L * length(f).
The sample signal fis assumed to be band-limited scaled to 0 = w = a, witha = 0.5,
where h represents the interpolation filter coefficient. Ideally L = 10.

The term decimate is referred to the reduction or down-sampling the discrete sig-
nal fby an integer factor M, returning the sequence fM.
The MATLAB function decimate can take any of the following forms:

fM = decimate(f, M)
fM = decimate(f, M - n)
fM = decimate(f, M - 'fir’)
fM = decimate(f, M, N, fir’)
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R.1.134

R1.135

R.1.136

R.1.137

R.1.138

where
fis the input sampled vector (f(n)).

M the down-sampling integer rate factor, or the resampling rate is 1/M times the
original rate. The resulting length is given by length(fM) = [length (f)]/M.

N the order of the (Chebyshev type-1) filter used to accomplish the resampling.

fir a 30-point low-pass filter forward direction only with cutoff frequency w, = /M,
before resampling is done.

The decimation process of the first two options uses an IIF Chebyshev low-pass
type-1 filter with forward and backward directions (see Chapter 6 for information
regarding filters).

The MATLAB function resample returns the sequence f LM, consisting of f resa-
mpled with a rate that is the ratio of two integers given by L/M.
The syntax of the function resample with some options is indicated as follows:

fLM = resample(f, L, M)
fLM = resample(f, L, M, R)
fLM = resample(f, L, M, h)
[fLM, h] = resample(f, L, M)

where R is the input rate with a default value of 10. This function uses an FIR, and
a Kaiser window with § = 5 (windows are presented later in this section).

The process referred to as multiplexing consists of merging two (or more) discrete
sequences f;(1) and f,(n) into a single sequence by alternating the samples of f,(n)
with f,(n). Then the resulting multiplexed, or in short mux sequence is given by

mux(fy, f,) = lf(1) (1 fi2) £,2) fi3) f,03) ... fin = 1) f,(n = 1) f;0) fr(mn)]

The lengths of the sequences of f; and f, are assumed to be n (equal). Then the
length of mux (f,, f,) sequence is 2n. If the sequences are f;(n) and f,(m), where n > m,
then by increasing the length of f, to n, by making the last n — m samples zeros,
the two sequences (lengths) became equal and the mux command can then be safely
used.

Signals may also be classified according to the probability of predicting its behav-
ior with certainty or with some sort of ambiguity into

a. Deterministic or nonrandom
b. Probabilistic, stochastic, or random

Deterministic signals can be expressed in terms of a well-defined process, table,
rules, or by a mathematical relation (equation). These type of signals are fully
predictable.

Random signals are not predictable; they are noise-like functions where particular
values or samples are not important, but rather the statistical information over
a large range of samples is, such as the expected value, the mean, and standard
deviation. Most signals encountered in practical applications and in this text are
real and deterministic. Observe that random signals cannot be reproduced, but
may carry valuable information. The more unpredictable or random a signal is the
more information it carries.
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R.1.139

R.1.140

R.1.141

R.1.142

R.1.143
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The process of limiting or truncating a function or sequence consisting of an infi-
nite or a very large number of samples such as

fny =3 Eé(n—1)

|=—o0

is by approximating f(n) by another f,(n), consisting of a finite number of samples
(2N + 1) given by

+N
fumy="3, Bé(n—1)
I=—N

Mathematically, the truncation process is accomplished by multiplying the
function f(n) by another function w(n) called rectangular window, where w(n) is
defined by

Observe that the lengths of w(n) and f,(n) are 2N + 1. The rectangular window is
the simplest model used to truncate a function and all the weighing coefficients used
for that purpose are one. Note that w(n) is equivalent to the pulse function pul(n/N).

The practical way to deal with a function f(n), which has an infinite range, is by
truncating f(n). Therefore,

Jam) = f () = w(n)

An additional objective of w(n) is to improve the smoothness of f,(1) by removing
oscillations associated with a sharp truncation process.

Practical considerations of the truncation process and the use of different window
models are better understood in the frequency domain with applications in filter
design (see Chapters 4 and 6).

Many window models have been proposed by mathematicians and engineers over
the last century. All the window models share similar properties such as

a. The sample located at n = 0 is multiplied (scaled) by 1 (unaffected).

b. The shape of f(n) is relatively unaffected for n < |N]|.

c. The shape of f(n) is increasingly affected for the values of n in the vicinity of
INI.

d. The window coefficients range from 1 to 0, where 1 corresponds to the value at
n = 0 and the smaller coefficients are for the larger values of 1 as n approaches N.

e. All window models are of finite length and the point of symmetry is located at
the midpoint [length (w(n))]/2.

When an arbitrary function presents a discontinuity and is approximated by a

large, but finite number of terms, a ripple is generated at the discontinuity with

a magnitude of about 10% of the jump value. This behavior is referred to as the

Gibb’s phenomenon (see Chapter 4 for more details). The objective of the various
window models is to reduce the Gibb’s effect that translates into oscillations.
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R.1.144 MATLAB offers the user a number of built-in window functions in the signal pro-

R.1.145

R.1.146

R.1.147

R.1.148

R.1.149

cessing toolbox. Some of the window models most often used are known by the
following names:

a. Rectangular
Triangular
Hanning

. Hamming
Kaiser
Chebyshev
. Bartlett

=0 ™ 0 o n o

Blackman

The MATLAB function Hamming(N) returns a vector with N-weighted points
referred to as the Hamming window.

Similarly, the MATLAB commands
Hanning(N)
Blackman(N)

return N-length vectors representing the Hanning or Blackman weighted-type
windows.

The three window models: Hamming, Hanning, and Blackman are based on
cosine functions. The mathematical equations used to generate the above window
sequences are defined as follows:

a. For the Hamming window,
wmn) = 0.54 + 0.46 cos(n * n/M)
b. For the Hanning (Van Hann) window,
wn) = 0.54 + 0.46 cos((m * n)/(M + 1))
c. For the Blackman window,
wn) = 0.5 + 0.46 cos((r * n)/M) + 0.08 cos((4 * = * n)/2n + 1))

where M = 1/2(L — 1) is an integer representing the midpoint and L is the
window’s length.

The MATLAB command Kaiser (N, B) returns the N points of the Kaiser window,
where f$ is a constant, with the following range 1 = § = 10, where f3 represents a
tradeoff between the side lobe height and its width. The Kaiser window is based
on the modified Bessel function I (x) given as follows:

_ LpJ1—(n— MM
Io(B)

where M = 1/2(L — 1) is the midpoint and the weight f5 is over the range 0 = 8 = 10.
This window is frequently used in the design of filters, where 8 controls the
stop- and pass-band ripples.

w(n) forn=0,1,2,...(L-1)

The MATLAB function triang(N) returns the N-point triangular window based on
the following equation:
i

wn)=1-
() M+1
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R.1.150

R.1.151

R.1.152

R.1.153

R.1.154

R.1.155

R.1.156

Practical MATLAB® Applications for Engineers

The MATLAB function boxcar(N) returns the N points of a rectangular window
defined by

1 nl<M
w(n) =
0 |n|>M

The MATLAB function Bartlett(N) returns the N points of the Bartlett window
based on the equation
M-n
M

w(n) =

There are other popular window models such as Parabolic, Cauchy, and Gaussian
defined below. The Parabolic or Parzen window is based on the equation given by

n—M]2
M

w(n)=1—[

The Cauchy window is defined by the equation given by

MZ

COD = N o — MY

where «a is an optional control character.
The Gaussian window is defined by the following equation:

2
w(n) = exp[—ia{n X/IM} }

where «a is an optional control character.

All the proposed window models share the characteristic that the peak occurs in
the middle (midpoint) of the window sequence, whereas at its edges (end points)
the behavior tends to be smooth.

The behavior of some of the window models may present side lobes or undesir-
able shapes over some regions. In any case, an attempt is made to present only the
most important and the widely accepted window models without exploring their
behaviors.

For example, create the script file windows that returns the plots of the following
windows:

a. Hamming

b. Hanning

c. Blackman

shown in Figure 1.39, using N = 31.

MATLAB Solution

>> n = -15:1:15;

>> WHAM Hamming(31);
>> WHAN Hanning(31);
>> WBLAC = Blackman(31);
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>>
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FIGURE 1.39

subplot(3, 1, 1);

plot(n, WHAM);
title(*Hamming(31l) window’);
ylabel (‘Amplitude’);xlabel(‘n’)
subplot(3, 1, 2);

plot(n, WHAN);
title(*Hanning(31) window’);
ylabel(‘Amplitude’);xlabel(*n’)
subplot(3, 1, 3);

plot(n, WBLAC);
title(‘Blackman(31) window’);
xlabel('n’);
ylabel(*Amplitude’)

Plots of the Hamming, Hanning, and Blackman windows of R.1.156.
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R.1.157 Observe that the Hamming, Hanning, and Blackman window models shown in
Figure 1.39 present similar shapes. They are plotted on the same graph for com-

parison purposes in Figure 1.40, given by script file compare_win.

MATLAB Solution

o° o oP

o\°

%*
cl
n

Script file:compare _ win

This file returns the plots of the
HAMMING, HANNING and BLACKMAN windows
using 31 points.
*hkkkkkkkkkkhkkhkkkkkkkkkhkkkhkhkkkkkk*

c;clf;

= -15:1:15;
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wham = hamming(31);

whan = hanning(31);

wblac = blackman(31);
plot(n,wham,’*’,n,whan,’d’,n,wblac,’o’);

hold

plot(n,wham,n,whan,n,wblac);
title(‘HAMMING,HANNING and BLACKMAN windows ‘);
xlabel(‘points n’);

ylabel (*Amplitude’)

legend(*HAMM’,'HANN','BLAC’);

HAMMING, HANNING, and BLACKMAN windows
1 . . it

Amplitude

0 T, Ck
-15 -10 -5 0 5 10 15

points n

FIGURE 1.40
Plots of Hamm, Hann, and Blackman windows of R.1.157.

R.1.158 The Kaiser window is a controllable window (controlled by f3), and is presented as
follows, by the script file Kaisers for the following values of f: 3, 7, and 10, using an
N = 31-point approximation.

MATLAB Solution

Script file: Kaisers

This file returns the plots
KAISER window for betas: 3,7,10.
using a 31 point approximation
kkkkkkkhkkhkkhkkhkkkkkkhkkkhkhkhkhkkkkkkkkkk*
clc;clf;

n = -15:1:15;

wk3 = kaiser(31,3);wk7=kaiser(31,7);

% o° o° o

o\°
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wkl0 = kaiser(31,10);
plot(n,wk3,’*’,n,wk7,’d’,n,wkl0,’o’);

hold

plot(n,wk3,n,wk7’,n,wk10);

title(‘KAISER windows for \beta=3,7, and 10 ‘);
xlabel(‘points n’);

ylabel (*‘Amplitude’)
legend(‘\beta:3’,"\beta:7’,’\beta:10’);

KAISER windows for $=3, 7, and 10

1 T T P e T T

Amplitude

15 10 5 0 5 10 15

FIGURE 1.41
Plots of the Kaiser windows of R.1.158.

The script file Kaisers is executed and the resulting plots are shown in Figure 1.41.
Observe from Figure 1.41 that the larger the 5 the sharper the shape.

R.1.159 The script file win_tri_rect_bar returns the plots of the triangular, rectangular, and
Bartlett window plots using an N = 31 approximation. The resulting plots are
shown in Figure 1.42.

MATLAB Solution

Script file: win _tri rect bar
This file returns the plots of the
TRIANGULAR, RECTANGULAR and
BARTLETT windows

using a 31 point approximation
khkkkhkkhkhkhkhkhkkhkkhkhkhkhkkhkhkhhhhkhdkdhhhhkhkdhhhkhkkdkdhhxk
clc; clf;

n = -15:1:15;

o® o° o o° o

o\?°
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wtri = triang(31);

wrect = boxcar(3l);

wbart = bartlett(31l);

plot (n,wtri,’*’,n,wrect,’d’,n,wbart,’o’);
hold

plot (n,wtri,n,wrect,n,wbart);

title (‘TRIANGULAR,RECTANGULAR and BARTLETT windows ‘');
xlabel (‘points n’);

ylabel (*Amplitude’)

legend (‘TRIAN’,’RECT’,’BART’);
axis([-18 18 0 1.3]);

TRIANGULAR, RECTANGULAR, and BARTLETT windows
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0 .
-15 -10 -5 0 5 10 15
FIGURE 1.42

Plots of the triangular, rectangular, and Bartlett window of R.1.159.

R.1.160 For completeness, a random or noise-like signal is presented below.
The MATLAB statement sqrt(P)*randn(1, n) returns a white Gaussian noise
sequence with power P.

R.1.161 For example, create the script file signal_noise that returns the plots of the follow-
ing signals:
a. Gaussian white noise
b. The signal—signal = cos(2mn/64)

c. The contaminated signal plus noise using n = 128 elements. Let the white
Gaussian signal power be P = 2.7 watts
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MATLAB Solution
% Script file: signal noise

n = 1:128; P =2.7;

figure(1)

subplot(2,1,1)

white noise = sqgrt(P)*randn(1,128);

stem(n,white noise); hold on;plot(n,white noise);
xlabel(‘discrete time n’);

ylabel (‘Amplitude’); title(‘Gaussian noise’);
subplot(2,1,2)

signal = cos(2*pi*n/64);

stem(n,signal);hold on;plot(n,signal);
title(‘cosine wave with period=64')
xlabel(‘discrete time n’);

ylabel (*‘Amplitude’);

figure(2)

signal noise = white noise+signal;

stem(n,signal noise);hold on;plot(n,signal noise);
title(‘cosine wave plus white Gaussian noise’)
xlabel(‘discrete time n’);

ylabel (‘Amplitude’);

The script file signal_noise is executed as follows and the results are shown in
Figures 1.43 and 1.44.

Gaussian noise
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discrete time n

cosine wave with period = 64

Amplitude
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discrete time n

FIGURE 1.43
Plots of parts a and b of R.1.161.
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cosine wave plus white Gaussian noise

Amplitude

0 20 40 60 80 100 120 140
discrete time n

FIGURE 1.44
Plot of part c of R.1.161.

R.1.162

R.1.163

R.1.164

R.1.165

R.1.166

Sound waves can be represented by 1-D vectors while 2-D matrices can be used
to represent images (black and white), whereas higher dimension matrices can be
used to represent color images and video.

The MATLAB command wavrecord(N, Fs) takes the N audio elements sampled at
a frequency of Fs, directly from an audio input device such as a microphone. The
default value for Fs is 11,025 Hz. This function can only be used with Windows 95,
98, or NT machines.

The MATLAB command wavplay(y, Fs) sends the audio signal defined by the vector
y, sampled at a frequency of Fs Hertz to an output audio device. Standard audio rates
are 8000, 11,025, 22,050, and 44,100 Hz. The MATLAB default rate is 11,025 Hz.

MATLAB provides with a sound file called sound(y, Fs), and soundsc(y, Fs), that
sends the audio signal defined by y to an output audio device. y is assumed to have
a magnitude range —1.0 = y = 1.0, and any values outside that range is clipped.
The difference between sound and soundsc is that the latter is autoscale, and y is
played as loud as possible. The MATLAB default sound rate is §192 Hz.

MATLAB also provides with a speech file named mtlb.mat that can be used for
testing purposes, consists of 4001 elements, sampled at 1418 Hz.

The following example shows the script file audio that returns

a. The plot of the sinusoidal audio signal is given by y = cos(2nf,t) + 3 cos(0.57f,t);
where f, = 1000 Hz, and a sample frequency of Fs = 8000 Hz (implying that
8000 audio samples per second are processed).

b. The speech file mtlb (Figure 1.45).
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MATLAB Solution

% Script file: audio
subplot(2,1,1)

fo = 1000;

Fs = 8000;Ts =1/Fs;

t = 0:Ts:1;

y = cos(2*pi*fo.*t)+3*cos(0.5*pi*fo.*t); % audio sequence

plot(t(1:100),y(1:100));

ylabel (‘Amplitude’);

xlabel(‘time (sec)’);

title(‘cos(2\pi fo t)+3 cos(0.5\pi fo t) wvs.t )

subplot(2,1,2)

load mtlb; Fs=1418; T=1/Fs;

X = 1:4001;xx=x.*T; % speech file
plot(xx,mtlb);

axis([0 4000*T -4 4]);

ylabel (*Amplitude ‘);

title(‘[Speech file mtlb] vs. t’);

xlabel(‘time (sec)’)

cos (2n fo t) + 3 cos (0.5m fo t) versus t
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FIGURE 1.45
Plots of audio and speech files of R.1.166.

R.1167 The MATLAB command [y, Fs, nbits] = wavread(‘microsoft_file’) returns the vector y
consisting of the audio wave samples from a Microsoft file, at a sampling frequency
Fs, using n bits to encode each sample of y, whereas the amplitude of y is scaled
over the range —1 = y = +1. Similarly, the command wavwrite returns a Microsoft
wave file.

R.1168 The MATLAB command image(matrix_A) returns matrix_A as an image, where
each element of the matrix_A is defined by a color. The matrix dimensions may
be 2-D (m X n) or 3-D (m X n X r). In its simplest version, the elements of the 2-D
(n X m) matrix are used as indices in the current colormap to define its color.
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Image of the magic (10) matrix
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FIGURE 1.46
(See color insert following page 374.) Color plot of the magic matrix of R.1.169.

R.1.169 For example, the color image of the magic(10) matrix is processed and displayed as
follows, Figure 1.46:

MATLAB Solution
>> image(magic(10))
>> title(‘Image of the magic(10) matrix’)

R1170 Images can be transformed and processed by the filtering functions presented in
Chapter 6. In general, the filtering process involves sophisticated mathematical
manipulations, that rely on the theory of complex variables and transform theory.

Precisely for these reasons MATLAB provides its users with simple filtering
commands, avoiding all the complicated mathematics used on image processing
defined for 2-D matrices such as gradianr(matrix_A) and dell(matrix_A).

The command gradianr(matrix_A) returns the numerical gradient, whereas the
command dell(matrix_A) returns its derivative (the discrete Laplacian).

R.1171 Let us illustrate some of the image processing techniques by performing the first
and second derivative using as an illustrative example, the matrix y = magic(10).
The results are shown in Figures 1.47 and 1.48.

MATLAB Solution

y = magic(10);

>> ygrad = gradient(y);

>> figure(l);

>> image(ygrad)

>> title(‘gradient of magic(10)’)

>> ydel2 = del2(y);

>> figure(2);

>> image(ydel2)

>> title(‘second derivative (del2) of magic(10)’)

R.1.172 Animation and motion of video signals can be accomplished using MATLAB by
displaying pictures or figures one after the other, referred to as frames.

R.1173 The MATLAB command getframe captures the content of the current figure win-
dow and creates with it a movie frame. The getframe command is placed usually
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gradient of magic (10)

O © 0o N O 0o »~ 0N =

ey

1 2 3 4 5 6 7 8 9 10

FIGURE 1.47
(See color insert following page 374.) First color derivative plot of the magic matrix of R.1.169.

second derivative (del2) of magic(10)

o © 0o N o o A 0w N =

_

1 2 3 4 5 6 7 8 9 10

FIGURE 1.48
(See color insert following page 374.) Second color derivative plot of the magic matrix of R.1.169.

R.1.174

R.1.175

in a (for-end) loop, to assemble an array of movie frames, spaced over time by its
looping index.

For example, the following MATLAB sequence can be used to assemble a movie,
based on the contents of the current figure window over 7.

MATLAB Solution
for frame=l:n
M(frame) = getframe; % captures the current figure as a frame
of M
end

The MATLAB command movie(M) displays the recorded M array containing
all the frames of M, one frame after the other in sequential ascending order:
frame(1), frame(2), frame(3), ..., frame(n — 1), frame(n).
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1.4 Examples
Example 1.1
Create the script file disc_func that returns the plot of the following discrete function
(Figure 1.49):
f(n) = =56(n + 4) + é(n) + 26(n — 3)

MATLAB Solution

)

% Script file : disc _ func

n = -10:10; % vector n from -10 to +10
fn = [zeros(1,6) -5 zeros(1,3) 1 zeros(l,2) 2 zeros(l,7)];

yzero = zeros(l,21);

% plot the function f(n)

stem(n,fn) % plot the function f(n)

hold on;plot(n,yzero);

xlabel(‘time index, n’)

ylabel (*‘Amplitude’)

axis([-10 10 -7 4I1)

title(*f(n) = -5\delta(n+4) + \delta(n) +2\delta(n-3)’)

f(n) =-58(n+4) + d(n) + 26(n—3)
4 T T T T T T T T T

0Op—6—06—0b6—0b6—-6 r\r\r\Tr\r\ oO—0O—060—06O—0—06
o =4 o

o

2L 4

Amplitude

3t 4

4 4

5} 10) i

time index, n
FIGURE 1.49
Plot of Example 1.1.
Example 1.2
Create the script file analog_func that returns the plot of the analog signal given by
f®) =u®) +ult —1) + ut —2) — 3ut — 3)
over the range —1 = t = 5 (Figure 1.50).
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MATLAB Solution
% Script file: analog _func
t = -1:0.01:5;

t0 = 0;

ut = stepfun(t,t0); % u(t)

to =1;

utl =stepfun(t,t0); % u(t-1)

t0 = 2;

ut2 = stepfun(t,t0); % u(t-2)
t0 = 3;

ut3d = -3 * stepfun(t,t0); % -3u(t-3)
fn = ut+utl+ut2+ut3;

plot(t,fn);

axis([-1 5 -1 4])

title(“f(t) = u(t) + u(t-1) + u(t-2) - 3u(t-3) )

xlabel(*‘time t’)
ylabel(*Amplitude [£(t)]")

The script file analog-func is executed and the result is shown in Figure 1.50.

f(t) = u(t) + u(t-1) + u(t-2) - 3u(t-3)

Amplitude [f(t)]
&n

time (1)

FIGURE 1.50
Plot of Example 1.2.

Example 1.3

Create the script file sequences that uses MATLAB to verify graphically that the discrete
sequences f;(n) and f,(n), defined as follows, over the range —10 = n = 10 are equal:

f1(n) = 3u(—n) *u(n + 5)
and

fon) = 3[uln + 5) —u(n + 1)]

MATLAB Solution

% Script file: sequences

clc; clf;

yzero = [zeros(l,21)]; n=-10:10;
n0 = O;un = stepfun(n, no);

59



Practical MATLAB® Applications for Engineers

urev = fliplr(un);nl = -5;

un 5 = stepfun(n, nl); £fnl=3*(urev .* un _5);
subplot(2,1,1)

stem(n,fnl);hold on; plot(n,yzero)

title(‘fl(n) wvs. n’);

ylabel (*Amplitude [f1(n)]’); xlabel(‘Discrete time n’)
unl=stepfun(n,1l); fn2=3*(un 5 -unl);

axis([-10 10 -1 4])

subplot(2,1,2)

stem(n, fn2);hold on; plot(n,yzero);

title(*f2(n) vs. n’);

ylabel (*‘Amplitude [f1(n)]’); xlabel(* Discrete time n ‘);
axis([-10 10 -1 4])

The script file sequences is executed and the results are shown in Figure 1.51.

f1(n) versus n
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Discrete time n
-1 1 1 1 1 1 Il 1 1 1
-10 -8 -6 -4 -2 0 2 4 6 8 10
f2(n) versus n

4 T T T T T T T T T
— 3 7
<
£ 2r .
(0]
E
£ 1F 7
Q.
IS
< o0p—e o—o

Discrete time n
_1 1 1 1 1 1 1 1 1 1
-10 -8 -6 -4 -2 0 2 4 6 8 10
FIGURE 1.51
Plots of Example 1.3.

Example 1.4
Create the script file graphs that returns the plots of the following time functions:

fi(f) = 4.5¢714 cos(8.3t + 1.25)u(t)

and
fz(t) = fl(_t)

over the range -5 =t = 5.
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MATLAB Solution

% Script file: graphs

-5:.01:5; t0 = O;

stepfun(t,t0);

f1 = 4.5*exp(-1.4.*%t).*cos(8.3.*t+1.25).*y;
subplot(2,1,1);

plot(t,fl);axis([-5 5 -4 5]);

title(*[f1(t)= 4.5 exp(-1.4.*t).*cos(8.3 *t + 1.25).*u(t)] wvs. t’);
ylabel(*Amplitude [£f1(t)]’); xlabel(‘t (time)’);
f2 = fliplr(f1);

subplot(2,1,2);

plot(t,f2);axis([-5 5 -4 5]);

title(‘[f2(t)= £f1(-t)] wvs. t’);
ylabel(*Amplitude [£2(t)]’); xlabel(‘t (time)’);

c ot
I on

The script file graphs is executed and the results are shown in Figure 1.52.

[f1(t) = 4.5 exp(-1.4."t). *cos(8.3*t + 1.25). *u(t)] versus t

T T T T T Ll T T L

Amplitude [f1(t)]

[f2(t) = f1(-t)] versus t

T T T T T Ll T T L

Amplitude [f2(t)]

2t

-4
5 4 3 2 -1 0 1 2 3 4 5

FIGURE 1.52
Plots of Example 1.4.

Example 1.5

Create the script file disc_square_triang that returns the plots of the following periodic
discrete signals, with period T = 2, over the range 0 = n =< 4, using the square and saw-
tooth functions

3 0<n
-3 1<n<2

fl(”):{

fr(n) =

on—3 0<n<l1
—-6n+9 1<n<2
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% Script file: disc square triang

n = 0:0.1:4; N = 2;
f1 = 3* square((2*pi*n/N),50);
f2 =

3* gawtooth((2*pi*n/N),0.5);

subplot(2,1,1);
stem(n,fl);
title(®

fl(n) vs. n, using the square function’)

xlabel(‘time index n’);ylabel(*‘Amplitude’)

subplot(2,1,2)
stem(n,f2);title(*£2(n)

vs.

n,

using the sawtooth function’)

xlabel(*time index n’);ylabel(‘Amplitude’);

The script file disc_square_triang is executed and the results are shown in Figure 1.53.

f1(n) versus n, using the square function

4 T T T T T T T
D (O]
9 2 - i
2 time index n
5 0
IS
<
2 L i
_4 1 1 | 1 L L 1
0 0.5 1 1.5 2 25 3 3.5 4
f2(n) versus n, using the sawtooth function
4 T T T T T T T
2r ]
: il T
:, é,\?? ??né éoqff o .
time i
g iig gii LLJ) ime index n &ii
2t i
q q
_4 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4
FIGURE 1.53
Plots of Example 1.5.
Example 1.6

Let f(n) = 3eC034(i/ 4 over the range 0 = n < 15. Create the script file disc_plots that

returns the following plots:

a. Real [f(n)] versus n

b. Imaginary [f(n)] versus n

¢. Magnitude of [f(n)] versus n
d. Phase of [f(n)] versus n

MATLAB Solution
% Script file: disc _plots

n = 0:1:15;
a = -0.3+j*pi/4;yzero=zeros(l,length(n));
fn = 3*exp(a*n);
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subplot(2,2,1);

stem (n, real(fn)); hold on; plot(n,yzero);
title (‘real part of [f(n)] vs. n')
ylabel(‘real part of [f(n)]’);

axis([0 15 -2 3])

subplot(2,2,2);

stem(n, imag(fn));

hold on;plot(n,yzero);
ylabel(‘imaginary part of [£(n)]’)
title(‘imaginary part of [f(n)] vs. n’)
ylabel(‘imaginary part of [£(n)]’);
axis([0 15 -2 2])

subplot(2,2,3);

stem(n, abs(fn));

title(‘magnitude of [f(n)] vs. n’)

xlabel(‘time index n’)
ylabel(‘magnitude of
subplot(2,2,4);

stem(n, (180/pi) * angle(fn));
hold on; plot(n,yzero);
title(‘phase of [f(n)] vs n’)
xlabel(‘time index n’)
ylabel(‘degrees’)

[E(n)]")

The script file disc_plots is executed and the results are shown in Figure 1.54.

real part of [f(n)] versus n
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FIGURE 1.54

Plots of Example 1.6.

imaginary part of [f(n)]
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Example 1.7

Create the script file analog_plots that returns the plot of each of the real value exponen-
tial signals shown as follows over the range -6 =t = 6.

a. fi(t) = e”'u(t)

b. f,(t) = e

¢ f3(t) = fi-1)

d. fy() = —e"u(t)

e. f5(t) = fot) - [(u(t —2) — u(t - 3))]
£ fot) = folt) + f(-1)

g ft) =fs(t-1)

h. fo() = fu0) + [(u(t =2) —u(t - 3)]

MATLAB Solution

% Script file: analog plots
t = -6:0.01:6;

t0 = 0;

u0 = stepfun(t, t0);

f1 = exp(-t).*uo;

f2 = exp(-t);

f3 = fliplr(fl);

tt = fliplr(t);

f4 = -1.*xf1;

figure(1)

subplot(2,2,1);

plot(t, £1);

title(*f1(t) vs t,(Example 1.7)');
ylabel(*f1(t)’)

axis([-6 6 -.5 1.2]);grid on
subplot(2,2,2);

plot(t, £2);
title(“f2(t) vs t,(Example 1.7)');
ylabel(*f2(t)’)

axis([-6 6 -10 200]);grid on
subplot(2,2,3);
plot(t, £3);

title(*£3(t) vs t,(Example 1.7));

ylabel(*£3(t)")

axis([-6 6 -.5 1.2]);

grid on;

xlabel(‘t’)

subplot(2,2,4);

plot(t, £f4);grid on;

title(‘f4(t) vs t,(Example 1.7)');
ylabel(‘f4(t)’)

axis([-6 6 -1.2 .5])

xlabel(*t’);
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f1(t)

figure(2);

ut35 = stepfun(t, 2) - stepfun(t, 3);
f5 = f2.*ut35;

t_ 1 = t+1;

f8 = f4 + ut35;

subplot(2,2,1);

plot(t, £5);

axis([1 4 -.1 .21);

title(*£5(t) vs t,(Example 1.7)");
ylabel(*f5(t)’); grid
subplot(2,2,2);

plot(t, £1+£3); axis([-6 6 -.5 1.5]);
title(*f6(t) vs t,(Example 1.7)');
ylabel(‘£5(t)’);grid

subplot(2,2,3);

plot(t 1, £5); axis([2 4 -.1 .25]);
title(*£7(t) vs t,(Example 1.7)');
ylabel(‘f5(t)’); xlabel(‘t’);;grid
subplot(2,2,4);

plot(t, £8); axis([-6 6 -1.2 1]);
title(‘f8(t) vs t,(Example 1.7)');
ylabel(‘f5(t)’);xlabel(‘t’); grid

The resulting plots are shown in Figures 1.55 and 1.56.

f1(t) versus t, (Example 1.7)

f2(t) versus t, (Example 1.7)

65

200

150

100

f2(t)

50

f3(t) versus t, (Example 1.7)

f4(t)

FIGURE 1.55
Plots of f,(t), f,(1), f5(t), and f,(t) of Example 1.7.
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f5(t) versus t, (Example 1.7)
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f6(t) versus t, (Example 1.7)

5(t)

8(t) versus t, (Example 1.7)
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FIGURE 1.56
Plots of f5(t), f4(t), f(t), and f,(t) of Example 1.7.
Example 1.8

Let f(n) be given by

0 n<0and n>2

fm)y=41 0<n=1

n l<n=s2

Create the script file f_n that returns the following:

a. Plot of [f(n)] versus n

b. Plot of [f(n)]? versus n

c. Plot of [-f(n)] versus n

d. Plot of [f(n — 2)] versus n
e. The energy of [f(n)]

f. The power of [f(n)]

MATLAB Solution

)

% Script file: £ n

zeros(1,81)];

fn = [zeros(1,100) ones(1,10) [1.1:0.1:2]
n = -10:0.1:10;

subplot(2,2,1);

plot(n, £n);

title(*f(n) vs n');ylabel(*Amplitude’);

axis([-1 5 -.2 2.3]);
subplot(2,2,2);
fnsquare = fn.”"2;
plot(n,
title(*[f(n)1"2 vs. n’);

fnsquare);ylabel (*Amplitude’);
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axis([-1 5 -.2 4.3]);

subplot(2,2,3);

f3=-1.*%fn; % creates -f(n)
plot(n,£3);title(*-f(n) vs. n’);

axis([-1 5 -2.3 .2]);

ylabel (*‘Amplitude’);xlabel(‘time index n’);
subplot(2,2,4)

shiftn = n+2;plot(shiftn, £fn)

title(*f(n-2) vs. n’);
ylabel(*‘Amplitude’);xlabel(‘time index n’);
axis([0 5 -.5 2.5]);

disp(‘*#x**xxkkxk* RESULTS ARE : ***xkskkkdkkhskdhkhrhkrrds/)

Energy fn = sum(fnsquare)

disp(® )

Power fn = Energyfn/length(n) % asuming, f (n) is periodic T=20

disp(*(in joules and watts)’)
disp(‘*************************************************q

The script file f_n is executed and the results are shown as follows and in Figure 1.57.

*kkkkkkkkkkkkkk*x RESULTS ARE:**kkdkkkkkkkhhhkhkkkkk
Energy f£n =

34.8500
Power fn =

0.1734

(in joules and watts)
hhkkkhkkkkkkkkkhkkkkkhkkkkkhkkkkkhkkkkkhkkkkkhkkkkkkkkkkk

f(n) versus n [f(n)]? versus n
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—f(n) versus n f(n—2) versus n
w w 25 : \ \

Amplitude
Amplitude

time index n time index n

FIGURE 1.57
Plots of f(n), f(n)?, —f(n), and f(n — 2) of Example 1.8.



68 Practical MATLAB® Applications for Engineers

Example 1.9

Given the following analog transfer function:

_ s34+ 3s2+55—3
9s% — 6s* + 253 —4s2 +s+5

H(s)

Create the script file responses that returns the plots of the impulse and step responses
over the range given by 30 = t = 40.

MATLAB Solution
% Script file: responses

P= [1 3 5 -3];

Q= [9 -6 2 -4 1 5]; t = 0:0.5:50;
subplot(2,1,1);

Y1l = impulse(P,Q,t);

plot(t, Y1);

axis([30 40 -1el0 500el0])

title(‘analog impulse response’);
xlabel(‘time’);ylabel (*Amplitude ‘)
subplot(2,1,2);

Y2 = step(P,Q,t);

plot(t, Y2);ylabel(*Amplitude ’);

axis([30 40 -16e9 1lel3]);

title(analog step response’); xlabel (‘time’)

The script file responses is executed and the results are shown in Figure 1.58.

x 1012 analog impulse response
5 T T T T T T T T T
4 _
S 3t ]
2
g 2} ]
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time
x 1012 analog step response
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8 _
[0}
2 °r 7
=
E 4+ _
<
2+ _
0 1 1 1 1 1 1 1 1
30 31 32 33 34 35 36 37 38 39 40
time
FIGURE 1.58

Plots of system responses of Example 1.9.
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Example 1.10

Create the script file period_seq that returns the plots of the following periodic sequences
defined as follows over one period:

a. f,(n) = ZZ:’: 1) 801 =R, for 0= k = 25,

b _ |sin(nm) forO0=n=1
hm= 0 forl<n=2
over0=n=6.

c. f5(n) = n, with period —4 = n = 4, over —5 = n = 30.

d. Random periodic function f,(n), with a period of 1, over -1 =n = 3.

MATLAB Solution

n = 1:25;

fln = [(-1)."n.*ones(1,25)];

yzero = zeros(l,25);

subplot(2,2,1);

stem(n,fln);hold on; plot(n,yzero);
ylabel (*‘Amplitude [f1(n)]’);xlabel(‘*n’);
axis([-1 25 -1.3 1.3])

title (‘fl(n) vs. n');

% part (b)

nn = 0:0.1*pi:0.9*pi;

Y = sin(nn);

f2n= [Y zeros(1,10) Y zeros(1l,10) Y zeros(1,10)]; m=0:.1:5.9;
subplot(2,2,2);stem(m, f2n);axis([-.1 6 -.1 1.3]);

ylabel (*Amplitude [f2(n)]’); xlabel(‘n’);

title(*f2(n) vs. n’);

% part c

£f3 = -4:1:4; f3n = [£3 £3 £f3 £3];

nnn = linspace(-4,28,36);

subplot(2,2,3); yzer =zeros(l,length(nnn));
stem(nnn, £3n);hold on; plot(nnn,yzer);
xlabel('n’);axis([-5 30 -5 5]);

ylabel (*Amplitude [£3(n)]’);

title(*f3(n) vs. n’)

% part d

f4 = 10*rand(1,10) ;f4n=[f4 £4 £4 f£f4];
n4 =linspace(-1,3,40);

subplot (2,2,4);yze=zeros(1l,length(n4));
stem(n4,f4n);hold on; plot(nd,yze);
axis ([-1 3 -1 11]);xlabel(‘n’);
ylabel(‘Amplitude [f4(n)]’);

title(*f4(n) vs. n’)

The script file period_seq is executed and the results are shown in Figure 1.59.
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f1(n) versus n f2(n) versus n

Amplitude [f1(n)]
o
Amplitude [f2(n)]

0 5 10 15 20 25
n n

f3(n) versus n f4(n) versus n

o Yo Fo

Amplitude [f3(n)]
Amplitude [f4(n)]

FIGURE 1.59
Plots of f;(n), f,(n), f3(n), and f,(n) of Example 1.10.

Example 1.11

Given the discrete transfer function

0.8 —0.45z71 +0.35z72 + 0.01z3

H =
(2= 0852 1= 0432 2 — 05827

Create the script file disc_tranf_func that returns the following:

a. The discrete impulse and step response plots by creating an impulse and step
sequence as inputs

b. Repeat part a by using the discrete MATLAB functions dimpulse and dstep, and
compare the result obtained with the results of part a

MATLAB Solution

Script file: disc  tranf func

= 30;

= [0.8 -0.45 0.35 0.01];Q = [1 0.85 -0.43 -0.58];

= [1 zeros(l, n-1)]; impulse sequence
[ones(1, n)] ; % step sequence

o°

o°

nHMDYB



Time Domain Representation of Continuous and Discrete Signals

figure(1)

subplot(2,2,1);

Yl = filter(P, Q, I); n=0:29; yzero=zeros(l,30);
stem(n, Y1);hold on; plot (n,yzero);
title(‘impulse response using a sequence’);
ylabel (‘Amplitude imp. resp.’);

subplot (2,2,2);

Y2 = filter(pP,Q,S);

stem (n, Y2);hold on; plot(n,yzero);
title(‘step response using a sequence’);
ylabel (*Amplitude step resp.’);
subplot(2,2,3);

Y3 = dimpulse(P, Q, n);

stem(n, Y3);hold on; plot(n,yzero);
title(‘impulse response using dimpulse’);
ylabel (‘Amplitude imp.resp.’);

xlabel (‘time index n’);

subplot (2,2,4);

Y4 = dstep(P, Q, n);

stem(n, Y4); hold on; plot(n,yzero);
title(‘step response using dstep’);
ylabel (*Amplitude step resp.’);
xlabel(‘time index n’)

The script file disc_tranf_func is executed and the results are shown in Figure 1.60.
Note that the results of part a fully agree with the results obtained in part b.

impulse response using a sequence

step response using a sequence
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FIGURE 1.60
Plots of system responses of Example 1.11.
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Example 1.12
The set of signals given by
ft) = et forn =0, *1, £2, ..., =

constitutes an orthogonal family for any arbitrary w, (wWhere w, is referred to as the
fundamental frequency, see Chapter 4 for more details), over the time interval given by
T = 2m/w,, if the following relation is satisfied:

n/j.% inwot jmuwot)dt = g/ forn =
5 exp(jnwet) - exp(—jmwot)dt =y forn # m

Create the MATLAB script file ortog that verifies the preceding relation for the following
arbitrary values of w,, n, and m:

w,=2,n=5andm=>5
w,=2,n=5andm=26
w,=7n=3§ and m =10
w,=7n=10,and m = 10

& n T

MATLAB Solution
% Script file: ortog

syms check a check b check ¢ check d expon t ;

expon = exp(j*5*2*t)*exp(-j*5*2*t);$wo=2,n=5,m=5

check a = int(expon,-pi/2,pi/2);

% £ = vpa(check a)

expon = exp(j*5*2*t)*exp(-j*6*2*t);$wo=2,n=5,m=6

check b = int(expon,-pi/2,pi/2);

expon = exp(j*8*7*t)*exp(-j*10*7*t);%wo=7,n=8,m=10

check ¢ = int(expon,-pi/7,pi/7);

expon = exp(j*10*7*t)*exp(-j*10*7*t);%$wo=7,n=10,m=10

check _d = int(expon,-pi/7,pi/7);
disp(‘****************RESULTS***********************************’)
disp(‘The results for parts (a),(b),(c) and (d) are given by :')
results = [check a check b check ¢ check d];

disp(results)
disp(‘***********************************************************’)

Back in the command window the script file orfog is executed and the results are
shown as follows:

>> ortog

hhkkhkkkhhkhkkkhkkkkkkkkkkkkk RESULTS **kkkkkkhkkhkkhhkhhkhhkhhkhk

The results for parts (a), (b), (¢) and (d) are given by:
[ pi, 0, O, 2/7*pi 1]

khkkhkkkkkkkkhkhkhkhkkhkhkhkhkhkkkhkhkhkhkhkhkhkhkhkkkkkhkhkhkhkhkkhkhkhkkkkkkkhkkkkhkkkkkkkkkk

Observe that the results obtained clearly confirm that the exponential family of func-
tions, given by f(t) = e"*!, for n = 0, 1, +2, ..., = constitute an orthogonal family.
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Example 1.13
Repeat Example 1.12, by creating the script file ortho_sin that verifies that the sinusoids
constitute an orthogonal family by evaluating the following cases:

. sin(nwot), sin(mwot)
. sin(nwot), cos(mwot)
. cos(nwot), cos(mwot)

a
b
C
d. sin(nwot), sin(nwot)
e. sin(nwot), cos(nwot)
f.

cos(nwot), cos(nwot)
for an arbitrary n = 5, m = 7,and w, = 2 over the period T = 2m/w,.

MATLAB Solution

)

% Script file: ortho sin

syms check a check b check ¢ check d check e check f sins t

sins=sin(5*2*t)*sin(7*2*t);%wo=2,n=5,m=7

check _a=int(sins,-pi/2,pi/2);

sins=cos(5*2*t)*sin(7*2*t);

check b=int(sins,-pi/2,pi/2);

sins=cos(5*2*t)*cos(7*2*t);

check c=int(sins,-pi/2,pi/2);

sins=sin(2*5*t)*sin(2*5*t);%wo=2,n=5,m=5

check _d=int(sins,-pi/2,pi/2);

sins=sin(2*5*t)*cos(2*5*t);

check e=int(sins,-pi/2,pi/2);

sins=cos(2*5*t)*cos(2*5*t);

check f=int(sins,-pi/2,pi/2);
disp(‘*******************RESULTS*************************************’)
disp(*The results for parts (a),(b),(c),(d),(e) and (f) are given below :’)
results=[check _a check b check c¢ check d check e check f£];

disp(results)
disp(‘***************************************************************’)

Back in the command window, the script file ortho_sin is executed and the results are
indicated as follows:

>> ortho _ sin

khkkkhhhhhhhkhkhkkkkkkkkkhhhhhkkkx RESULTS ***kkkkkkkkkkhkhhhhhhhhhhhhkkkkkkk

The results for parts (a), (b), (c), (d), (e) and (f) are given below:
[ 0, 0, 0, 1/2*pi, 1/2*pi, 1/2*pil

khkkhkhkhkhkkhkkhkkkkkkhkkkkhkhkhhkhkkhkkkkhkhkhkhhkhkkhkkkhkhkhkkkhkkhkhkkkkkkkkkkkhkhkhhkkkkkkkkkkkk

Note that the preceding results clearly indicate that the sinusoids constitute an orthogo-
nal family. Not a surprising result, since the complex exponentials constitute an orthog-
onal family (Example 1.12), and are related to the sinusoidals, by the Euler’s identities.

Example 1.14
Let f(t) be defined as
0 for-10=t<-5
f(t)=410 for-5=t<0
—-t+10 for0=t=10
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Create the script file even_odd that returns, using 201 points over the range —10 = t = 10,
the following:

a. Plots of f(t) versus t, f,(t)* versus t, and f,(t) versus t

b. Verifies graphically that f(t) = f,(t) + £,(t)

c. The energies of f(t), f,(t), and f,(t)

d. Verifies that the energy {f(t)} = energylf,(t}} + energylf,(b)}

MATLAB Solution

)

% Script file: even odd

t = -10:0.1:10; % 20lpoints
yzero = zeros(l,201);

yl = [zeros(1,50) 1l0*ones(1,50)];

y2 = [10:-.1:0];

y = [yl y2l;

figure(1)

subplot(3,1,1)

plot(t,y);axis([-10 10 -5 13]);

title(* £(t) vs. t ')

ylabel(*Amplitude [£(t)]’);xlabel(‘time’);
flipft = fliplr(y);

feven =.5*%(y+flipft);

fodd =.5*(y-flipft);

subplot(3,1,2);

plot(t,feven); axis([-10 10 -5 13]);
ylabel(*Amplitude [feven(t)]’);xlabel(‘time’)
title(‘feven(t) wvs.t’)

subplot(3,1,3)

plot(t,fodd,t,yzero);

ylabel (*Amplitude [fodd(t)]’); xlabel(‘time’)
title(*fodd(t) wvs.t’)

figure(2)

check = feven+fodd;

ysquare = y.”2;

energyft = trapz(t,ysquare);
poweraveft = (1/200)*energyft;
fevensq = feven.2;
energyfeven = trapz(t,fevensq);
foddsqg = fodd.*2;

energyfodd = trapz(t,foddsq);

disp(‘*********************************************’)

disp(‘*¥x**xxkkxk*kx ENERGY ANALYSIS ****xkkkkkkxks*/)
disp(‘*********'k***********************************’)
disp(‘The energy of f(t) =')

disp(energyft)

disp(*The energy of feven(t) =')

disp(energyfeven)

disp(*The energy of fodd(t) =’)

* Recall that f,() stands for the odd portion of f(t), whereas f,(t) stands for the even portion of f(t).
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disp(energyfodd)

disp(* (in joules)’)
disp(‘*********************************************’)
disp(‘*********************************************q

plot(t,check);

title(‘[feven(t)

+ fodd(t)] vs. t )’);

axis([-10 10

-5 15]);xlabel(‘time’);

ylabel(*Amplitude

[feven(t)

+ fodd(t)l")

75

Back in the command window the script file even_odd is executed and the results are

shown as follows and in Figures 1.61 and 1.62.

>> even odd

R
kkkkkkkkkkkkk*x ENERGY ANALVYSIS **kkkkhkhkhdkhhhhkk

Kkhkkhkhkhkkkkhkkkkkhkhkhkhkhkkhkhkhkkkkhkhkhkhkkhkkhkhkkkkkkkhkkkkkkkkk

The energy of f(t) =

838.3500
The energy of feven(t) =
796.6750
The energy of fodd(t) =
41.6750

(in joules)
hhkkhkkkkkkhkhkhkhhhhhhkhkkkhkhkhhhhhhhkkkkkkhkhkhkhkhhhkkkkkkk

hhkkkkkkkhkhkhkhhhhhhkhkkhkhkhkhhhhhhhkkkkkkhkhkhhhhhkkkkkkk
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FIGURE 1.61
Plots of even and odd parts of f(t) of Example 1.14.
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[feven(t)+fodd(t)] versus t
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FIGURE 1.62
Plot of adding the even and odd parts of f(t) of Example 1.14.

Example 1.15

Let the discrete sequence
fn) = 4n0.8"u(n)

be contaminated by a random noisy signal with a magnitude less than 1.
Create the script file averages that returns the following plots:

a. f(n) versus n

b. noise signal[n(t)] versus n

c. [f(n) + n(t)] versus n

d. [f(n) + n(t)] moving average using two terms versus n
e. [f(n) + n(t)] moving average using three terms versus n
f. [f(n) + n(t)] moving average using four terms versus n
g.

Estimate the best moving average approximation for [f(1n) + n(t)] versus n, by exe-
cuting the script file at least three times and observing and recording the results

Where the L point moving average is defined by
1 L-1
{moving aver. L} = EZ fn—k)
k=0

for L = 2, 3, and 4, over the range 0 = n = 20.

MATLAB Solution

% Script file: averages
n = 0:1:20;

figure(1)

subplot(3,1,1)

signal = 4.*n.*(.8."n);stem(n,signal);hold on;
plot(n,signal,n,signal,’o’);

title(*Signal vs. n’)
ylabel(‘Amplitude’);xlabel(‘time index n’);
subplot(3,1,2)

noise = 2.*rand(1,21)-1.0;y = zeros(l,21);
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plot(n,y);title('Noise vs. n’);hold on;
stem(n,noise);hold on;plot(n,y,n,noise);

ylabel (*‘Amplitude’);xlabel(‘time index n’);

axis([0 20 -1.3 1.3]);

subplot(3,1,3);

signoi =signal+noise;

stem(n,signoi);title(*[Signal + Noise] wvs. n’);hold on;
plot(n,signoi);ylabel (*Amplitude[ signal+noisel]’);
xlabel(* time index n’)

figure(2)

subplot(3,1,1)

N = [.5 .5];

D = 1;

movave2 = filter(N,D,signoi);

plot(n,signal,n,signoi,’s--’,n,movave2,’o-.");
legend(‘signal’,’signal+noise’,’moving ave/2term’)
title(‘Various moving averages’);ylabel(‘magnitude’)
subplot(3,1,2)

N=[.33 .33 .33];

D=1;

movave3=filter(N,D,signoi);
plot(n,signal,n,signoi,’s--’,n,movave3,’o-.");ylabel (*magnitude’)
legend(‘signal’,’signal+noise’,’'moving ave/3term’)
subplot(3,1,3)

N = [.25 .25 .25 .25];
D = 1;
movaved4 = filter(N,D,signoi);

plot(n,signal,n,signoi,’s--’,n,movave4,’o-.");
legend(‘signal’,’signal+noise’,’'moving ave/dterm’)
ylabel(‘magnitude’);xlabel(* time index n’)

figure(3)
plot(n,signal,n,signoi,’ks--’,n,movave2,’'ko-.");
legend(‘signal’,’signal+noise’,’moving ave/2term’);
title(‘Best approximation using moving averages’);
ylabel(‘magnitude’);xlabel(* time index n’)

figure(4)

err2 = signal-movave2;
stem(n,err2);hold on;plot(n,y,n,err2);
title(‘error=[mov.ave/2terms ] vs t');
ylabel(‘error’);xlabel(* time index n’)
errorl= sum(abs(signal-signoi)/21);

error2 = sum(abs(signal-movave2)/21);
error3 = sum(abs(signal-movave3)/21);
errord = sum(abs(signal-movave4)/21);

disp(‘**********************'k***************************’)

disp ‘****************ANALYSIS OF ERROR****************’)
diSp ‘**************************************************’)

disp([errorl error2 error3 error4])

(

disp(* no ave 2 term ave 3 term ave 4 term ave ‘');

(

disp(‘**************************************************’)
(

dlsp ‘)\'*************************************************’)

Back in the command window the script file averages is executed three times, and the
results are shown as follows and in the plots of Figures 1.63 through 1.66.
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>> averages

khkkkkkkhkkkkkhkkkhkkhkkkhkkhkkkkhkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

hkkkkkkhkkkkkkkkk*k**ANALYSTIS OF ERROR***kkkkkkkkkhkhkkkkk

khkkkhkhkhkkhkhkhkhkkhkhkhhkhkhkhhkkhhkhkhkhkhkkkhkhkkhkhkhkhkhkhkkkhkkhkkkkkkkkkkkkk
no ave 2 term ave 3 term ave 4 term ave
0.5389 0.5276 0.7011 0.9793

khkkhkhkhkhkkkhkkkkkhkhkhkhkhkkkhkhkhkhkkkkhkhkhkhkhkkhkhkhkhkkkkkhkhkkkkkhkkkkkkkkkkk

hhkkkkkkkkhkhkhkhkhhkhkhkhkkkhkhkhkhkhkhkhkhkhhkkkkhkhkhkhkhkkhkhkkkkkkkhkhkkkkkkkkk

>> averages

khkkkkhkkhkkkkkhkkhkkkhkkkkkhkkhkkkhkkkkkhkhkkkkhkkkkkkkkkkkkkkkkkkk
Khkkkkkhkkkkkkkkkkxk**ANATLYSTIS OF ERROR***%kkkkkkkkhkkkkkkk
khkkhkkkkhkkhkhkkhkkhkkhkhkkhkhkhkhkkkhkhkkhkkkkhkkhkkkkkkkkkkkkkkkkkk
no ave 2 term ave 3 term ave 4 term ave
0.5272 0.4794 0.6574 0.9033

hhkkkkkkkhkhkhhhhhhkkkhkhkhkhkhhhhhhhkkhkhkhkhhhhhhkkkkkhkhkhhhhkkkkk

khkkkkkkkkhkhkhkkkkhkhkhhkkhkhkhkkkkhkkhkhhkkkkkhkhkhkhkkkhkkkkkkkkkkkkkkkkk

>> averages

khkhkkhkhkhkkhkhkhkhhkhkhkhhkkhhkhkkhkhhkkhkhhkkhkhkkhhkhkhkhhkkkkhkkkkkkkkkkkkk
kkkkkkkkkkkkkkkk*k** ANALYSTS OF ERROR***kkkkkkkkhkhkkkkkkk
khkkkkkkkkkkkkkkkkhkkkhkkhkkkkkkhkkkkkhkkkkkkkkkkkkkkkkkk

no ave 2 term ave 3 term ave 4 term ave

0.4144 0.3750 0.5572 0.8223
dekkddkkdhkkhhkkhhkk ok ko ko k ko hk ko ke ke k ko kkhkk

hhkkkkkkkhkhkhhhhhhkhkkhkhkhkhhhhhhhkhkkkhkhkhhhhhhkhkkkkkhkhkhhhhkkkkk

Observe that the results obtained by executing the script file averages three times are not
the same, but in each case the best results are achieved when the moving average uses

two terms.
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FIGURE 1.63
Plots of f(n), noise signal[n(t)], and [f(n) + n(t)] of Example 1.15.
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Various moving averages
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Plots of various moving averages of Example 1.15.
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error=[mov.ave/2terms] versus t
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FIGURE 1.66
Error plot of moving average using two terms of Example 1.15.

Example 1.16

Let f(t) = te~ 1000 y(t)
Create the script file sample_data that returns the following plots:

a. f(t) versus t, over therange 0 =t = 5ms
b. f(nT) versus nt, for T = 0.2 ms, over therange I = n = 26
¢. Reconstruct f(t) from f(nT) using
i. Summations of sinc functions (emulating a low-pass filter)
ii. Stair function
iii. Spine function
d. error(t) versus t, for the reconstruction process when a low-pass filter is used, where

N=26

error(t) = |f(t) — 2 fu(nT,)sinc[F,(t — nTg)], for Fg :Ti
n=1 S

MATLAB Solution

% Script file: sample data

t = 0:0.0005:0.005; % 26 time samples
fa = t.*exp(-1000.*t);

figure(1)

subplot(2,1,1)

plot(t,fa);title(£(t) vs t’)

ylabel (*Amplitude’);xlabel(‘time t (msec)’);
subplot(2,1,2)

Ts = 0.0002; n = 0:1:25; Fs=1/Ts;

nTs = n*Ts;

fd = nTs.*exp(-1000*nTs);

stem(nTs, fd);hold on;

plot(nTs,fd);

title(‘f(t) sample with Ts=.2msec.’);
ylabel(*‘Amplitude’); xlabel(‘time index n (msec)’)
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figure(2) % reconstructions
f25 = 0;
for k = 1:1:26;

fr25 = fd(k)*sinc(Fs*(t-k*Ts));

f25 = f£25+fr25;
end
subplot(3,1,1)

plot(t,£25,’'ko-’,t,fa,’ks-.");

title(*‘Reconstruction of £f(t)

ylabel (*‘Amplitude’)
subplot(3,1,2)
stem(nTs, fd);hold on;

legend(‘sinc-reconst’,’ £(t)’);
‘)

stairs(nTs,fd); ylabel(*Amplitude’);legend(‘stairs’)

subplot(3,1,3)

y = spline(nTs,fd,t);
plot(nTs(1:2.5:26.5),y);
ylabel (*‘Amplitude’)
xlabel(‘time (sec)’)

figure(3)
error=abs(fa-£25);

plot(t,error);ylabel(‘magnitude’)
- Reconstruction

title(‘error(t) = abs [f(t)

xlabel(‘time(sec)’)

legend(‘spline’);

(Sums(sinc))]’)

Back in the command window the script file sample_data is executed and the results are

shown in Figures 1.67 through 1.69.
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Plots of f(t) and f(nT) of Example 1.16.
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Reconstruction plot error for f(t) of Example 1.16.
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Example 1.17

Create the script file up_down_samples that returns the approximation plots of the fol-
lowing time discrete function:

f(n) = cos(2m0.05n) + 2sin(2n0.03n)

for alength of N = 100 samples, for the following cases:

1. Down-sample or decimate the sequence f(n) with the integer factors of M = 2, 4,
and 10.

2. Up-sample or interpolate the sequence f(n) with the integer factors of L = 2, 4,
and 10.

3. Resample f(n) by the ratio of the two integers given by L/M, for the following cases:
L=3M=2andL=2M=3.

MATLAB Solution
% Script file: up _ down _ samples

n = 0:1:99;

f = cos(2*pi*.05*n)+2*sin(2*pi*.03*n);

yzero = zeros(l,500);

figure(1); % down-sample with M=2, 4, 10

subplot(2,2,1)

stem(n,f);hold on; plot(n,f,n,yzero(1:100))
title(*f(n) vs n’); ylabel(‘Amplitude’);
xlabel(‘time index n’);

subplot(2,2,2)

gm2 = decimate(f,2,’fir’);

nm2 = 0:100/2-1;

stem(nm2,gm2(1:50)); hold on; plot(nm2,yzero(1:50));
title(‘f(n) is decimated with M=2'); ylabel(‘Amplitude’);
xlabel(‘time index n’);

subplot(2,2,3)

gm4 = decimate(f,4,’fir’);

nm4 = 0:100/4-1;

stem(nm4,gm4(1:25));hold on;
plot(nm4,gm4(1:25),nm4,yzero(1:25));

ylabel (*‘Amplitude’); xlabel(‘time index n’);
title(‘f(n) is decimated with M=4')
subplot(2,2,4)

gml0 = decimate(f,10,'fir’);

nml0=0:100/10-1;

stem(nml1l0,gm10(1:10));hold on;
plot(nml0,gm10(1:10),nml0,yzero(1:10));
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ylabel (*Amplitude’);xlabel(*time index n’)
title(*f(n) is decimated with M=10’)

figure(2); % up-sample with L = 2, 4, 10
subplot(2,2,1)

stem(n,f); hold on; plot(n,f,n,yzero(1:100))
title(*f(n) vs n’);ylabel(*Amplitude’);

xlabel(‘time index n’);

subplot(2,2,2)

gL2 = interp(f,2);

nL2 = 0:100%2-1;

stem(nL2,gL2(1:200));hold on; plot(nL2,yzero(1:200));
title(*f(n) is upsampled with L=2’); ylabel(‘Amplitude’);
xlabel(‘time index n’);

subplot(2,2,3)

gl4 = interp(f,4);

nlL4 = 0:100%4-1;

stem(nL4,gL4(1:400)); hold on;

plot (nL4,yzero(1:400));

ylabel (*‘Amplitude’);xlabel(‘time index n’);
title(*f(n) is upsampled with L=4’)

subplot(2,2,4)

gLl1l0= interp(f,10);

nLL10 = 0:100*10-1;

stem(nL10,gL10(1:1000));hold on;
ylabel(*‘Amplitude’); xlabel(‘time index n’)
title(*f(n) is upsampled with L=10')

figure(3)

% re-sample by ratio of L=3/M=2 & L=2/M=3
subplot(3,1,1)
stem(n,f);hold on; plot(n,f,n,yzero(1:100))
title(*f(n) vs n’);
ylabel (*Amplitude’); xlabel(‘time index n’);
subplot(3,1,2)
gr32= resample(f,3,2);
nr32 = 0:100*3/2-1;yzeros = zeros(l,length(nr32));
stem(nr32,9r32(1:100%3/2));hold on;plot(nr32,yzeros);
ylabel (*‘Amplitude’); xlabel(‘time index n’);
subplot(3,1,3)
gr23 = resample(f,2,3);
nr23 = 0:100%2/3-1;
yzero = zeros(l,length(nr23));
stem(nr23,gr23(1:100%2/3));
hold on;plot(nr23,yzero);
axis([0 65 -5 5]);
ylabel(*‘Amplitude’); xlabel(‘time index n’)

Back in the command window, the script file up_down_samples is executed and the
results are shown in Figures 1.70 through 1.72.
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Decimation plots of f(t) of Example 1.17.
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Interpolation plots of f(t) of Example 1.17.
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f(n) versus n
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FIGURE 1.72
Plots of f(t) and resampled f(t) with notes given by L/M of Example 1.17.

Example 1.18

An analog communication system consists of an information signal or message given
by m(t) = 3cos(5t), and a high-frequency carrier given by f.(f) = cos(50¢).

1. Create the script file modulation that returns the following plots:
a. m(t) versus t
b. f.(t) versus ¢
c. Amplitude modulated (AM) signal versus ¢
d. Angle modulated (FM/PM) signal versus t

2. Let us assume now that the message signal m(t) is a binary-periodic signal with
period T = 2, defined as follows:

3 0<t=1
m(t) =
1 1<t=2

Obtain the plots of the following communication signals:

a. ASK versus t
b. FSK versus t
c. PSK versust
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MATLAB Solution

)

% Script file: modulation

figure(1)

subplot(2,2,1); % analog signals
fplot(‘3*cos(5*t)’,[0 3 -6 6]);
title(‘Information signal: 3*cos(5*t)’);
ylabel (*‘Amplitude’);xlabel(*time’);
subplot(2,2,2)

fplot(‘cos(50*t)’,[0 0.5 -1.5 1.5]);
title(‘Carrier signal: cos(50*t)’);

ylabel (*Amplitude’);xlabel(*time’);
subplot(2,2,3)
fplot('3*cos(50*t)*cos(5*t)’,[0 3 -6 6]);
title(*AM (Amplitude Modulated) signal’);
ylabel (*‘Amplitude’);

xlabel(‘time’);

subplot(2,2,4)
fplot('3*cos((50*t)+3*cos(5*t))’, [0 2 -6 6]);
title(*Angle Modulated signal’);
xlabel(*‘time’);

ylabel (*Amplitude’);

figure(2)

a=3*ones(1,50);

b=ones(1,50);

clock = [a b a b]; % discrete/binary signals
t = linspace(0,4,200);

carrier = cos(50*t);

subplot(2,2,1)
plot(t,clock);title(*Binary information signal’);
axis([0 4 0 4]);ylabel(*Amplitude’);
xlabel(‘time’);

subplot(2,2,2)

ASK= carrier.*clock;plot(t,ASK);
title(*ASK signal’)

axis([0 4 -4 4]);ylabel(‘Amplitude’);
xlabel(‘time’);

subplot(2,2,3)

FSK=cos(20*t.*clock);
plot(t,FSK);xlabel(‘time’)

axis([0 4 -1.3 1.3]);ylabel(‘Amplitude’)
title(‘FSK signal’)

subplot(2,2,4)

PSK=cos (50*t+clock);

plot(t,PSK);

title(*PSK signal’)

xlabel(*time’); ylabel(*Amplitude’);
axis([0 1.5 -1.3 1.3]);

Back in the command window the script file modulation is executed and the results are
shown in Figures 1.73 and 1.74.
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FIGURE 1.73
Plots of standard analog telecommunication signals of Example 1.18.
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FIGURE 1.74
Plots of ASK, FSK, and PSK telecommunication signals for a binary information signal of Example 1.18.

Example 1.19

Given the following time functions:
f1(t) = cos(2t) + 2sin(3t)
and
f,(H) = 10sin(2t)e

over therange 0 =t = 2m.
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Create the script file multiplex that returns the following plots:

a. f4(t) and f,(t) are sampled with a sampling rate of T, = 27/100.
b. The multiplex signals of part a.

MATLAB Solution

t = linspace(0,2*pi,100);

fl = cos(2*t)+2*sin(3*t);

f2 = 10*sin(2*t).*exp(-t/pi);
yzero = zeros(1l,100);

figure(1)

subplot(2,2,1)
plot(t,f1l,’dk’,t,£2,’sk’,t,yzero);

axis([0 2*pi -6 10])

legend(*f1(t)’, £2(t)’)

title(*f1l(t) vs. n and f2(t) vs. t’)
ylabel(*‘Amplitude’); xlabel(‘time index n’)
subplot(2,2,2)

a=[1010101010];

aa = [aaaaaaaaa al;
b=[010101010 1];

bb = [bbbbbbbbbhbl;

flsamp = fl.*aa;

f2samp = £2.*bb;
stem(t(1:2:100),£1(1:2:100));hold on; plot(t,yzero);
title(*fl(n) vs. n’)

axis([0 2*pi -4 5]);ylabel(‘Amplitude’);
xlabel (‘time index n’);

subplot(2,2,3)
stem(t(1:2:100),£2(1:2:100));hold on;plot(t,yzero)
title(*f2(n)vs. n’)

axis([0 2*pi -6 10]);ylabel(‘Amplitude’)
xlabel(‘time index n’)

subplot(2,2,4);
stem(t(1:2:100),£1(1:2:100),'d’);hold on;
stem(t(1:2:100),£2(1:2:100),'s’);

hold on; plot(t,yzero);

axis([0 2*pi -6 10]);

title(® [Multiplexed samples of fl(n) and f2(n)] vs. n’);
legend(*f1(t)’,"f2(t)")

xlabel(‘time index n’)

figure(2)

plot(t(1:2:50),£1(1:2:50),t(1:2:50),£2(1:2:50),t,yzero);

hold on; stem(t(1l:2:50),£1(1:2:50),'d’); hold on;

stem(t(2:2:50),£2(2:2:50),'s’);

title(*[Enlarge alternating (multiplexed) samples from £1(n)
and f2(n)] vs. n )

axis([0 3.1 -6 10]);ylabel(‘Amplitude’);

xlabel(‘time index n’)

Back in the command window the script file multiplex is executed and the results are
shown in Figures 1.75 and 1.76.
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Plots of discrete telecommunication signals of Example 1.19.
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Enlarge plot of multiplexed signals of Example 1.19.
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Example 1.20

Create the script file explore_window that returns the plots of the truncated or windowed
function f(t) = cos(2rrt) using the following window types:

1.

N U1 &~ W N

7.

Hamming

. Hanning

. Blackman

. Kaiser (with = 3.4)
. Triangular

. Boxcar

Bartlett

Let us define f(t) = cos(2mt) by using 301 points over the range —15 = t = 15, and limit f(#)
using the above-mentioned windows over the range —10 = t = 10.

Display the plots of the windowed function f(f) over the range —15 = t = 15, for the
first three cases and —10 = t = 10, for the remaining four.

MATLAB Solution
% Script file: explore _ window

t = -15:0.1:15; % returns a vector with 301 elements
f = cos(2*pi*t); % returns 301 element for f(t)
winpoints = -100:1:100; % 201 window points

WHam=hamming(201);

WHan= hanning(201);

WBlac= blackman(201);

WKai= kaiser (201, 3.4); % Beta = 3.4
WTrian= triang(201);

WRect= boxcar(201);

WBar= bartlett(201);

WlHam= [zeros(1,50) WHam’ =zeros(1,50)];

o°

Hamming window with 301

points

WlHan = [zeros(1,50) WHan’ zeros(1,50)]; % Hanning window with 301
points

W1lBlac = [zeros(1,50) WBlac’ zeros(l,50)]; % Blackman window with 301
points

WlKai = [ zeros(l,50) WKai’ zeros(1,50)] ; % Kaiser window with 301
points

WlTria = [ zeros(l,50) WTrian’ zeros(1,50)]; % Triangular window with
301 points

WlBox = [ zeros(l,50) WRect’ =zeros(l,50)]; % Boxcar window with 301
points

WlBar = [ zeros(l,50) WBar’ =zeros(l,50)] ; % Bartlett window with 301
points

Hamwin= WlHam.*f; % f(t) is windowed

Hanwin= WlHan.*f;
Blackwin =W1lBlac.*f;
Kaiwin=W1lKai.*f;
Triwin=W1Tria.*f;
Boxwin=Wl1Box.*f;
Barwin=W1lBar.*f;

figure(1)

subplot(3,1,1)

plot(t, Hamwin);ylabel(‘Amplitude’);
title(*[f(t)*Hamming widow] vs.t’)
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axis([-15 15 -1.2 1.2]);

subplot(3,1,2);

plot(t, Hanwin);

axis([-15 15 -1.2 1.2]);

ylabel (*Amplitude’);title(* [f(t)*Hanning widow] vs. t’);
subplot(3,1,3);

plot(t, Blackwin);

axis([-15 15 -1.2 1.2]);xlabel(‘t’);title(*[f(t)*Blackman widow] vs.t’)
ylabel (*Amplitude’)

figure(2)

subplot(2,2,1)

plot(t, Kaiwin);ylabel(‘Amplitude’)

title(*[f(t)*Kaiser window] vs. t’)

axis([-10 10 -1.2 1.21);

subplot(2,2,2)

plot(t,Triwin );ylabel(*Amplitude’);

title(*[f(t)*Triang. window] vs. t’);axis([-11 11 -1.2 1.2]);
subplot(2,2,3)

plot(t,Boxwin );
ylabel(*Amplitude’);title(‘[£(t)*Boxcar window] vs. t’);
axis([-11 11 -1.2 1.2]);xlabel(‘t’)

subplot(2,2,4)

plot(t,Barwin );

ylabel (‘Amplitude’)

title(*[f(t)*Barlett window] vs. t’)

axis([-11 11 -1.2 1.2]);xlabel(‘t’)

Back in the command window, the script file explore_window is executed and the results
are shown in Figures 1.77 and 1.78.

T T T T

i [f(t)*Hamming window] versus t

Amplitude
o

1t
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-1 1 1 1 1 1
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1 [ [f(t)*Blackman window] versus t

Amplitude
o

-1t 1 1
-15 -10 -5 0 5 10 15

FIGURE 1.77
Plots of the windowed function f(t) using the Hamming, Hanning, and Blackman windows of Example 1.20.
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Plots of the windowed function f() using the Kaiser, Triangular, Boxcar, and Bartlett windows of Example 1.20.

1.5 Application Problems

P11

P12

Sketch by hand, over the range —3 = t = 6, the following analog functions:
a. f4(t) = 5ult — 2)

b. f,(t) = 3u(t — 1) — 3u(t — 3)

c f5t) = tut — 1) — u(t — 2)]

d. f,) =8¢+ 1)+ 26t —1) + ult —2)

e. f5(t) = tu(—t) *u(t + 3)]

£ fe®) =ut+1) — ut) + 38t — 3)

Sketch by hand, over the range —3 = n = 6, the following discrete sequences:
a. f4(n) = 3(n — 2u(n)

b. f,(n) = n umn)

c. f3(n) = (—n)? u(n)

d. f,m) = —36(n + 2) + 26(n) + u(m) + um — 1) + 2u(n — 1)

e. fs(n) = 2nlun) — u(n — 2)]

f. fon) = nfun + 2) - u(-n)]
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P13
P14
P1.5

Ple6

P17

P1.8

P19

P1.10

P111

P1.12
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Create a script file that returns the plots of each of the functions defined in P1.1.
Create a script file that returns the plots of each of the sequence defined in P.1.2.

Sketch by hand, over the range —1 = n = §, the sequence f(n) = (0.32)" [u(n) —
u(m — 6)].

Let f(n) = (0.32)" [u(n) — u(n — 6)], over -1 =n < 8.
Write a script file that returns the following plots:

a. f(n) versus n

b. f(2n) versus n

c. f(n/2) versus n

d. f(n — 3) versus n

“+o0
Given the sequence f(n)= Y (1/2)"d(n — m)
m=0
a. Write a program that returns the plot of f(n) versus #, over the range 0 = n = 30.

b. Evaluate the energy and power of f(n).

Given the sequence f(n) = 15(0.75)" u(n). Create the script file that returns the plot
of f(n) versus n, over the range —10 = n = 30.
Observe and discuss if the sequence f(n) diverges or converges.

Given the sequence f(n) = 0.2(1.1)" u(n), create a script file that returns the plots of
f(n) versus n, over the range —10 =n = 30.
Discuss if the sequence f(n) converges or diverges.

Given the following analog signals:
1 f,(t) = 4e7?u(t)

2. f,(t) = 5e L% cost(5t — m/2)u(t)

3. f3(t) = 6(1 — e *)u(t)

4. f,(t) = e~'cos(5t — m/4)u(t)

(a) Sketch by hand each of the given functions versus ¢. (b) Write a program that
returns the plots of each of the functions of part (a), over the range —1 <t < 6.

Write a MATLAB program that returns the plots of the continuous function f(t) =
3 c0s(0.15mt) + 2sin(0.201t), and f{t) sampled with T = 0.1 over the range 0 < t < 157.

In general, a random noisy signal of length N can be generated by using the follow-
ing MATLAB command:

Noise=rand(1l,N)
Likewise, the sequence
Noisen=randn(1l,N)

returns a random sequence of length N, normally distributed with zero mean and
unit variance. Write a program that returns the plots, the average value, the
maxima, and minima of each of the noisy sequences defined earlier for N = 100
and 200.
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P1.13

P1.14

P1.15

P116

Plot the functions indicated as follows over the range -3 =t = 3
i) =8
L) =3+#F
f3) =28+ + 3
fu(t) = tan(2t)
f5(t) = sin(2t)
and verify that all the preceding functions present odd symmetry, that is, f(t) = —f(t).
Plot the functions indicated as follows for the range -3 =t = 3:
fit) = £
fr) =3+
f3) =2t4 + 15+ 3
f4(t) = cos(2t)
fs®) = |t]
and verify that all the preceding functions present even symmetry, that is, f{t) = f(—t).

Write a MATLAB function file that analyzes a given arbitrary function f(t) over the
range —3 =t = 3, and returns a message indicating if f() presents even or odd sym-
metry. Repeat the preceding problem over any given range.

Given the functions shown in Figure 1.79, sketch by hand for each function its even
and odd parts.

f1(t) IR fa(t)
1 1 2
t t
> T »
0 1 0 2 2 0 2
A A
fa(t) | fs(t)
3 ,_24,_‘
10 3 t 1 0 2 3 t

FIGURE 1.79
Plots of P.1.16.
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P117 Write a program that returns the plots over three cycles of the following periodic
functions, defined as follows over one period (T = 2):

£, =t, for 0 < t <2
frt)=—t+2, for0<t<2

0<t<1

(2
f3(t)_{o 1<t<2

1 0<t<1
fam = 2 1<t<?2

f) =2+t 0<t<2
fol) = —t+4, 0<t<2

P1.18 Sketch by hand each of the functions defined in P.1.13.
P1.19 Sketch by hand the even and odd portions of each of the functions defined in P.1.13.
P1.20 Let f(t) be a periodic function with period T = 2, defined as follows by

t 0=t=1
f(t)_{l 1<t=2
Manually sketch f(t) over three periods
. Write a program that returns the plots of part a
Sketch by hand f(—t)
. Write a program that returns the plot of part c
Sketch by hand [f;(t) = —f(—t) + f(t)] versus t, over the range —3 =t = +3
Write a program that returns the plot of part e

. Sketch f,(t) = %[f(t) + f(—t)] versus t and f;(t) = %[f(t) — f(—t)] versus t, over the
range -3 =t = +3

h. Sketch by hand [f,(t) = f,(t) + f;()] versus t

P1.21 Modify the script file even_odd.m (of Example 1.14) into a function file where the
input is the function f(t), over a given range r, and its outputs are the plots of the even
and odd parts of f().

P1.22 Test the function file even_odd.m created in P.1.21, over the range —10 < t < 10, using
the following function:

a. f,(t) = cos(3t + pi/3)u(t)
b. f,(t) = tu(t)
c. f3(t) = tut) — tut —5)

P123 Letfitt) = 3r(t) — 3r(t — 1) + 3r(t — 2), sketch and obtain MATLAB plots, over the
range —5 = t = 5, for the following functions:

w0 a0 o

a. f(t) versus t
b. f,(t) versus t

c. f,(t) versus t
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P1.24

P1.25

P1.26

P1.27

P1.28

P1.29

P1.30

P1.31

P1.32

Letf;(t) = 3¢*” + 3 and f,(t) = cos(rt). Create a script file that returns the energy and
power of f;(f) and f,(t).

Repeat P1.24 for the following discrete sequences: f,(n) = 3e*3 + 3 and f,(n) =
cos(0.17n), over the range —10 = n = 10.

Evaluate by hand which of the following discrete sequences are periodic, and if
periodic, evaluate its period.

a. cos(0.2n)

b. cos(0.27n)

c. sin(2mn/3)

d. sin(9.1n)

Verify the following equalities:
oo

a. Imp[(n)] = 25(71 —k)

k=—o

b ul(m] =3 61 — k)
k=0

+oo
c. r(n)= Z ké(n — k)
k=0
Evaluate the following integrals:
a. [ (2t +3)s(t —1)dt =
b [ (2t +3)o((3t/2) — Dt =
c. | sin(wno((3t/2) — (2/3))dt =
d. [ eC3ms(t — (2/3))dt =
Analyze and draw a flow chart of Example 1.15 and indicate in each average approx-
imation the filter used as well as the effect of the filter.
Evaluate the first and second derivative of the following expressions:
a. fi(t) = ut) + 7u(t —5) — 2u(t — 7)
b. f,(t) = tu(t) + 3u(t — 1) + 358(t — 3)
c. f5t) = ru) — vt — Du(t — 1)

Let H(s) = o 525:5?; 10 be the transfer function of a given analog system. Write

a MATLAB program that returns
a. The Bode plot of H(s), magnitude and phase

b. The impulse as well as the step responses
c. The zero/pole diagram

d. The system differential equation

Let

_ 032+043z7' —0.85z72 + 0.2z

H(z
@ 1+0.802z7' —0.42z7%2 + 0.62z73
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P1.33

P1.34

-10
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be the transfer function of a discrete system. Write a MATLAB program that returns
a. The impulse as well as the step response

b. The zero/pole diagram

c. The system output if its input is given by

x(n) = 0.6"cos((2 * pi *n)/(256)), forn=0,1,2,3,...,256

d. The plot of the output if the input x(n) given in part c is truncated by a triangular
window with size of N = 128

e. Repeat part d for the Hamming, Hanning, and Blackman windows

Write a program (or programs) that returns the sequences and plots shown in Fig-
ure 1.80.

The Parabolic or Parzen window is defined by the following equation:

wn)=1- {n ;/IM}Z

Write a program that returns the plots of w(n) versus n, forn = 31 and M = 0.5, 1,
and 5, and discuss the effect of M.

-2

y6(x)

4 2 [
o 2 4 3 1 o

]
|
|
i
|
. X
1

FIGURE 1.80
Plots of P.1.33.
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P1.35 The Cauchy window is defined by the following equation:

MZ

RO VR e

Write a program that returns the plots of w(n) versus n, for n = 31 and a = 0.5, 1,
3, and 5, and discuss the effect of a.

P1.36 The Gaussian window is defined by the following equation:

w(n) = exp {—O.Saz (HX/IM)Z}

Write a program that returns the plots of w(n) versus n, for n = 31, M = 0.5, and
a =1, 3, and 5, and discuss the effect of a.

P1.37 Consider the following discrete time sequences:

sin[0.37(1 — 64)]}2

film) = { 0.37(1 — 64)

sin[0.27(11 — 64)]}2

fm) = { 0.27(1n — 64)

Write a program that returns

a. The plots of f;(n) versus n and f,(n) versus n, over 0 = n = 128 using the sinc func-
tion, and appropriately label the axis.

b. The plots of the expanded signals f;(n) and f,(n) by a factor L, by inserting L — 1
zeros between each one of the samples of f;(n) and f,(n), for L = 2, 3, and 4. There-
fore, each signal f;(n) and f,(n) is expanded by a factor of 2, 3, and 4.

c. The plots of the down-sampled signals f;(n) and f,(n) by a factor of M = 2, 3, and 4.

P1.38 Truncate or limit the length of each of the functions f;(n) and f,(n) defined in P.1.37
by using the following windows:

a. Parabolic
b. Cauchy
c. Gaussian
defined in P1.34/36 over a length of N = 31.
P1.39 Obtain the multiplex signal mult[f,(n), f,(n)]; for the sequences f;(n) and f,(n) given by

sin[0.37(11 — 64)] }2

film) = { 0.37(n — 64)

sin[0.27(n — 64)]
0.27(1 — 64)

fo(n) = {

P1.40 Consider the analog time functions
f1(t) = [5sin(3mt)/(3mt)]?
fot) = [3sin(2mt)/2mt)?
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P1.42

P143
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Write a program that returns

a. The plots of f;(t) versus t and f,(t) versus t, over the range —27 = t = 27, using the
sinc function

b. The plots of the amplitude modulated (AM) signals for f;(t) and f,(t) versus ¢,
over the range 0 = t = 3, if the carrier signal is f.(t) = 10cos(20mt)

c. Repeat part b for the case of angular modulation (FM or PM)

Let f(t) = Acos(2nw,t + ¢) be a continuous time function.
How many samples are then required to uniquely determine A, w,, and ¢.
Is it always possible to solve for A, w,, and ¢?

Let A =5, w, = 2rad/s, and ¢ = 30°, for the signal defined in P.1.41.
Write a program that returns the following plots:

a. f(t) versus t
b. f(nT) versus nT, for T = 0.1

c. Reconstruct f(t) from f(nT) using the summation of sinc functions (by applying
the sampling theorem)

Create the symbolic expression for f(t) defined in P.1.42 and obtain the following
plots:

a. f(t) versus t, using ezplot.

b. Let A = 7, w, = 3 rad/s, and ¢ = 45° by redefining the symbolic expression of
part a, by using the subs symbolic function.

c. AM and FM/PM signals using the symbolic approach, if the carrier is f.(t) =
10 cos(20mt) and the information is f{(t).
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Direct Current and Transient Analysis

I often say that when you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot express it in numbers,
your knowledge is of meager and unsatisfactory kind.

Lord Kelvin

2.1 Introduction

This chapter deals with the basic concepts and principles of electricity as well as the
analysis of simple electric circuits. A brief and compressed history of electricity is also
presented to introduce the reader to how this important field of science and engineering
evolved over time.

The simplest manifestation of electricity in nature is the phenomenon of magnetism and
static electricity. Static electricity was first observed by the ancient Greeks, and back then
they called this phenomenon elektron. The curious Greeks observed and studied the effects
of elektron, but no written records about the subject exist.

The first recorded observations about electricity and magnetism date back to Thales
(640-546 BC), a famous philosopher and mathematician who lived on the west coast
of Asia Minor. Years later, the Chinese military commanders, during the Hun dynasty
(AD 206-220) are believed to have used the magnet’s properties to implement the first
compass to indicate direction. It took about 900 years for the Europeans to incorporate the
compass in navigation. No significant recorded scientific progress was made in electric-
ity and magnetism until the 1600s, when William Gilbert (1540-1603), Queen Elizabeth’s
physician, recorded experiments he performed with magnetic materials. He thought that
magnetism could have healing effects on the human body.

Probably the first major modern scientific contribution was the Leyden jar developed by
Pieter van Musschenbrock and Benjamin Franklin. The jar was a device capable of storing
an electric charge (static electricity), which could be discharged producing an electric arc
or spark, thus emulating lighting.

Years later, it was discovered that lightning was in essence an electric discharge. The
most important scientific contributions occurred during the late 1700s through the late
1800s, when the effects of electricity and magnetism were observed, recorded, and seri-
ously studied. Concepts and principles once understood, tested, and proven became rules,
laws, and theories.

A number of electric units bear the name of those early pioneers, such as

e Coulomb. After Charles Coulomb (1736-1806), Frenchman; observed, measured,
and quantized the amount of electricity (electric charge)

o Ampere. After Andres Maria Ampere (1775-1836), Frenchman; studied the current
induced by a magnetic field

101



102 Practical MATLAB® Applications for Engineers

e Volt. After Count Alexander Volta (1747-1827), Italian; developed the voltaic cell

* Ohm. After Georg Ohm (1787-1854), German; developed a relationship among the
current, voltage, and resistance in an electric circuit

¢ Faraday. After Michael Faraday (1791-1867), Englishman; developed the basis of the
electromagnetic theory

* Hertz. After Heinrich Rudolph Hertz (1857-1894), German; experimented with elec-
tromagnetic waves

Two additional names are associated with the early developments of electric theories and
discoveries, and their work constitutes the basis of electric circuits. They are:

James Clark Maxwell (1831-1879), Scottish. Maxwell developed the relationship between
electricity and magnetism, as well as the electromagnetic theory of light (1862).

Gustav Robert Kirchhoff (1824-1887), Russian. Kirchhoff formulated the basic circuit
laws (the network current and voltage laws).

The theoretical fundamentals of electricity and magnetism were observed, studied, and
firmly established, predominantly by European physicists, engineers, and mathematicians.

American scientists and engineers are distinguished as the great inventors, patent hold-
ers, and industrialists who brought the electric discoveries into the market place. The most
important Americans, just to mention a few, are

e Thomas Edison (1847-1931)
¢ Alexander Graham Bell (1847-1922)
¢ Lee De Forest (1873-1961)

Today we know that electricity is produced by electrons. An electron is the smallest unit
of electric charge, and its quantity is known as “1 esu.” An electron is not easily found in
nature, but it can be generated, and it constitutes the most important source of energy in
modern societies. In its simplest version, the concepts of current and voltage constitute the
bases of electricity.

Let us define current and voltage using the simplest possible terms. Current is the flow
(movement) of electrons, whereas voltage is the force that makes this flow possible.

This chapter deals with DC electrical systems and transients. The term “DC” is an abbre-
viation of direct current, which refers to electrical sources that employ unidirectional cur-
rent. These sources of voltage or current provide a fixed or constant output.

A current that varies with respect to time reversing directions periodically is called
alternating current, abbreviated as “AC,” and is the subject of Chapter 3.

DC voltage sources consist of batteries, generators, and power supplies. These devices
employ different technologies and modes of operations, but the end result is to supply
a constant terminal voltage, regardless of the current demand and load connected to its
terminals.

A DC current source is analogous to a voltage source in the sense that it supplies a con-
stant current flow, whereas the voltage demand may vary across its terminals.

DC is produced either by a voltage or current source that delivers a constant output,
denoted mathematically ase(t) = E'V (volts) or i(t) = I A (amp) respectively, and the electrical
responses (steady state) in any of its branches of an electrical network are also constant.
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When a circuit switches from one condition to a new set of conditions, there is a transi-
tion period where the currents and voltages adjust to the new circuit conditions. The tran-
sition time is referred to as the transient response or simply as transient, and is usually
defined by a set of differential equations.

The basic passive circuit elements such as resistors, capacitors, and inductors are intro-
duced, defined, and used in this chapter. Circuit variables such as voltage, current, power,
and energy are also defined in terms of the circuit elements and its excitations; and transient
conditions for the standard electrical configurations are stated, explored, and analyzed.

2.2 Objectives
On reading this chapter, the reader should be able to

¢ Distinguish between DC and AC
e State the laws of attraction and repulsion (Coulomb’s law) at the subatomic level

¢ Define ampere (the unit of electric current) and volt (the unit of electric voltage)
quantitatively and qualitatively

® Relate current, charge, and time

¢ Define the concept of conductor, superconductor, semiconductor, and insulator
¢ Define and know Ohm’s law

¢ Define an electrical short and open and its electrical equivalents

® Define and know how to use the basic electric concepts and terminology such as
voltage drop, current flow, and resistance

* Recognize a series and parallel connection

¢ Draw schematic diagrams of simple electric circuits

e State Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL)
e State the voltage divider rule

e State the current divider rule

* Know how and when to apply the voltage or current divider rules

¢ Define electric power and energy

e State the equations that define the energy storing devices such as the inductor (L)
and capacitor (C)

¢ Combine resistors, capacitors, and inductors in a series and parallel configuration
® Calculate the equivalent capacitance and inductance

¢ State the conditions for the steady-state and transient responses

® Define the time constant of an electric circuit and its meaning and applications

¢ Present the equation and plots of the charging and discharging for the simple
circuits known as resistor capacitor (RC) and resistor inductor network (RL)

® Set up the circuit equations for simple circuits

e State the differential equations and the exponential form of the solution for the RC
and RL cases
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State and analyze the transient solution for the parallel and series resistor capacitor
network (RLC)

Define the system loop and node equations

Use node and loop equations to solve circuit problems

Define and use the superposition theorem when dealing with multiple sources
Recognize that an independent voltage source set to zero is equivalent to a short
circuit

Recognize that an independent current source set to zero is equivalent to an open
circuit

Recognize that a voltage source can be transformed into an equivalent current
source and vice versa

Define and determine the Thevenin’s equivalent circuit of an electrical network

Recognize that the Thevenin’s equivalent circuit can be evaluated for any load of
interest

Define and determine the Norton’s equivalent circuit given an electrical network

Recognize that the relation between Thevenin’s and Norton’s equivalent circuits

consist of a simple source transformation

Use MATLAB® as a tool in the analysis of electric circuits

2.3 Background

R.21

R.22

R.23

R24

R.2.5

R.2.6

R.27
R.2.8
R.29
R.2.10
R.2.11

R.2.12

The idea that matter is composed of atoms is an old concept that was first proposed
by the Greek philosophers Empedocles and Democritus around 500 and 400 BC.

The scientific community accepted the existence of the atom in modern times, ini-
tially proposed by the chemist Dalton in the nineteenth century, and supported
and consolidated by Cannizzaro 50 years later.

An atom is too small to be seen directly or even with the help of modern and sophis-
ticated devices such as a microscope, because its diameter is estimated to be in the
order of 107 m.

Atoms are composed of protons, neutrons, and electrons.

In modern times, J. J. Thomson, around 1897, is credited with the discovery and
study of the electron.

The mass of a neutron is slightly larger than the mass of a proton, and the mass of
an electron is much smaller than either of them.

An electron constitutes the unit of a negative electric charge.
A proton constitutes the unit of a positive electric charge.
Atoms move in nature in a perfectly random way.

The effect of an electron exactly cancels the effect of a proton.

An atom contains a certain number of protons in a nucleus and an equal number of
electrons orbiting the nucleus.

Most bodies in nature are electrically neutral, because they contain equal amounts
of positive and negative charges that exactly cancel one another.
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R.2.13

R.2.14

R.2.15

R.2.16
R.217

R.2.18
R.2.19

R.2.20

R.2.21

R.2.22

R.2.23

R.2.24

By a process that is known to scientists, but is beyond the scope of this discussion,
energy may be absorbed by some electrons in the outer orbits and migrate outside
its natural orbits, and in this way, become free electrons.

In metals such as silver and copper, some electrons are very loosely held, since they
are not strongly attached to any atom, and they can be shaken off to become free
electrons.

In nature as well as in the physical sciences, only forces are capable of making or
creating changes.

Gravity is nature’s force.

Recall from physics (basic mechanics) that force (Newtons) = mass (kilograms) *
acceleration (meters/second?).

An electric charge may induce or create an electrical force.

Coulomb’s law states that the force F between two electrically charged points Q,
and Q, is given by
F= k * Ql * QZ
2

where F is given in Newton (N) (1 N = 1 kg * m/s?), Q in coulombs (C; where a cou-

lomb is a measure of the amount of electric charges given in terms of electrons; the

relationship is 1 C = 2.64 * 10" electrons), and k a proportionality constant given by
1 N * m?

k= =9%19°
4re, C?

where €, = 8.85 » 10712 C?/N - m? is the permittivity of free space, and r is the dis-
tance between Q, and Q, in meters. In this discussion, it is assumed for simplicity
Q, and Q, are stationary, otherwise additional forces must be considered.

The charged electric points Q; and Q, induce a radial electric field around itself.
The electric field is known as a force field.

The following can be said about the nature of the induced electric force F:
a. Like charges repel each other (creating a repulsion force).

b. Unlike charges attract each other (creating an attraction force).

c. The closer the charges the stronger the force.

d. The larger the charges the stronger the force.

As mentioned earlier, the smallest charged (negative) particle in nature is the elec-
tron. The charge of a single electron is given by

1 electron = 1.602 * 107 C

Therefore, it takes 6.242 + 10'® electrons to generate a charge of 1 C.

Some materials (in particular metals) contain free electrons in their natural state.
The movement or flow of free electrons creates an electric current.

Materials can be classified according to their capacity to conduct current or possess
free electrons as

¢ Conductors (including superconductors)
¢ Semiconductors

¢ Insulators
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Conductors are materials in which an electric charge can be moved from one point
to another over a finite interval of time with little resistance.

A superconductor is a conductor that has no resistance to the flow of electric cur-
rent (no energy is converted to heat).

Insulators are materials that resist the flow of electrons by presenting a large resis-
tance to its current flow, and they require a large external amount of energy to
produce a measurable current.

Semiconductors are materials that exhibit characteristics that in some cases behave
as a conductor, whereas in other cases, act as insulators depending on the inten-
sity and polarity of an external excitement such as temperature, light, or voltage.
Examples of semiconductor materials are silicon (5i), germanium (Ge), and gallium
arsenate (GaAs).

An electric current, denoted by I, is defined as the rate of flow of an electric charge
(made up of electrons). Analytically, current is defined as

_ Q(Charge) _ aQ
T == time) — at &

The unit of an electric current is the ampere (denoted by A or amp), defined as
the rate of flow of an electric charge of 1 C/s (coulombs per second). Since current
involves motion, magnitude and direction must be indicated. The positive direc-
tion for current is defined as the flow of a positive electric charge. Electrons consist
of negative charges and constitute the bulk of the electric charge. The direction of a
positive current is then defined as the opposite of the electron flow.

The work required to move one unit of charge from one point to another is mea-
sured in volts. Therefore,

1V (volt) = 1]/C (Joule/Coulomb)

where ] is the unit of energy. Electric voltage is measured between two points,
which is also referred as electrical potential or potential difference and is the elec-
trical force that causes electrons to flow creating an electric current. Observe that
voltage is the potential to move a charge even when no charge is moved. When
charges (current) move through the circuit’s elements, energy is transferred. The
volt is the energy transferred per unit of charge through the affected elements.
A voltage is always defined by assigning a polarity (positive-negative) indicating
the direction of energy flow.

If a positive charge moves from the positive polarity through the element toward
the negative polarity, then the device generates or supplies energy. However, if
a positive charge moves from the negative toward the positive polarity, then the
device absorbs energy.

An ammeter is an instrument used to measure an electric current. To measure
current, an ammeter must be inserted in the path of the current flow (electrons) by
physically opening the circuit in order to insert the ammeter.

A voltmeter is an instrument used to measure an electric potential between two
arbitrary points in an electric circuit. To measure a voltage difference, a voltmeter
must be inserted (attached) to the two referred points.

In its simplest version, a current flow can be generated in a circuit if a close path or
loop is established and a source is present in the loop.
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R.2.33

R.2.34

R.2.35

R.2.36

Electric power is defined as the rate of generating or consuming (dissipating) energy.
Electric power (denoted by P) is defined as the product of a voltage across, and the
resulting current through an element. The unit of electric power is watt (W). Then

P (W) = current (A) * voltage (V)
or
P (W) = energy/time (J/s)

The power of 1 W implies a rate of generating or consuming 1 J of energy per
second (s).

Decibel (denoted by dB) is the unit used to express powers, voltages, and currents
as ratios. Decibel is defined as

dB = 10log;,[P/P;]

dB = 20log;,[Vo/ V1]
and

dB = 20log,[lo/1}]

Strictly speaking, a decibel can be used to express only ratios, which is a measure
of losses, gains, or no changes. The subscripts “O” and “I” denote output and input,
respectively. For example, P,/P; denotes output power divided by input power
referred to as power gain.

Electrical energy (denoted by W) is the amount of power generated or consumed
during a given interval of time [t,, ] of interest.
Therefore,

W (J) = [ ptydt

is often expressed in terms of watts *+ hours (W h), especially by the utilities
companies.*

The principle of conservation of energy states that
energy can be transformed, but never destroyed.

Electrical energy canbe transformed into mechanical energy (motor) and vice versa
(generator) or any other form of energy such as nuclear, thermal, and hydraulic.

The following relations indicate the equivalency between mechanical and elec-
trical units of energy often used in practice:

1] = 0.737 ft - Ib;
1ft - Ib, = 1.357]
1 Btu = 1055 ]
1Hp = 746 W = 550 ft - Ib,/s

* The reader should not confuse P (W), that is the power given in watts with W (J), that is the energy given in
Joules, where W = J/s (Watt = Joule/sec).
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where Ib; denotes pound-force. The law or principle of conservation of energy for
an electric circuit can simply be restated as one of the following:

The total energy in a closed system is zero.
Energy in, equals energy out.

In a close loop system the energy consumed is equal to the energy generated.

When electrical energy is supplied to a device, and the device dissipates that energy
in the form of heat, then the device is called a “resistor” (denoted by R), with the
unit given in ohms, denoted by the Greek character Q.

When electrical energy is supplied to a device, and the device stores that energy in
its magnetic field, then the device is an inductor (denoted by L), with the unit given
in henries (H).

When electrical energy is supplied to a device, and the device stores that energy in
its electric field, then the device is a capacitor (denoted by C), with units given in
faradays (F).

A practical device usually has more than one way to deal with the energy it receives.
There are no pure inductors in nature, rather a combination of a resistor and an
inductor (RL circuit). The same statement is valid for capacitors. There are no pure
capacitors in real life, rather a combination of a resistor with a capacitor (RC circuit).

The standard and widely accepted symbols used to represent resistors, capacitors,
inductors, and sources are shown in Table 2.1.

Ohm’s law relates the voltage (V) across and the current (I) through a resistor (R) by
means of the following equation:
V=R=I
TABLE 2.1
Electrical Symbols
Variable Symbol Units

R Ohms (Q)

C Farads (F)

L Henries (H)

1% DC volts (V)

J\N\/_
[
1+
—|_\
o(t) é—’) AC volts (V)
é) DC amp (A)

i(t) AC amp (A)
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R.243

R.2.44

R.2.45

The voltage across a resistor presents the following polarities: it is always positive
at the terminal at which the current enters the resistor and negative at the point
where it leaves.

The inverse of a resistance is called a conductance (denoted by G), where G = 1/R
with the units given in siemens (sie), where 1 sie = 1/Q.

The resistance of electrical material (including a wire) is a function of its dimen-
sions as well as its physical properties, and is given by the following equation:

R=uaxl/a

where a is called the resistivity factor of the material in Q * meters, [ is its length in
meters, and 4 is its cross-sectional area in meters squared.

The resistivity factor a of a good conductor is bounded by the following (resistiv-
ity) limits 1.6 * 107° Q cm < a < 2.5 * 107¢ Q) cm, whereas the resistivity factor of an
insulator is given by

o>200%10"°Qcm

For example, the resistivity factor of copper is @ = 1.7 * 107¢ Q cm (conductor),
whereas the resistivity factor of carbon is @ = 3500 * 107¢ Q cm (insulator). The
equation R = a = I/a is especially useful when evaluating the resistance of a seg-
ment of a wire.

The current through and voltage across an inductor* L are related by
di; (t)
t) =Lt~
o, (t) it
and
. 1
in(t) = | Jou (bt
The current through and the voltage across a capacitor C are related by the follow-
ing equations:
. doe(t)
t)=CcZCc/
ic(t) gt

and

0clt) = = [icut

* An inductor L is a coil of wire, which when connected across a voltage source, produces a magnetic field in
the coil that opposes current changes. According to Faraday’s law, the induced voltage is proportional to the
change in flux linkage which in turn is proportional to its current.
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A capacitor (C) basically consists of two conductor plates called electrodes, sepa-
rated by insulating material referred to as dielectric. When a voltage V is applied
across the plates, an electric field is established and the capacitor C charges. The
capacitance C is defined in terms of its electrical variables by

c_Q
1%

The capacitance C, in terms of its physical dimensions is defined by
C= eog(farads)

where € = €, % €, €, = 8.85 » 10712 F/m (permittivity of vacuum), and €, is the rela-
tive permittivity or dielectric constant of a particular material.

For example, €, (vacuum) = 1, €, (mica) = 5, and €, (glass) = 7.5.

A = area of the plates = width * height (in meters?)

and

d = distance between the plates (in meters)

The behavior of the voltages and currents in an electrical network is governed by
KCL and KVL stated in R.2.48 and R.2.49.

KCL states that the sum of the currents entering a junction (also referred to as a
node) must equal the sum of the currents leaving that junction (node), or the sum
of the currents at any node is always equal to zero, illustrated in Figure 2.1.

KVL states that the sum of the voltage raises (gains) are equal to the sum of the volt-
age drops (losses) in any close electrical loop (which is a consequence of the law of
conservation of energy) illustrated in Figure 2.2.

KVL must be applied around a closed electric loop in which the referred loop
may or may not have current (open circuit), but the sum of all the voltage drops
around it (loop) is always zero.

When two (or more) electrical elements, denoted by A and B, have the same current
flow and are connected in cascade, as shown in Figure 2.3, they are referred to as a
series connection.

I3

I

i1+i2+i3=i4+i5+i6

3
o

FIGURE 2.1
An electric node (KCL).
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+ Vy

V3 Vit Vo=Va+V,

FIGURE 2.2
An electric loop (KVL).

FIGURE 2.3
Series connection.

>
@
<

FIGURE 2.4
Parallel connection.

R.2.51 When two (or more) electrical elements, denoted by A and B, share the same volt-
age, that is, they are connected between the same two points, they are referred to
as connected in parallel, as illustrated in the Figure 2.4.

R.2.52 A current I divides between two resistances R, and R, connected in parallel into I;
and I,, the respective currents as indicated in Figure 2.5. Then the branch currents,
I, and I,, can be expressed in terms of the resistances R;, R,, and the current I by
the following relation known as the current divider rule:

I.=L+1,
[l = Llr
R, +R,
I, K Iy
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I l h i A

v

R, Ry
FIGURE 2.5
Current divider network.
A
Ry Vi
Vr
R,
Vo
FIGURE 2.6
Voltage divider network.
Observe that indeed
R R
I =L+, =—2 [ +—-1 [ (KCL)

R, +R, R, +R,

R.2.53 An applied voltage V; across a series connection consisting of two resistors R; and
R, divides the voltage V- into two voltage drops V; and V, as indicated in Figure 2.6.
Each voltage is a function of R;, R,, and V' referred to as the voltage divider rule given
by the following relation:

‘G:LVT
R, + R,
> R +R, T

R R
where indeed V=V, + V, = Ia +1 I Vi + A +2 R V; (KVL)
17T R 17T Ry
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Ry
Heq =R+ AR

Q

FIGURE 2.7
Series equivalent resistor.

R.2.54 The equivalent resistance R, of a set of two resistors R, and R, connected in series,
as illustrated in Figure 2.7, is given by its sum.
If n resistors are connected in series (1 >2) denoted by R;, R,, R, ..., R,, then the
equivalent resistance R, is given by

n
Req = ZRz
i=1

R.2.55 The equivalent resistance R, of two resistors R, and R, connected in parallel is
given by
_ Ry * R,
“ R +R,

and for the case of the three resistors, the equivalent resistance is given by

R, * R, * R,

R =
“ R *R,+Ry* Ry + Ry * R

For the case of n (n > 3) resistors (R, R,, R;, ..., R,) connected in parallel, the equiva-
lent resistance is given by

i = i + - 4.4 i
Req Rl 2 Rn
1.yl
Req i=1 Ri
or
1
R,
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For the case of two capacitors C, and C, connected in parallel, the equivalent capaci-
tance C, is given by

Cy=C + G

For the case of n capacitors denoted by C;, C,, C;, ..., C, connected in parallel, the
equivalent capacitance C, is given by

n
Ceq = Zcz
i=1
For the two capacitors C; and C, connected in series, the equivalent capacitance C,,

is given by

C,. = G *G
1 C +C,

The equivalent capacitance C,, of n capacitors denoted by C;, C,, C;, ..., C, con-
nected in series is given by

1 &1
Ceq ;Cl

or

Com
2.,1/C)

The equivalent inductor L, for the case of two inductors L; and L, connected in
series is given by

Lg=L +1L,

For the case of n inductors L,, L,, L,, ..., L, connected in series, the equivalent
inductor L, is given by

For the case of the two inductors L, and L, connected in parallel, the equivalent
inductor L, is given by

L +L,

L =
“4 L+,
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R.2.60

R.2.61

R.2.62

R.2.63

For the case of n inductors L,, L,, L,, ..., L, connected in parallel, the equivalent
inductor L, is given by

1 51
e i=1 Lz
or
1
Loy =Gi 7
L)
Recall that the electric power dissipated by a resistor R, with voltage V across it,

and a current I flowing through it is given by
P=1+V=12+R=V2%R(W)
During an interval of time T, the energy (W;) dissipated by a resistor R is given by
Wr=P+T=1+V+T=(V?/R+T=1+R=+T(])

An ideal inductor with no (zero) resistance cannot dissipate energy; it can only
store energy. The energy stored in an inductor L is given by

W)= L= 200)

For the DC case (constant current I), the energy is given by

W= el ()

An ideal capacitor with no (zero) resistance cannot dissipate energy; it can only
store energy in its electric field. Its energy is given by

We=2+Coo’)()

For the DC case (constant voltage V), the energy is given by
1 2
We=2C+V20)

In a DC circuit, the steady-state voltage drop across an inductor L is 0 V since

dz(t)

o) = L%
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R.2.64

R.2.65

R.2.66

R.2.67

R.2.68
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and

dift) _

@

since i(f) is a constant, then v, () = 0 V.

In a DC circuit, the steady-state current* through a capacitor (C) is always zero (A)
since

ie( = 20
and
doct) _

dt

since v(f) is a constant, then i~(f) = 0 A.

Note that R.2.63 and R.2.64 imply that in a DC circuit during the steady-state
response, that is, for = 5 7,7 a pure inductor and a pure capacitor can be replaced
by a short and an open circuit, respectively.

The efficiency of a system denoted by 7 is defined as the ratio of the output power
divided by its input power. Then

n = (Po/Py) * 100%

where P, denotes the output power and P, its input power, both in watts.

Mesh or loop analysis (first proposed by Maxwell) refers to a procedure in which,
given an electrical network that consists for simplicity of resistors and voltage
sources can be expressed as a set of equations in terms of its loop currents by apply-
ing KVL around each of the independent loops of the network. The resulting set of
equations is sufficient to determine all the network currents.

The steps involved in obtaining the set of loop equations are

a. Assign a clockwise direction to each of the loop currents of the n loops of an
electrical network, and label the unknown loop currents I, I, I, I, ..., L.

b. For each one of the independent # loops, write the corresponding loop equation
by applying KVL around the loop.

c. A set of n equations in terms of the n unknown currents are then obtained.
d. Solve the set of n equations for the n unknown currents (I, I, I, I, ..., L).

e. A branch of the electrical network, which is a part of two adjacent loops, labeled
x and y, with loop currents I, and I, respectively, results in a net branch current
that is the algebraic sum of the two currents I, and I, (I, — I,) where 1 <x=n and
1<y=n.

* The concept of steady state is introduced later on in this chapter. At this point, consider steady state as the
stable or final current.

+

ris referred to as the time constant of the circuit introduced and discussed later on in this chapter. For simple

first-order circuits, 7 is either RC or L/R.
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L pp— V.
v, — §R2 —

FIGURE 2.8
Electrical network with two independent loop currents.

R.2.69

R.2.70

R.2.71

R.2.72

R.2.73

The following example illustrates the procedure used to obtain the set of two inde-
pendent loop equations for the circuit shown in Figure 2.8.

Vi= @R, +Ry)*L — R+, (loop# 1)
—V,=—R,*I, + R, + R;) * I, (loop# 2)

Observe that to obtain the loop equations set, the electric circuit must first be drawn
as a planar network. Also observe that the circuit shown in Figure 2.8 presents two
independent loops (from a total of three loops) in which two equations in terms of
two unknown currents (I; and I,) are obtained.

Note that the resulting branch current through R, in the circuit of Figure 2.8 is
given by I, — I,.

Note that the structure (and format) of each of the loop equations is given by the
following resulting expression:

for any arbitrary loop x

z [voltage sources in loop x] = Z[resistances inx]*I,

- 2 [resistances in branch xy] « I,  for all possible ys

where the voltage sources (left-hand side of the preceding equation) that generate
power are considered positive (otherwise negative if the source consumes power),
and the branch xy consists of the elements common to loops x and y that carry the

opposing currents I, and I,. The branch current in xy is then I, — I,.

Node analysis refers to a procedure where a given electrical network that consists
for simplicity of resistors and current sources are expressed in terms of all the
nodal voltages with respect to an arbitrary reference node label ground (with zero
potential). Thus, in a circuit with # nodes, one node is designated as the reference
node (ground), and for the remaining #n — 1 nodes (applying KCL), n — 1 equations
can then be expressed in terms of the n — 1 unknown nodal voltages labeled V;, V,,
Vo Voo Ve

For each one of the nodes, assume that the unknown current directions are
toward the reference node. Then solve the n — 1 nodal equations simultaneously
for all the unknown nodal voltages. Once all the nodal voltages are known, then all
the network voltages as well as all the network currents can be easily evaluated.
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72 Vy
AVAVAY
RS

ORI 0!
1

FIGURE 2.9
Electrical network requiring two node equations.

R.2.74 Nodal analysis is more powerful than mesh analysis in the sense that it applies
equally well to both planar and nonplanar networks.
For any arbitrary node x, the structure (and format) of the node equation is given by

z [current sources at x] = Z [admittances connected between x and y] = V,

- z [admittances between x and y] * V,  for all possible ys

where the current sources (left side of equation) are considered positive if its polar-
ity points towards x and negative otherwise, and y is a node connected to x through
an element (or group of elements) for any y, 1 <y =n-1.

R.2.75 The following example, a network consisting of three nodes as shown in Figure 2.9,
is analyzed using node equations.

ANALYTICAL Solution
The node equations are
For node V;

PR T IRV WA
Rl R3 R3

For node V,

_Iz=_i*vl+ i+i *Vz
R3 R2 R3

R.2.76 Source transformation refers to the fact that any voltage source V in series with a
resistor R, can be replaced by a current source I = V/R,, in parallel with the same
resistor R and vice versa as illustrated in Figure 2.10.

R.2.77 An example of source transformation is shown in Figure 2.11, where a voltage
source V = 10V, in series with a resistance R, = 5 Q, can be transformed into an
equivalent current source I = (10/5) = 2 A in parallel with R, =5 Q.

R.2.78 The superposition theorem states that in a linear DC network, the current through,
or voltage across any element is given by the algebraic sum (contributions) of the
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2A%% l Arbitrary network

I= VIR,

R Arbitrary network
S

FIGURE 2.10
Equivalent circuits obtained by source transformation.

I= VIR;=10/5=2 A

— v=1ov CT) ngSQ

FIGURE 2.11
Equivalent source transformation circuits as seen through terminals A and B.

R.2.79

R.2.80

currents or voltages produced independently by each source (current or voltage).
The concept of independence means that only one source is considered active,
whereas all the other sources (voltage or current) are set to zero.

Recall that when a voltage source is set to zero, the source can be replaced by a
short circuit, and similarly, when a current source is set to zero, the source can be
replaced by an open circuit.

The superposition theorem states then that in an n source electrical network, the
current through or the voltage drop across any arbitrary network element can be
obtained by solving n single source networks (where the single source network
refers to the original network with only one source at the time whereas all the
remaining sources are set to zero) for the variable of interest, which can be a cur-
rent or a voltage. The solution is the algebraic sum of the partial solutions (of the
single source networks).

Note that the voltage and current polarities (directions) are important when
solving each single source network, since the solution is the algebraic sum of the
(solutions) contribution of each source.

Thevenin’s theorem states that any two-terminal linear DC network across a load
Ry can be replaced by two elements: a voltage source called the Thevenin volt-
age Vyy and a resistor placed in series called the Thevenin resistance Rqy. The
Thevenin resistance Ry is calculated by setting all the sources to zero, removing
the arbitrary load R, (replace it by an open), labeling its terminals aa’, and either
calculating or measuring the resistance looking into the terminals (aa").

The Thevenin voltage V. is the open-circuit voltage across terminals aa’, after
having removed the arbitrary load R from the original circuit, while preserving
all the sources.

Norton’s theorem states that any two-terminal linear DC network can be replaced
by two elements, a current source in parallel with a resistor, where the current
source is the Norton short-circuit current denoted by I, and the resistance is the
Thevenin resistance Ryy.
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a
O
Arbitrary Arbitrary
network a load R
(@)
(a)
a
I O
Arbitrary ,
network Vaa’' = Vry
- O
® 2
a
o IN
Arbitrary
network
il
(c)
a
Arbitrary I
network .
with all sources R
settoazero [—O
(d) a

FIGURE 2.12

(@) A network with a connected load, (b) Thevenin model for Vy, (c) Norton model for I, (d) Thevenin—-Norton
model for Ryy;.

Vi = Arbitrary load R CT)IN § Ay Arbitrary load R,

(a) (b)

FIGURE 2.13
(@) Thevenin’s equivalent circuit, (b) Norton’s equivalent circuit.

The Norton’s short-circuit current I is the current through terminals aa’, obtained
by replacing R; by a short-circuit while preserving all sources.
R.2.81 The equivalent circuits used to evaluate the values of Vi, I, and Ry are shown
in Figure 2.12.
The Thevenin’s and Norton’s equivalent circuits are shown in Figure 2.13.
R.2.82 Note that the Thevenin’s and Norton’s equivalent circuits are related by a simple
source transformation as illustrated in Figure 2.14.
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VNV
Ry

p— R
— Vi T § ™
- In= Vu/Rry <

FIGURE 2.14
Thevenin’s source transformation into a Norton’s equivalent circuit.

Le

p
D

R.2.83 Let us gain some experience by using the different network theorems and tech-
niques just presented by solving the following example.
For the circuit shown in Figure 2.15, find the voltage across R; = 5 Q (Vaa’) by
hand calculation by using

. Loop equations
. Node equations

Source transformation—voltage to current source

. Superposition
Thevenin’s theorem

a
b
c.
d. Source transformation—current to voltage source
e
f.
g. Norton’s theorem

R=15Q
a
VWV
Vosoy § <T>IS=12A
s= — R =5Q
o

FIGURE 2.15
Network of R.2.83.

ANALYTICAL Solutions

a. The loop equation solution is illustrated in the circuit diagram of Figure 2.16. The
loop currents I, and I, are indicated in Figure 2.16. Then the loop equation for loop
#1is given by

60 V = 201, — 5I,
and since

I,=-12A
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R=150Q R=5Q
a
A%
1 h R.=5Q T k=12A
Vs=60V _— b
T 4 o
oy
FIGURE 2.16

Loop model of network of R.2.83.

Then
60V = 20I, — 5(—12)
60 = 20[, + 60
602—060 —1,=0
Then

Vaw’ =5Q+*12A =60V
b. The node equation solution is referred to as the circuit diagram of Figure 2.16. The
node equation for node a shown in Figure 2.16 is given below while the reference
node is a’ (grounded).

12A= (l + i)Va - i60
5 15 15

12=2yi—a
15
D+da=2y,
15

15

16— ="Va
4

Va=60VorVaa" =60V

c. The voltage source transformation into a current source is shown by the circuit
diagram of Figures 2.17 and 2.18, where first the transformation is illustrated
(Figure 2.17), followed by the currents’ source combinations (Figure 2.18).

Then
Vaa’ =(15 || 5) 16

,_ (15+5+16)
15+5

Vaa =60V
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60/15 =4 A <T> §H=1SQ §RL:5£2 <T>13=12A

FIGURE 2.17
The voltage source is transformed in the network of R.2.83.

R =150 §RL=59

wen (1)

NV

FIGURE 2.18
Current sources are added (combine into an equivalent source) in the network of Figure 2.17.

R=15Q R =5Q

— V=60V — 12*5=60V

FIGURE 2.19
Current source transforms into a voltage source in the network of R.2.83.

d. The current source transformation into a voltage source is illustrated by the circuit

diagram of Figure 2.19. Then

_ 60— 60 _
20

I 0A

therefore
Vaa’ = 60V

e. The superposition solution is illustrated by the two circuit diagrams shown in

Figure 2.20.

123
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15

I\/\/\[ Va1 Vaz -
__T_ V=60V §5 15 5 ¢1ZA
L @ (0) L

FIGURE 2.20
Superposition models of the network of R.2.83. (a) Circuit of Figure 2.15 with I, = 0, (b) Circuit of Figure 2.15
with V, = 0.

R=15Q

AVAVAY aI

lk=12A

1o
I

FIGURE 2.21
Thevenin’s models of the network of R.2.83.

The two single source networks of Figure 2.20 are solved for the voltage drop
across R = 5Q labeled Va; and Va, and the voltage Vaa’ is then the algebraic sum
(Va, + Va,). The steps involved are indicated as follows:

a. Circuit of Figure 2.15 with I, = 0
b. Circuit of Figure 2.15 with V, = 0

The voltage Va, for the circuit shown in Figure 2.20a is given by

_ (5+60)
20

Va, =15V (using the voltage divider rule)

The voltage Va, for the circuit shown in Figure 2.20b is given by

_ (15%5%12)

Va,
15+5

=45V

Since Vi1, and Va, have the same polarity

Va=Va, + Va, =15V + 45 V=60 V

6. The solution using Thevenin’s theorem is indicated by the circuit diagram of
Figure 2.21. (Note that the load is R, = 5 Q.)
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RTH= 1SQ
VY

— V=240V
— ™ §Fi|_=5£2

\||—A-

FIGURE 2.22
The Thevenin’s equivalent circuit of the network of R.2.83.

AAAY
15Q a

— V=60V
p— ls=12 A

In

FIGURE 2.23
The Norton’s equivalent model of the network of R.2.83.

Note that the load R, is removed from the circuit of Figure 2.21 and the open
voltage Vaa’ is V. The evaluation of Vi is given by

Vag' = Vi =60V +15Q+«12A=60V+ 180V =240V

Then Ry; = 15 Q is obtained by setting all the sources to zero.
The resulting Thevenin’s equivalent circuit is shown in Figure 2.22.

Finally, Vaa’ is given by

, _ (5%240)
15+5

Vaa =60V

g. Norton’s solution is indicated by the equivalent circuit diagram model of Figure 2.23.
The short current I is then evaluated below

IN=12A+ﬂ=12A+4A=16A
15Q

The resulting Norton’s equivalent circuit is shown in Figure 2.24.
Vr, =Vaa’ = (15||5)I

Ve = Vaar = 1525210 _ g5y
L 15+5

125
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Rmiy=15Q
a
Iy=16 A § § R =5Q
o
FIGURE 2.24

The Norton’s equivalent circuit of the network of R.2.83.

FIGURE 2.25
Maximum power delivered to R; when R; = R..

R.2.84

R.2.85

R.2.86

R.2.87

R.2.88

The maximum power transfer theorem states that maximum power is delivered to
a load R, connected to an ideal voltage source V, connected to a series resistor R
when the load resistance R; is equal to the resistance R, as illustrated in the circuit
diagram of Figure 2.25.

(Maximum power is delivered to R, when R; = R,.)

For a load R; connected to an arbitrary network, maximum power is delivered to
the load R;, where R, is calculated in the following way:

a. The load is removed and replaced by an open circuit (with terminals aa’).

b. Calculate the Thevenin’s equivalent resistance Ry by looking into the open ter-
minals (aa’).

¢. Maximum power is delivered to the load by adjusting R; to be equal to Ryy.

Note that the maximum power transfer theorem holds for the case where Ry
is fixed and R; is allowed to vary. If R; is fixed but Ry is allowed to vary, then
maximum power delivered to R; will not occur when R; is equal to Ry, but rather
when Ry = 0.

For the example presented in R.2.83 referred to as Figure 2.15, maximum power is
delivered to the load R; (5 Q) by changing (increasing) R; to 15 Q. The resulting
Thevenin’s equivalent circuit of the given network as well as the new load R; is
shown in Figure 2.26.

The maximum power delivered to R, is then given by

_(Bovy

P, = =60W
RL-max 15 O

If a circuit is purely resistive with no energy-storing elements (L or G) and switch-
ing occurring, then there will be no transient behavior, and current and voltages
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Rpy=15Q

V=60V R =15Q

FIGURE 2.26
Load R, is increased to 15 Q from 5 Q (potentiometer) for maximum power transfer of the network of R.2.83.

R.2.89

R.2.90

R.291

R.2.92

R.2.93

R.2.94

R.2.95

reach a steady state instantaneously. In contrast, if storing energy elements are
present in a circuit, such as inductors or capacitors, and switching occurs, then
transient takes place due to the trapped network voltages and currents, and it takes
time to settle into the new stable values.

In brief, transients exist in a circuit if and only if, at any time, a sudden change is
made (switched) and energy-storing devices are present.

Transient solutions involve differential equations in which initial conditions must
be considered. These solutions require the inclusion of the energy-storing devices
(capacitors and inductors) as well as the trapped conditions.

Transient solutions involve either growth or decay time exponentials, and are
dependent on the exponential coefficient referred as the network time constant (z).

The time constant can be either RC or L/R or a combination or superposition of
time constants for the case of more complex circuits.

The time constant (7) is the time the circuit requires to complete 63.2% of the change
(or discharge) that ultimately takes place. Practical considerations are associated
with the time constant, for example, four or five time constants is the time that a
circuit needs to reach the steady-state conditions, and after that time, all transients
die out or are no longer present.

The transient solution of a given circuit depends on the number of independent
energy-storing elements (capacitors and inductors), and not on the number of the
network loops or nodes. The reader should observe that capacitors or inductors in
series or parallel are not independent, since they can easily be combined. Similarly,
a delta (A) or Y connection consisting of three inductors or three capacitors, one in
each branch, leads to just two independent energy-storing elements, since the third
element depends on the value of the other two.

Electric circuits with one capacitor or inductor lead to first-order ordinary differ-
ential equations, regardless of the structure or complexity of the circuit. Complex
circuits with only one type of energy-storing device can be analyzed by using
Thevenin’s theorem, assuming that the load is the energy-storing element.

Let us start the transient analysis by considering the RL series circuit shown in
Figure 2.27. The switch shown in the circuit closes at t = 0 (it is open for t < 0), and
let us assume that the coil is discharged, that is, i((0) = 0. Then by applying KVL, a
first-order linear differential equation is obtained, and then solved in terms of the
unknown current i(f), illustrated as follows:

dit) _

Ri(t)+ L
i)+ L=

1%
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Switch closes att =0
o v
VWA
1 i(t
L 0 ?
T d
N
FIGURE 2.27

RL series circuit.

R.2.96

R.297

R.298

solving for i(t) results in
i(f) = K(1 —e ") fort=0 witht= L
R R

When a sudden voltage V is applied to a simple-series RL circuit, a transient con-
dition results (recall that the inductor controls the current flow), and the general
current and voltage relations are given by

i@z%ﬂ—f%

and the voltage across the resistor R is given by
vr(t) = V(1 —e )
and the voltage across the inductor L is given by
v, () =V —0x(t) =V—(V—=Vet7)=Vet/r

where r = L/R () is the time constant of the circuit. Note that V = v(t) + v,(#).

In an RL circuit in which the inductor is charged and its initial current is I, and
initial voltage across V, (with no source), the inductor discharges and the current
and voltage relations are given by

. e Vo o
ity=1,+e Zf"*e i
and
UL(t) = Vo * e_t/f
Let us now turn our attention to the RC series circuit shown in Figure 2.28.

The switch is open for f < 0, and closes at ¢t = 0, assuming that the capaci-
tor is discharged, that is, v-(0) = 0. Then applying KVL (around the loop), the
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Switch closes att =0

o A

i i(t) —_—c

AN

FIGURE 2.28
RC series circuit.

R.2.99

R.2.100

following first-order linear differential equation is obtained in terms of the
unknown loop current i(t) illustrated as follows:

%ji(t)dt +Ri() =V

then
. 14
i(t)y= —e i/
®) R
where r = RC.
vr(t)=Ve* fort>0
and

o) =V —vr(t)=V = Ve fort>0
When a sudden DC voltage V is applied to a simple series RC circuit (with v (0) =
0 V), the capacitor voltage charges up to
vet) = V(1 — e

and the current through C is then given by
1%4
(1) = — —t/t
ic(t) RE

where 7 = RC (s) is the time constant of the circuit.

A charged capacitor in an RC circuit with an initial voltage V(0) and no sources,
as indicated in Figure 2.29, discharges with the following current and voltage
relations:

vc(t) = Voe '/
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FIGURE 2.29
Charged capacitor in an RC series circuit.

R.2.101

R.2.102

R.2.103

R.2.104

where r = RC, and

ity= 2D Yo e gorp=0

=
=

When a circuit switches from one set of conditions to a new set of conditions,
there is a transition period where voltages and currents are adjusting to the new
conditions. The term transient response is the adjusting transition time from its
initial to its final voltage and current values. The transition takes place in the
interval 0 = ¢t = 57; and the steady-state response refers to the voltages and cur-
rents for ¢ > 51

Let us now review and summarize the inductor’s characteristics.

¢ There is no voltage drop across an inductor if the current through it is not chang-
ing with time. An inductor is, therefore, a short circuit for DC, and v, () = 0, for
t > 5t

¢ A finite amount of energy can be stored in an inductor even if the voltage across
the inductor is zero.

* An inductor resists abrupt changes in current.

¢ An inductor never dissipates energy; it is only capable of storing energy. This
statement is true for the ideal inductor; however, it is false for the real inductor,
which always possesses some internal resistance.

The capacitor’s characteristics are summarized as follows:

¢ The current through the capacitor is zero, if the voltage across it is not changing
with time (DC).

¢ A finite amount of energy can be stored in a capacitor even if the current through
the capacitor is zero.

® A capacitor resists abrupt change in voltage across it.
* A pure capacitor cannot dissipate energy; it can only store energy.

For example, analyze the circuit shown in Figure 2.30, and write the differential
equation for t = 0, if the switch opens at t = 0 after being closed for a long time.
Obtain expressions for v(f) and i(t) for t > 0.
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FIGURE 2.30
RC network of R.2.104.

R.2.105

R.2.106

R.2.107

ANALYTICAL Solution

Fort<0,0.0) =2A+4Q=8V.
For t > 0, the nodal differential equation is given by

cdoc®) o) _
dt R

where 7 = RC. The solution to the preceding differential equation is of the form v(t) =
Ae 7, and by satisfying the initial conditions at t = 0, the following is obtained:
v:(0) = 8 = A, then v(f) = 8¢V and ig(H) = v(t)/R = 2¢7*/7 (amp).

The RC and RL transient responses are modeled by first-order differential equa-
tions. The RLC transient response leads to a second-order differential equation
where the roots of its characteristic equation may be complex numbers. Those
roots are referred to as the complex natural frequencies of the circuit. The location
of the roots on the complex plane determines the form of the transient response
of the electric network. Roots located on the left half of the plane represent decay-
ing exponentials, whereas roots on the right half of the plane represent growing
exponentials.

Complex conjugate roots can be associated with oscillations (sinusoids); and if
they are located in the left half of the plane, they are decaying; and in the right
half of the plane, they represent growing sinusoids. When the roots are purely
imaginary, they are located on the imaginary (jw) axis of the complex plane and
represent sustained oscillations.

Oscillations occur in an RLC circuit when R is small, or the ideal case is when
R = 0, then oscillations are sustained. Observe that the resistance R controls the
energy dissipated (losses) in the form of heat (friction) and is commonly referred to
as the damping coefficient.

Three distinct cases are encountered in the solution of second-order systems. They
are

* Overdamped
® Critical damped
* Underdamped
These cases are analyzed next for both the series and parallel RLC configurations.
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§ L R —cC
Vc(to)

FIGURE 2.31
Source free parallel RLC of R.2.109.

R.2.108 Systems higher than the second order are not considered in this section, but in
general, the solution follows the same steps outlined for the second-order system.
Higher-order systems arise when there are more than two independent energy-
storing elements. The transient response is obtained by solving for the roots of
the network characteristic equation that consist of either real numbers, in which
case the response consists of exponentials, or complex conjugate, in which case the
response consists of sinusoids (decaying or growing).

R.2.109 Let us analyze the source-free parallel RLC circuit shown in Figure 2.31. The nodal
differential equation (KCL) is given by

do(t) _
dt

o(t) 17 1 — i
1({)+L;[ 0(A)dA — i (to) +C 0

Then differentiating each term with respect to t yields

doll) | Ldot) | 1, _ g

C
dar? R dt L

The auxiliary or characteristic equation becomes (see Chapter 7 of Practical
MATLAB® Basics for Engineers)

C52+3+l=0
R L

where s = d/dt, and solving for the two roots yields

-1 1\ 1

e e
2RC 2RC LC

Let
N
° JLC
where w, is called the resonant frequency, and let
1
o= "
2RC

where « is referred to as the neper frequency,
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and s; and s, are referred as the complex frequencies given by

— oy + 2 _ 2
51,2 o= L Jo wy

R.2.110 As mentioned, the natural response of a parallel RLC circuit results in one of the
following three cases:

a. Overdamped
b. Critical damped
c. Underdamped
Observe that the elements define the specific case.

R.2.111 Let us analyze each case, starting with the overdamped parallel configuration that
occurs for the following condition:

Jo2 —wi <o
—_ [2 — 2
S10=—aX Ja” —w;

and since

then
[—a—‘/az —w%] < [—oc-h/ocz —w%] <0

Note that both s, and s, are real, distinct, and negative. Then the solution of the
differential equation of R.2.109 is of the form

u(t) = Aje™tt + Aye2!

where A, and A, are constants that can be evaluated from the network initial
conditions.

R.2.112 The critical-damped parallel case occurs for the following condition:

@i =0

Therefore both s, and s, are equal to —a, and « is real and negative. The solution
of the differential equation of R.2.109 is then of the form

o(t) = Aje™ + Ajte™

where A; and A, are constants that can be evaluated from the network initial
conditions.

R.2.113 The underdamped parallel case occurs for the following condition:

o2 —w? <0

Then s, and s, become complex conjugate frequencies, and the response of the
differential equation of R.2.109 is of the following form:

u(t) = e *[A; cos(w,t) + A, sin(w,t)]
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L
\AANS
—cC
AVAVAY,
R
FIGURE 2.32
Source free series RLC of R.2.114.
where
w,; = Jw? —o?

R.2.114

where A, and A, are constants that can be evaluated from the initial network
conditions.

Let us now turn our attention to the source-free RLC series circuit shown in
Figure 2.32, assuming for simplicity that all the initial conditions are zero.
The loop differential equation of the circuit of Figure 2.32 is given by

di(t)

fj (t)dt + L= >+ Ri(t) = 0

Differentiating every term of the preceding equation with respect to ¢ yields

d?i(t) dl(t) B
LR Cz(t)—O
or
ift)  Rdi) | 10 o

dar? L dt  CL

The preceding equation is a second-order, linear, homogeneous differential
equation, and the auxiliary equation is given by

52+Es+i=0
L LC

and the roots of this equation are

—-R_ [(RY 1
Sl,z (7) -
21 ~\laL LC

- R — _1 :
where a = 7} is referred as the neper frequency, w, = Jic i the resonant

frequency, then s,, = —a * \a? — w? are referred to as the complex network
frequencies.
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R.2.115

R.2.116

R.2.117

R.2.118

Observe that the term (similar to the parallel case) a? — wﬁ can be positive, zero,
or negative. Then the respective solutions are
* Overdamped
¢ Critical damped
* Underdamped
The natural overdamped RLC series circuit response occurs for the condition a? > w?.
Then the roots s; and s, are real, unequal, and negative numbers, resulting in a

solution of the form i(f) = A,e™! + A,e~%, where the constants A, and A, depend
I . . . di(t

on the initial network conditions |usually given by i(f = 0) and% , 0).

The natural critical-damped RLC series circuit response occurs for the condition

a? = w?. Then the roots s, and s, are real (—a) and repeated, resulting in a solution

of the form i(t) = A,e™* + A,te™*, where the constants A, and A, can be evaluated
from the system’s initial conditions.

The natural underdamped RLC series circuit response occurs for the condition
a? < w? Then the roots s, and s, are a complex conjugate pair, resulting in a solu-
tion of the form

i(f) = e [ A, cos(wyt) + A, sin(w,t)]

where w; = \w? — a? and A, and A, are constants that depend on the initial
network conditions.

The transient analysis of a circuit that contains more than one loop can be described
by a set of differential equations. The set of differential equations may consist of
either loop or node equations where the unknowns may be either the loop cur-
rents or the node voltages. For example, the set of two loop differential equations
(using KVL) for the circuit shown in Figure 2.33 is illustrated, where the two loop
currents define the system’s transient response.

FIGURE 2.33
Transient electrical network of R.2.118.
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ANALYTICAL Solution

The set of loop differential equations are

diy(t)
dt

(R, + Ry)i() - (Rgzm L, Mj 0

Loop#1: (L, +L,) ot

diy(t) _ diy(t)

dt

Loop#2: — L, Ryiy () + (L, + Ly) + (R, + Ry)ip(t) = 0

The set of initial (or boundary) current conditions such as i(t,) = I, and i,(t,) = I,
must be known to completely specify its response.

R.2.119 Recall that capacitors and inductors can be combined and represented by a single
equivalent element depending on the type of connection (series or parallel).
The voltage and current divider rules for capacitors and inductors are stated
below.

R.2.120 The voltage divider rule is used to evaluate the voltage drops VL1 and VL2
across the inductors L, and L, when connected in series with and applied volt-
age V, across them as shown in Figure 2.34.

VLl = Ll o
L +L,

VLZ - L2 o
L+,

R.2.121 Let us now consider two inductors L, and L, connected in parallel, with a current
(source) I feeding the parallel combination as indicated in Figure 2.35.

.
L VL,

_l )

A __ .
Ly VL,

FIGURE 2.34
Voltage divider rule across inductors in series of R.2.120.
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FIGURE 2.35
Current divider rule for inductors in parallel.

FIGURE 2.36
Voltage divider rule across capacitors in series.

Then the current divider rule states that the currents IL, and IL, are given by

IL, = I

YL +L, °

IL, = L, I,
L +L,

R.2.122 Now consider two capacitors C, and C, connected in series as shown in Figure 2.36

with and applied voltage V, across them.
Then the voltages V-, and V., are evaluated by using the voltage divider rule

as follows:
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’ CTD | —=e | —=c

FIGURE 2.37
Current divider rule for capacitors in parallel.

R.2.123 Finally, consider the two capacitors C; and C, connected in parallel with a current
(source) I feeding the parallel combination as shown in Figure 2.37.
The currents I-; and I, are evaluated by using the current divider rule as
follows:

2.4 Examples

Example 2.1

1. Determine the charge induced when a current of 1 A passes through a point during
2 min
2. Determine the number of electrons required to build up the charge of part 1

Solve this problem analytically and by using MATLAB.

ANALYTICAL Solution

Charge Q (coulombs) =+t =1A *2 min * %
Q=120As=120C
The number of electrons required to build up a charge of Q = 120 C is given by

Number of electrons = 120 C * w =7.49 X107 electrons
1.602 X107 C
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MATLAB Solution
% Script file: charge

I =1;
T = 2*60;
Q = T*m

disp(‘*****************************************************q

disp(*The charge of 1 amp passing through a point during 2 minutes is :’);
disp(Q);

disp(‘Coulombs’)

format long

Ne=Q*(1/(1.602*%10e-19));

disp(*The number of electrons is:’); disp(Ne)
disp(‘*****************************************************ﬂ

>> charge

khkkhkkhkkhkkhkhkkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkdkhkhkhkhhkhkdhkhkhkhkhkhkdhkdhkhkhkhkhhkdxdxkx
The charge of 1 amp passing through a point during 2 minutes is :
120 Coulombs
The number of electrons is:
7.490636704119849e+019

khkhkkkhkhkkkhhhkkhdhkhhhhkhkhhhkhhhhkkhhhhkhhhhhkdhhkhkdhhkhhhhrhkdhrkhkdhrrkhdkrrhkdhxkdx

Example 2.2

Create the MATLAB script file series that returns the equivalent resistance (across termi-
nals AB) shown in Figure 2.38, where R; =10 Q, R, =10 Q, R; =20 Q, and R, = 30 Q.

MATLAB Solution
% Script file: series

Resist = [10 10 20 30];

Requi = sum(Resist);
disp(‘********************************W
disp(‘The equivalent resistance is=’); disp(Requi);
disp(® Ohms’
disp(‘********************************’

)
)

>> series

dhkkkhkkkhhkhkkhkhkhkkhkhhkkhkhhhkhkdhhkhhhkhkhkhrhkdhrkkdk

The equivalent resistance is =
70 Ohms

dhkhkhkkkhhkkhkhhkhkhkhdhkhkhhhkhhhhkhkhkhdhkrrhhkhrhhkhkhhkx

R =10Q R,=10Q R3=20Q R,=30Q
e AVAVAY AVAVAY AVAVAY AVAVAY « B

FIGURE 2.38
Series connections of R;, R,, R;, and R, of Example 2.2.
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. * o A
§R1 =10 Q§ R,=10 Q§H3=ZOQ §R4= 30 Q§ Rs=50 Q
o B
FIGURE 2.39

Parallel connection of R;, R,, R3, R,, and R; of Example 2.3.

Example 2.3

Create the script file parallel that returns the equivalent resistance R,  across terminals
AB of the circuit shown in Figure 2.39, where R, =10Q,R, =100, R; =20Q, R, =30 Q,
and Ry = 50 Q.

MATLAB Solution
% Script file: parallel
Resist = [10 10 20 30 50];
ones =[1 1 1 1 1]1;

Re = ones./Resist

disp(‘***************************************************ﬂ
disp(‘The admittances (in sie.) are=’);disp(Re)

Res = sum(Re);

Req = 1/Res;

disp (‘The equivalent resistance is given by:’); disp(Req)
disp(® Ohms ")

disp(‘***************************************************q

>> parallel

kkkkhkkkhkkhkkhkkhkkkkhkkhkhkkhkkhkhkhkkhkkkhkkhhkhkhkhkhkhkkkkkhkkkhkkhkhkhkkkkkkhkkkkkkkk*x
The admittances (in sie.) are =
Re =
0.1000 0.1000 0.0500 0.0333 0.0200
The equivalent resistance is given by:
3.29670329670330 Ohms

khkhkkkkhkkkhkhkhkkhkhkhkhkhhkhkhkhhkhkkhdhkhkhhhkhkhdhkhdhrrkdhhkrkhdhkkhhhkxkx

Example 2.4

Color coding is used to specify the resistance values (in ohms) as well as its statistical
performance (tolerance and reliability).

The color code of a resistor consists of five color bands, as shown in Figure 2.40, where
the first three color bands are used to specify the resistance value and the remaining
two bands are used to specify their statistical performance.

Each color band represents a numerical value defined in Table 2.2.
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FIGURE 2.40
Resistor color bands.
TABLE 2.2
Band 1 Band 2 Band 3 Band 4 Band 5
(First Digit) (Second Digit) (Multiplying Factor) (Tolerance) (Reliability)
Brown =1 Black = 0 Silver = —2 Gold = 0.05 Brown = 0.01
Red =2 Brown = 1 Gold = -1 Silver = 0.10 Red = 0.001
Orange = 3 Orange = 3 Black = 0 None = 0.20 Orange = 0.0001
Yellow = 4 Yellow = 4 Brown =1 Yellow = 0.00001
Green =5 Green =5 Red =2
Blue = 6 Blue = 6 Orange =3
Violet =7 Violet =7 Yellow = 4
Gray =8 Gray =8 Green =5
White =9 White =9 Blue = 6

Violet = 7

Gray =8

White =9

The value of an arbitrary color-coded resistor R is specified by the following rules:

1. The first (A) and the second (B) band represent the first (4) and the second digit (B),

of the value R.

2. The third color band (C) represents a multiplication factor of 10 raised to the power

C (10%), with unit ohms (Q).

3. The fourth band (D) gives an index of the manufacturer’s tolerance given by [=(AB) *

10€ « D].

4. The fifth color band (E) gives an index of the manufacturer’s component reliability,
which represents the probability of failure of R per the first 1000 hours of use.

The nominal value of an arbitrary color-coded resistor R is given by

= (AB) + 10 Q
The tolerance of the resistor R would be bounded by

{(AB) » 10€ — (AB) + 10 « D} = R = {(AB) » 10 + (AB) + 10 « D}

Finally, the reliability of the resistor R is given either by E or E%, and that quantity indi-

cates the probability of failure of R during the first 1000 hours of usage.
For example, let a resistor R be defined by the following color bands:

Band 1 = Brown (A)
Band 2 = Black (B)
Band 3 = Orange (C)
Band 4 = Silver (D)
Band 5 = Brown (E)
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ANALYTICAL Solution

From Table 2.2, the nominal value of R is given by
R=10+100Q=10kQ
and the range of the resistor R (tolerance) is given by
(10 »10%) — (10 #10° « 0.1) = R = (10 » 10%) + (10 = 10% » 0.1)
then
9,000 Q@ = R = 11,000 Q

The fifth color band indicates the reliability of R, that is, 0.01. In the present case, it indi-
cates that one in every 100 resistors would fail during the first 1000 hours of usage.

Having defined the color code of resistors, we next proceed to write the MATLAB
script file color_code, which returns the nominal value of a given resistor R, its tolerance
and reliability factor, given its color-coded specs. The program is then tested for the
resistor with the following color specs: brown, green, orange, silver, and red.

MATLAB Solution

% Script file: color code

% Color Code Program

Colorl = char(‘Brown=1’, ‘Red=2’, ‘Orange=3’, ‘Yellow=4’, ‘Green=5’,’Blue=6’,
‘Violet=7’, ‘Gray=8',’White=9');

disp (‘The first color band, with its numerical values are given below:’);

disp (Colorl)

A=input(‘Enter the numerical wvalue of the first band, A=’);

disp(* )

Color2=char(‘Black=0’, Colorl);

disp(‘The second color band, with its numerical values are given below:’);

disp(Color2)

B=input (‘Enter the numerical value of the second ban, B=’);

disp(* )

Color3=char(‘Silver=-2’, ‘Gold=-1’, Color2);

disp(*The third color band, with its numerical values are given below:’);

disp(Color3)

C=input (‘Enter the numerical value of the third band, C=');

disp(* )

Color4=char('Gold=0.05’, ‘Silver=0.1’,’Noband=0.2");

disp(*The forth color band, with its numerical values are given below:’);

disp(Color4)

D=input (‘Enter the numerical value of the fourth band, D=’);

disp(* )

Color5=char(*‘Brown=0.01’, ‘Red=0.001’,’Orange=0.0001’,’Yellow=0.00001");

disp(*The fifth color band, with its numerical values are given below: ‘);

disp(Color5)

E=input (‘Enter the numerical value of the fifth band, E=');

disp(* )

R=(A*10+B)*10"C;

Rmin=R-R*D;Rmax=R+R*D;



Direct Current and Transient Analysis 143

Relia=100000%*E;
QLGP (VA *F Ak Kk k kA kKK I KKK KKK K IR KA KK I KK AKX I KKK I KKK KT )
Aisp(‘****kkkkkk*kxk***R E S U L T S **kkkkkkkhkhkhkhhhhrhdkhhhkrhkrhks)

disp(\**************************************************************l)

disp(['The nominal value of R is ', num2str(R),’chms’])

disp(['The range of R (tolerance)is between ‘',num2str(Rmin),’ and ',
num2str (Rmax),’ Ohms’])

disp(['*The statistical number of failure (reliability) is

‘,num2str(Relia),’ for every 100,000 resistors per 1000 hours of use’])

diSp(‘**************************************************************')

The script file color_code is now tested for the resistor R defined by the following color
bands: brown, green, orange, silver, and red.

>> color code

The first color band, with its numerical values are given below:
Brown=1

Red=2

Orange=3

Yellow=4

Green=5

Blue=6

Violet=7

Gray=8

White=9

Enter the numerical value of the first band, A=l

The second color band, with its numerical values are given below:
Black=0

Brown=1

Red=2

Orange=3

Yellow=4

Green=5

Blue=6

Violet=7

Gray=8

White=9

Enter the numerical value of the second ban, B=5

The third color band, with its numerical values are given below:
Silver=-2

Gold=-1

Black=0

Brown=1

Red=2

Orange=3

Yellow=4

Greens=5

Blue=6

Violet=7

Gray=8

White=9

Enter the numerical value of the third band, C=3

The fourth color band, with its numerical values are given below:
Gold=0.05

Silver=0.1



144

Practical MATLAB® Applications for Engineers

Noband=0.2
Enter the numerical value of the fourth band, D=0.1

The fifth color band, with its numerical values are given below:
Brown=0.01

Red=0.001

Orange=0.0001

Yellow=0.00001

Enter the numerical value of the fifth band, E=0.001

khkhkkkhkkhkkkkkhkkkhkhkhkkkhkhkhkkhkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkkkkkhkkkkkkkkkkkkkkkkkk
khkkkhkhkhkkkhkhkhkkkhkkkhkkkkkkk*x*R E S ULT S**************************
hhkkkkkkkhkhkhkhhhhhhkkhkhkhkhkhhhhhhhkkkkkhkhhhhhhhkkkkhkhkhkhhhhhhkkkkkkhkhhkkhkkk
The nominal value of R is 15000 ohms

The range of R (tolerance) is between 13500 and 16500 Ohms

The statistical number of failure (reliability) is 100 for every

100,000 resistors per 1000 hours of use
khkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhkhkhhkhkhkhkhkkhkhkhkhkhkhkhkhkhhkhkkhkhkhkkhkhkhkhkkkhkhkkkhkkkkkkkkk

The reader is encouraged to run and test the preceding program for the three color-
coded resistors, given in Table 2.3, and for any arbitrary color-coded resistance.

TABLE 2.3

Examples of Color Coded Resistors

Band 1 Band 2 Band 3 Band 4 Band 5

Yellow Red Orange Silver Yellow

Gray White Violet Gold Orange

Red Green Black No band Red
Example 2.5

Solve by hand and by using MATLAB for the energies stored in the capacitors C; = 1 F
and C, = 2 F shown in the circuit diagram of Figure 2.41 expressed in the following units:

1. Joules

2. British thermal units
3. Foot pound

4. Watt hour

See R.2.36 for unit conversions.

ANALYTICAL Solution
The equivalent DC circuit of Figure 2.41 is redrawn in Figure 2.42
Lv,=10V
Ve = Vio = (R, /(Ry +R,))*10 = (2% 10)/5=4V
W, =(1/2)%C, » V2 =(1/2)*1%102 =50 ]
W, =(1/2)%Cy# Vey2 = (1/2) #2442 =16 ]
2. W, = 50/1055 = 0.0474 Btu
W, =16/1055 = 0.0152 Btu
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Ci=1F

Y R3 =4Q
1 A4
AVAvAY
R,=2Q
AVAvAY;
R =3Q
|1
[
CZ = 2 F
| | |
1
V=10V
FIGURE 2.41
Electrical network of Example 2.5.
||
11
C1 =1 F
. % Ve, =10V % 4
R =3Q R,=2Q

V=10V

FIGURE 2.42
Equivalent DC circuit of Figure 2.41.

3. W, = 50 0.737 = 36.85 ft - Ib,
W, =16 % 0.737 = 11.79 ft - Ib,

4. W, = 50/3.6 » 107 = 0.0000138 kW h

W,

16/3.6 » 107 = 0.00000444 kW h

MATLAB Solution

>> R1=3; R2=2; Cl=1; C2=2; VC=10;

>> VC1=VC; VC2=(R2/(R1+R2))*VC;

>> W1 J=0.5*C1*VC1*2,W2 _ J=0.5*C2*VC2"2

wi_J

50
W2 J =

16

145
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>> W1BTU=W1J/1055, W2BTU=W2J/1055

W1l BTU

W2 _BTU

0.0474

0.0152

>> W1 _ftlbf =W1J*0.737,W2 _ftlbf=W2J*0.737

W1l ftlbf

W2 ftlbf

36.8500

11.7920

>> W1 _Kwh=W1J/3.6%10"-6, W2 _Kwh=W2J/3.6*10"-6

W1l Kwh

W2 Kwh

Create the script
and voltage in a

1.3889e-005

4.4444e-006

Example 2.6

file linearity that verifies the linear relation between the current
resistive circuit (Ohm’s law), and the nonlinearity of its power for

the circuit shown in Figure 2.43, where the applied voltage V, varies over the range
10 V = V, = 1000 V in linear increments of 10 V by obtaining the following plots:

1. V,versus I

2. V, versus Py (power dissipated by R = 1 k()

FIGURE 2.43

4/%
+ §1k§2

Network of Example 2.6.

MATLAB Solution

$Script file:
R=1.0e3;
V=10:10:1000;
I=V./R;

P=I.*V;
subplot(2,1,1)

linearity

plot (V,I*1000)
title(*Current vs. Voltage’)
xlabel(‘Voltage (Volts)’)
ylabel(*Current (mA)’)

subplot(2,1,2)
plot (V,P)
title(‘Power

vs. Voltage’)

xlabel(*Voltage (Volts)’)

ylabel(‘Power

(watts)’)

The script file linearity is executed and the results are shown in Figure 2.44.
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Current versus Voltage
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FIGURE 2.44
Plots of Example 2.6.

Example 2.7

Analyze the circuit shown in Figure 2.43 for the case where the applied voltage source
is constant at V; = 250 V, but the resistance (R) varies over the range 200 Q = R = 2kQ

in linear increments of 10 Q. Obtain plots of

1. I'versus R
2. Py versus R

MATLAB Solution

>> V = 250;

>> R = 200:10:2000;

>> I = V./R;

>> P = I.*V;

>> plot(R,I*1000,R,P) % current in mA

>> title(‘Current and Power vs Resgistance’)

>> xlabel(‘Resistance (Ohms)’), ylabel(‘Current (mA), Power(Watts)’)
>> grid on

>> gtext (‘Current’) % place the text ‘Current’ and

>> gtext (‘Power’) % control text by mouse

)

>> % plots are shown in Figure 2.45

‘Power’

Note that by increasing R, the current I decreases. Since P; = I°R, increasing R decreases
I, where I is the dominant variable. Then by increasing R, the power Py, decreases.
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Current and Power versus Resistance
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FIGURE 2.45
Plots of Example 2.7.
Example 2.8
Analyze the circuit diagram shown in Figure 2.46, over the range 0 = R, = 10 kQ, in
linear increments of 10 Q by returning the following plots:

1. R, versus I
2. R, versus V,
3. R, versus V,

L —{> Ry=1kQ 4%

FIGURE 2.46
Network of Example 2.8.

MATLAB Solution
>> R1 = 1.0e3;

>> V = 10;

>> R2 = 0:10:10000;
>> I = V./(R1+R2);
>> subplot (3,1,1)
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>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

Current | (mA)

Voltage V1 (Volts) Voltage V2 (Volts)

10

plot (R2,I*1.0e3) % current in ma
title (‘Current I, Voltage V2, and Voltage V1 vs R2');
ylabel (‘Current I (ma)’)

grid on; V2 = R2.*I;

subplot(3,1,2)

plot (R2,V2)

ylabel (‘Voltage V2 (Volts)’)

grid on

subplot (3,1,3)

V1 = R1*I; plot(R2,V1)

xlabel (‘Resistance R2(Ohms)’),

ylabel (‘voltage V1(Volts)’)

grid on;

°

% plots are shown in Figure 2.47

Current |, Voltage V2, and Voltage V1 versus R2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Resistance R2 (Ohms)

FIGURE 2.47
Plots of Example 2.8.

It is left as an exercise for the reader to verify that V, = 10 V = V, + V,, for any value of

R, satisfying KVL.

Write a program that analyzes the circuit shown in Figure 2.48, over the range 0 Q =

Example 2.9

R; =500 Q, in linear increments of 10 Q by returning the following plots:

1. Ry versus |

2. Ry versus I,

3. R, versus I,

4. From the preceding plots, indicate which current is the least and the most affected

by the variations of (potentiometer) R,

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

149
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Ly _{> Ry=1kQ

1 I, Iy
Vo=10V_—_ R3
R;:ZSOQ 0 Q< R3<500 Q

FIGURE 2.48
Network of Example 2.9.

MATLAB Solution

>> V = 10;

>> R1 = 1.0e3;

>> R2 = 250;

>> R3 = 0:10:500;

>> RP = (R2*R3)./(R2+R3); % equivalent resist. of R2 and R3

>> RT = RI1+RP; % total resistance

>> I = V./RT;

>> I2 =( I.*R3)./(R2+R3);

>> I3 = (I.*R2)./(R2+R3);

>> plot (R3,I*1.0e3,’*’, R3, I2*1.0e3, ‘o’,R3,I3*1.0e3,’+’)
>> title (‘Currents vs Resistance R3’)

>> xlabel (‘Resistance R3 in Ohms’)

>> ylabel (‘Currents in Milli-Amperes’)

>> legend (‘I’,’I2’,'I3’)

>> grid on

Current versus Resistance R3
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FIGURE 2.49
Plots of Example 2.9.
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Observe from Figure 2.49 that when R, = 250 Q, I, = I,. Also observe that the current [
is the least affected, whereas the currents I; and I, are equally affected by the changes
in R;, over the range 0-500 Q.

Example 2.10
Write a MATLAB program that returns in a tablelike format the resistance values (R)
versus length L of a copper wire with a diameter of V300 mills (the cross-sectional area:
300 CM [circular mills]), over the range 50 ft = L = 500 ft in linear increments of 50 ft,
assuming that the temperature remains constant at 20°C.

ANALYTICAL Solution

Recall that the resistance R is given by

:rho*L
A

R (at a room temperature of 20°C)

where rho = p denotes resistivity in CM Q/ft, and the rho of copper is 10.37 CM Q/ft,
at 20°C; L defines its length in feet; A defines the cross-sectional area in CM (circular
mills); A (area of a circle) = pi # 12 = = d?/4; 1000 mills = 1 in. and 7/4 sq. mills = 1 CM,
then if d is given in mills, A = 42 (in CM).

MATLAB Solution

>> L = 50:50:500;

>> Rho =10.37;

>> A = 300;

>> R=Rho.*L./A;

>> disp(‘*************************’)

>> disp(‘Length (ft) Resit (Ohms)’); results = [L’ R'];
>> disp(‘*************************q

>> disp(results)
>> disp(‘*************************q

khkkkkhkhkkkhkhkhkkhkdkhkkhkhhkkrrkhhhkkkd

Length (£ft) Resit (Ohms)

khkkkkkhkkkhkhkhkkhkdkhkkhkhkhkxrkhhhkkkk

50.0000 1.7283
100.0000 3.4567
150.0000 5.1850
200.0000 6.9133
250.0000 8.6417
300.0000 10.3700
350.0000 12.0983
400.0000 13.8267
450.0000 15.5550
500.0000 17.2833

khkhkkkkhkkkhkhkhkkhkdkhkkhkhkhkxkhhhkkkd

Example 2.11

Write a program that returns in a tablelike format the resistance of a copper wire of
100 ft long with a fixed cross-sectional area A = 1 CM as a function of temperature
variations (AT), over the range 0-100°C, in linear increments of AT = 10°C.
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ANALYTICAL Solution

Recall that L
R= pz(l + TC =+ AT)

where p is the Greek letter rho, TC = 0.00393 (the temperature coefficient of copper), and
R = p(100/1)(1 + 0.00393 = AT).

MATLAB Solution
>> T = 0:10:100;
>> TC = 0.00393;

>> L =100;
>> Rho =10.37;
>> A=1;

>> R= (Rho*100./A)*(1+TC.*T);
>> result = [T’ R’];
>>disp(‘**********************************q

>> disp(‘Temperature (°C)****Resistance (in Ohms)’);
>>disp(‘**********************************q

>>disp(result)
>>disp(\**********************************q

hhkkkkkkkhkhkhhhhhkhkhkhkhkhkhkhkhhhhhhhkhkkkkkhkhkhhhhhkkkkkkkkkkk

Temperature (°C)****Resistance (in Ohms)
khkkkkkkkhkkkkhkhkhkkhkhkkkhkhkkkhkkhkkkhkhkhkkhkkhkkkkkkkkkkkkkkkkkkkk
1.0e+003
0 1.0370
0.0100 1.0778
0.0200 1.1185
0.0300 1.1593
0.0400 1.2000
0.0500 1.2408
0.0600 1.2815
0.0700 1.3223
0.0800 1.3630
0.0900 1.4038
0.1000 1.4445

hhkkkkkkkkhkhkhkhhhhkhhkhkkkhkhkhhhhhhhkkkkkkhkhkhkhkhkhkkkkkkkkkk

Example 2.12

Let the resistor R; shown in the circuit of Figure 2.50 vary over the range 0 Q < R; =10 Q
in linear incremental steps of 0.25 Q.
Write a program that returns the following plots:

1. I; versus R,
2. V  versus R
3. [Py, = V. = I ] versus R,

For each of the plots, determine the maximum of I;, V,, and Py, over the range
0Q =R, =10 Q, and verify that Pg; .0 # I max * Viemax @094 Pri oy < Imax * Viemaxe

MATLAB Solution
>> VS =10;

>> RL 0:0.25:10;
>> IL = VS./(5+RL);
>> VL = IL.*RL;

>> subplot (2,2,1)
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Vi=10V

FIGURE 2.50
Network of Example 2.12.
>> plot (RL, IL)

>> grid on

4
/E/HL Vi
|

>> xlabel(‘Load Resistance RL’),

>> title(‘IL vs.

>> subplot(2,2,2)
>> plot(RL,VL)

>> grid on

RL');

>> xlabel(‘Load Resistance RL’),

>> title(“VL vs.

>> subplot(2,2,3)

>> P =

IL.*VL;

>> plot(RL,P)

>> grid on

RL');

>> xlabel(‘Load Resistance RL’),

>> title(‘Power vs.

>> subplot(2,2,4)
>> plot(RL,IL,’o’,RL,VL, '+, RL,P, *’)

>> grid on

RL');

>> xlabel(‘Load Resistance RL'),

>> title(‘IL, VL, P vs.
>> legend(‘IL’,’VL’,’P');

>> Imax
>> Vmax
>> Pmax

>> Result
>> disp(®

>> disp(‘************************************************q

max(IL);
max(VL);
max(P);

= [Imax Vmax Pmax];

R, =0:0.25:10

ylabel(‘*Current IL’)

ylabel(‘Voltage VL')

ylabel(‘Power of RL’)

ylabel(*IL,VL,P=IL*VL')

xkkk*k*kx R E S U L T S *xkkkk*w)

153

>> disp(‘The maximum values for IL, VL, and PL for 0<RL<10 Ohms are:’);

>> disp (Result) % the plots are shown in Figure 2.51.
watts’)

>> disp(®

>> disp(‘************************************************q
khkkkkkkkhkkhkkkkkkkkhkkkkkkkkkx*x*x R E S U L T S **kkkkkkkhkhkhkkkkkkkk

khkkhkkhkkhkhkkhkhkhkhkhkkhkhkkhkhkhhkhkhkhkhkhkkhhkkhhkhhkhkkhhkhhdhhdhhhhhhhdhdhhhkhhhhdhhkhhkhhdhhdx*x

The maximum values for IL, VL, and PL for 0<RL<1l0 Ohms are:
2.0000

amps

Clearly the results indicate that Pg; .0 # I max * Viemax 0 W # (2 A) * (6.6667 V)} and
* Vi _max = Z * 6.6667 W the resulting plots are shown in Figure 2.51.

p

RL-max

=5W<I,_

°

amps

max

6.6667

volts
*khkkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkdkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkdhkhhkhkhkhhhhxx

5.0000
watts
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IL versus RL VL versus RL
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FIGURE 2.51
Plots of Example 2.12.
Example 2.13

Using two loop equations and one node equation, and the matrix operations I =
inv(R) * V (where R is the [equivalent] impedance matrix of the network and V the
voltage vector), solve for the three branch currents—I,, I,, and I;—shown in the circuit
diagram of Figure 2.52.

ANALYTICAL Solution

The node and the two loop equations are shown as follows:

Node A; L +L+I,=0
Loop# 1; 10«1, +5%1,=10
Loop# 2; =5+, +(10+20)*I;=0

The preceding equations in matrix form is given by

-1 1 17 [L 0
10 5 0/*L|=]10
0 -5 30| [I,] |o

Then the 3 X 3 matrix becomes the resistance matrix R, and the voltage V is given by the
column vector [0 10 0] as illustrated by the following matrix equation:

[R]+[1]=[V]
then
I=inv(R)*V
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10 Q 10 Q
VW * VVV—
1oV —— I
— 5Q
- Loop # 1
FIGURE 2.52
Network of Example 2.13.
MATLAB Solution
> R = [-1 1 1;10 5 0;0 -5 30];
>> V = [0;10;0];
>> I = inv(R)*V; % Solves for the loop currents
>> Result = [I(1) I(2) I(3)];
>> % Results are printed
>> disp(‘*********************************’L
>> disp(‘**********R E s U L T S*********q;
>> disp(‘*********************************’L
>> disp(® The currents I1, I2, I3 are:’);
>> disp(Result)
>> disp(® amp. amp. Amp.’);

>>

Solve for the loop currents I; and I, shown in the circuit diagram of Figure 2.53

§ 20 Q

disp(‘*********************************’L

hhkhkkhkkhhkhkhkdhhhkhkdhhhkhdhkhhkhdhdhhkhkd,dhhkhdkhhhxdkkx
*kkkkkk***%R E S U L T Skkkkkkkkkkksk
khkkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhhkhdkhrdhkhkrkhhkhrhrdkkx
The currents I1l, I2, I3 are:
0.7000 0.6000 0.1000

amp. amp. amp.
dhkhkkhkkhkhkhkhkhkkhkhkhhkhhkhkhkhkhhhhkhhkhhkhdhdhhhx

Example 2.14

(Example 2.13) by using

i. The matrix operation I = R\V

ii. The symbolic method

iii. Compare the results of i and ii with the solution obtained in Example 2.13

ANALYTICAL Solution

The loop equations are

For loop#1, 15+, —5*1,=10
For loop#1l, —5+*I, +(5+10+20)%1,=0

155
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10Q A 10Q

A% Y%

+ I L
1OVE Loop # 1 §SQ Loop # 2 §ZOQ

FIGURE 2.53
Network of Example 2.14.

The matrix equation is then given by

15 5| | |10

-5 35|, |0
where the 2 X 2 matrix is the resistance matrix R and [10 0]” represents the column vec-
tor V, as indicated by

then
(] =[RI\[V]

MATLAB Solution

>> % part (i) matrix solution

>> R = [15 -5;-5 35];

>> V = [10;0];

>> I = R\V;

>> Result = [I(1) I(2) I(1)-I(2)]; % results are printed
>> disp(‘**************************************’M
>> disgﬂ‘**********R E S U L T S**************’h

>> disp(® Matrix current solutions’);

>> disp(‘**************************************’M

>> disp (‘The currents I1, I2, I3 are given by:’); disp(Result)
>> disp (° amp. amp. amp.’);

>> disp(‘**************************************w

khkkkkhkkhkhkkhkkkhkkhkkhkhkkhkhkkhhkhkhkhkkhkhkkhhkkhhkkhkhhkkhhkhhkkhhhkkhhkkhhkdhhkxkkx

khkkhkkkkhkhkkkk*k**R E S U L T Skhkkkkkhhhkhkhhhhkhrkk

Matrix current solutions
khkhkkkhkkhkhkkkkhkkhkkhkkhkkhhkkkhkkkkkhkkhkkkkkkkkkkkkkk

The currents I1l, I2, I3 are given by:
0.7000 0.1000 0.6000
amp. amp. amp.
dhhkhkkhkhkhkdhhhkhkhkhkhkhhdhhkhhkhkhhhhhhkhkhkhkhhdhhdhkdhhhhhdhhhhk

°

>> % Part (ii); symbolic solution

>> sym I1 I2 I3;
S>> ALgp (M hkkkokkkokokokokokkok ok ko ok ko ok ko ok ok ok k ko ok ok ok ok ok ok k ok ok /)
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>> disp(‘The Symbolic current solutions are given by:’)

>> [I1 I2 I3] = solve(‘'15*I1-5*I2=10','-5*I1+35*I2=0',6'I1-I12=I3")

>> disp(‘*********************************’)
khkkkhkhkhhkhkhkhkhkkhkkhhhhhhkrhhkhkhkhhhhhhhrhkhhkhrhhhdhhrhkxxx

The Symbolic current solutions are given by:

I1 = 7/10
I2 = 1/10
I3 = 3/5

khkkkkhkkhkkkhhkhkkhkkhkhkkhhkhhkhkkhkhkkhhkhhkhhkhkkhhkkhhkhhkkhkhhkkhhkkhhkdhhkkkx

Note that the results obtained for parts i and ii are equivalent to the solutions obtained in
Example 2.13. Also note that the current I in Example 2.13 is labeled I, in Example 2.14.

Example 2.15

Show that the circuit diagrams in Figure 2.54 are equivalent, as seen through the termi-
nals labeled a and b.

ANALYTICAL Solution

The circuit diagrams in Figures 2.54a and 2.54b are equivalent due to the equivalent
substitutions shown in Figure 2.55.

The circuit diagram shown in Figure 2.54b is equivalent to the circuit diagram shown
in Figure 2.54c due to the equivalent substitutions indicated in Figure 2.56.

The circuit diagram in Figure 2.54c is equivalent to the diagram shown in Figure
2.54d due to the equivalencies shown in Figure 2.57.

Finally, the diagram in Figure 2.54d is equivalent to the diagram in Figure 2.54e due
to the substitution indicated in Figure 2.58.

The equivalencies shown can be evaluated by using the MATLAB programs of
Examples 2.2 and 2.3 and are left as an exercise for the reader to verify.

FIGURE 2.54
Diagrams of Example 2.15.
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15
’_/\/12/\/_‘
o ° — AN\, —o
\—&/3\0/»—‘
12

3
(b)
2 4 6
©
FIGURE 2.55
Equivalent substitutions of Example 2.15 (from Figures 2.54a to 2.54b).
7 5 12
@)
6
3
(b)
FIGURE 2.56

Equivalent substitutions of Example 2.15 (from Figures 2.54b to 2.54c).

12 12

12

FIGURE 2.57
Equivalent substitutions of Example 2.15 (from Figures 2.54c to 2.54d).

1 4 5
FIGURE 2.58
Equivalent substitutions of Example 2.15 (from Figures 2.54d to 2.54e).
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FIGURE 2.59

Network of Example 2.16.

Create the script file current_uvoltage that returns the currents I, I,, I, I, I5, I, I, I, and
the voltage V,, shown in the circuit diagram of Figure 2.59 (used in Figure 2.54), given

12Q 2Q 4 Q
lg >
6 Q
I 17
5 — » —

Example 2.16

the fact that the current I = 3 A through the 7 Q resistor.

MATLAB Solution
current voltage

% Script file:
clear;clc;

I = 3;

Vyb = 3*5;
Vxb = 12*3;

I1 = Vyb/15;
I2 = Vyb/10;
I3 = Vyb/30;
I8 = Vxb/6;

I4 = (4/16)*I8;
I5 = (12/16)*I8;
I6 = I8/2;

I7 = I6;

Vab = (I+I8)*5;
resul

disp(‘)\'*********************************’)

% from Figure 2.54a

°

% from Figure 2.54b

from Figure 2.54c
current divider

oe o°

°

% from Figure 2.54e

t = [I1 I2 I3 I4 I5 Ie I7 1I8];

1

disp(‘******x**x*R E S U L T Skxkkkkkkkks);
Aisp (VH*Fkkkhokkkkkkkkkkkkkkkkkkkkkkkkkk*/),

disp(

disp(*The currents I1 I2 I3 I4 I5 I6 I7 and I8

' V)i

disp(result’);

diSp \*********************************’)

(
disp(
(

diSp ‘*********************************’)

7

‘The voltage Vab is:’); disp(Vab); disp(‘volts’)

7

159

(in amps) are given by:’);
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The script file current_uvoltage is executed and the results are shown as follows:

>> current voltage

khkkhkkhkkhkhkkhkhkhkhkhkkhkhkkhhkkhhhkhkhkhkhkkhhkhkhkhkhhkkhhkhhhhhkhhkkhhkhhdhhkhhhhdkhhhhkhhdhdhhkhhrhdxdxkx

khkkhkkkhkkhkkkkkhkkkhkkkhkkhkkkkx*kx**xR E s U LT s****************************

hhkhkkkhhkkkhhkhkhhhhkhkhdhkhkhhhhhhhhhkhdhkhhhhkhhdhhkhkdhhdrhhkhrhdhhhkdhrrkhhkrrhhrrhkdx

The currents I1 I2 I3 I4 I5 I6
1.0000

.5000

.5000

.5000

.5000

.0000

.0000

6.0000

WWhdRoR

I7 and I8 (in amps) are given by:

khkkhkkhkkhkhkkhhkhkkhkhkkhkhkkhhkkhhkhhkhkhhhhkhhkhkhhkkhhhhhhhkkhhhhhhhhhkhhhhdhhhhkdhdhkdhhkhhdhdxdxx

The voltage Vab is:
45
volts

khhkkkhkhkkkhkhkhkkhkhkhkkhhkhkhhhhkhkdhhhkhhhkhhhhkhhhhkhkdhkrkhhkhkhhhrhkdhrrkhkhkrrkhkhkhkxkdxx

Example 2.17

For the circuit diagram shown in Figure 2.

60

1. Write the three system mesh (loop) equations
2. Arrange the result of part 1 into a matrix equation
3. Using MATLAB, solve for the three loop currents (I, I,, and )

10 15V

20V
CD Loop # 1

Iy

3Q 6 Q

+
Loop #2 4Q  Loop#3 <_> 10V

FIGURE 2.60
Network of Example 2.17.

ANALYTICAL Solution
The loop equations are

Loop 1: 20 =3I, — 21, + 0I,
Loop 2: =15 = -2I, + 9L, — 41,
Loop 3: —10 = 01, — 41, + 10,

The resulting matrix equation is

3 -2 0] [q
—2 9 —4|*],
0 —4 10

13
| e )

R I

20
=|-15
-10

S
1%
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MATLAB Solution

> R = [3 -2 0; -2 9 -4; 0 -4 10];

>> V = [20; -15; -10];

>> I = inv(R)*V;

>> Result = [I(1) I(2) I(3)];

>> disp(‘***********************************************w
>> disp(‘The loop currents I1, I2 and I3(in amp) are:’);
>> disp(Result’);

>> disp(‘***********************************************w
khkhkkkhhkkkkhhkhkhkhdhhhhhkhhhhhhkhdhrhdhkhhhhhkhdhkrhhhrrd

The loop currents I1l, I2 and I3 (in amp) are:
6.0440
-0.9341
-1.3736

khkkhkkhkkhkhkkhhkhkhkhkkhkhkkhhkhhkhhkhkkhhkkhhkhhkkhkkhhkkhhkkhhkkhhkhkkhhkkhhkkhhkhkkx*x
Example 2.18

For the circuit diagram shown in Figure 2.61

1. Write the two node equations (for nodes X and Y))
2. Arrange the result of part 1 into a matrix equation
3. Use MATLARB to solve for the two voltages (V and V)

ANALYTICAL Solution

1. The node equations are

For node X: I = ( 1,1

RER VeV o 2=+ V- Vy

1.1

For node Y: L=-Vy+ RTR

Vy or 3=-V,+@+1V,

The two simplified and rearranged node equations are

2=3V, -V,
3=V, = +4V,

X R=1Q
e VVN
lh=2A
QD R2:;—Q \ / R3=1§Q QD/2=3A
Vx  Vy
T

FIGURE 2.61
Network of Example 2.18.
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2. The resulting system nodal matrix equation is given by

R AR

—

Y 1% I

where Y is the admittance matrix of the network, and the current vector I is given by

g

MATLAB Solution

>> Y = [3 -1;-1 4];

>> I = [2;3];

>> V= 1inv(Y)*I;

>> VX = V(1);

>> VY =V(2);

>> Result = [VX VY];

>> disp (\**********************************q

>> disp (‘The voltage drops Vx and Vy (in volts) are given by:’);
>> disp (Result)

>> disp (‘**********************************q
khkhkkkhhkkkhhkhkhhdhhkhhhhkhhhhkhkhhhkhhkhdhkhhhhhhhhkhhkhdhkrhkdhkrhkdhrkhhxx

The nodal voltages Vx and Vy (in volts) are given by:
1.0000 1.0000

khkkkkhkhkkkhhkhkkhkhkhkkhkhkhkkhkhhhkhkhhkhkhhhkhdhhkhkdhhkhdhrhkdhhkhkdhrkhhxx

Example 2.19

The switch shown in the circuit diagram in Figure 2.62 has been in position a for a long
time. At t = 0, the switch is moved to position b where it remains for 2 s and then moves
back to position a, where it remains indefinitely.

1. Obtain analytical expressions for v(t) and i(t) for all ¢

2. Use MATLARB to obtain plots over the range 0 s =t = 10 s of
a. The voltage v(t) versus t
b. The current i-(t) versus t

R=7Q b C=05F

SAVAVAVESS /O—| 7} iel®

ve(t)

+
v0=1oov<_> R3=3Q
R2=1 Q

\||—

FIGURE 2.62
Network of Example 2.19.
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ANALYTICAL Solution

For t <0, the switch is in position a. Therefore,
v() =0

and
i()=0

For 0 <t < (t; = 2) seconds, the switch is in position b. Then,
0c(t) = Vo1 = e )

and
. Vy, —o(t
ic(t) = 7}){ c®
1 TR,

wherer; = (R, + R)*C=10Q*05F=5s.

Attime t = t; = 2 s, the voltage across the capacitor is
UC(tl) = VCmax = V0(1 - 672/”)

For t > (t; = 2 s), the switch is back in position a. Then

Z;C(t) = VCmax * ei(ritl)/fz

and
—vc(t)

e
ic®) R, + R,

where 7, = (R, + R)*C=4Q*05F =2s.

MATLAB Solution
>> V = 100; R1 =7; R2 =1; R3=3; C =0.5;
>> taul = (R1+R3)*C

circuit elements
time constant #1

oo o°

taul =
5
>> tau2 = (R2+R3)*C % time constant #2
tau2 =
2
>> for k =1:40
t(k) = k/20; % 0 < t < 2
v(k) = V*(l-exp(-t(k)/taul));
i(k) = (V-v(k))/(R1+R2);

end
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>> Vmax = v(40)

Vmax =
32.9680

>> for k=41:200
t(k)=k/20; % 2 < t < 10
v (k) =Vmax*exp (- (t(k)-t(40))/tau2);
t(40)=40/20=2sec=t1
i(k)= -v(k)/(R2+R3);
end
>> % plot the Voltage VC(t)
>> subplot(2,1,1)
>> plot(t,v)
>> axis([0 10 0 401);
>> title (‘Transients in the circuit of Fig 2.62')

>> xlabel(‘time in sec’), ylabel(‘Voltage wvc(t)’)
>> grid on
>> % plot the current IC (t)

>> subplot(2,1,2)

>> plot(t,i)

>> axis([0 10 -13 15]);

>> xlabel(‘time in sec’),ylabel(*Current ic(t)’)
>> grid on

The plots of the Voltage vc(t) and the Current ic(t) versus t are shown in Figure 2.63.

Transients in the circuit of Fig. 2.62

Voltage vc(t)

Current ic(t)

time in sec

FIGURE 2.63
Transient plots of Example 2.19.
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a
1 ia(t) (1)
Cf) Vo =100V
Ry=18Q| < Ry=3Q Rp=6Q
EE
FIGURE 2.64

Network of Example 2.20.

Example 2.20

The switch shown in Figure 2.64 has been at position a for a very long time. At f = 0, the
switch is moved to position b where it remains for 2 s and then moves back to position a
where it remains indefinitely.

1. Obtain analytical expressions of i,(f), i,(t), i(t), and v, (t) for all ¢.

2. Create the script file analysis_exam that returns the following:
a. The network time constants

. The maximum currents I, I,, and I,

. The maximum voltage drop across L

2 n o

. The current plots of i,(f) versus ¢, i,(t) versus t, and i,(f) versus t over the range
Os=t=b5s

e. The voltage plot v, () versus t over therange 0s =t =55

3. If the applied source voltage is V; = 100 V, can the voltage drop across L exceed
100 V?

ANALYTICAL Solution
For t <0, the switch has been in position a for a long time, then
i(t) = i) = i5(t) = 0

and
v, (H=0

During the interval 0 s < t < 2 s, the switch is in position b. Therefore,

A .

1— e*f/rq
R ( )

L) =

eql

R
i(F) = ——2— =iyt
ip(t) R, + R, *i(t)

. R .
t) = 2 t
i3(t) R, +R, *1(f)




166

Practical MATLAB® Applications for Engineers
and
UL(t) =V- ll(t) * Reql
where

RoxRs _54+8%3 _g42-100
3

R, +R, 6+

Reql =R +(R, [|Ry) =R +

and

7, =L/R,; =10H/10Q =15

eql
Att =t, = 25, the current i,(t,) is at its maximum as given by

Yo

Ilmax = ll(t = 2) = * (1 — 6*2/11)

=

eql

Att = 2 s, the switch moves back to position a4, where it remains indefinitely. The branch
currents would then be given by

il (t) = 11 maxei(tirl)/‘[2

. R .
) = E t
i(t) R, + R, * 1y(f)

. R .
t) = 2 t
i3(t) R, +R, *1(f)

and

UL(t) = ll(t) * Reqz

where

R, * R, 6+3

Rego =R, + (R, | R3) =R, + =18+——=18+2=20Q
eq2 4 (Z” 3) 4 R2+R3 6+3

and

T, = L/R., = 10H/20Q =055

MATLAB Solution
% Script file: analysis exam
V=100; R1 = 8; R2 =3; R3 =6; R4 =18; L=10; % circuit elements.

Regl = R1+(R2*R3)/(R2+R3);
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Reqg2 = R4+(R2*R3)/(R2+R3);

disp(** * * RE S UL T S * * * )
disp(‘*****************************’)

disp(‘The network time constants are(in sec):’)

taul = L/Reql % time constant #1
tau2 = L/Req2 time constant #2

o°

for K=1:40
t(K) = K/20; %$ 0 < t < 2.
1(K) = (V/Reql)*(l-exp(-t(K)/taul));

)

2(K) = R3*I1(K)/(R2+R3);
(K) = R2*I1(K)/(R2+R3);
L(K) = V-I1(K)*Reql;

end

disp(‘the maximum currents are:’)
I1lMax = I1(40);

for K= 41:100

t(K) = K/20; $ 2 < t < 5.

1(K) = IlMax*exp(-(t(K)-t(40))/tau2); % t(40) = 40/20 = 2 sec.= tl
2(K) = R3*I1(K)/(R2+R3);

3(K) = R2*I1(K)/(R2+R3);

VL(K) = -I1(K)*Req2;

end

)

% plots the current il(t)
I1Max= max(Il)

Tmax = max(t);

subplot(2,2,1)

plot(t,I1)

axis([0 5 0 10])

grid on

title(*Current 1il(t) vs.t’), ylabel(‘Current in amps’);
xlabel(‘time in sec’) % plots the current i2(t)
I2Max = max(I2)

I3Max=max(I3)

subplot(2,2,2)

plot(t,I2)

axis([0 5 0 6])

grid on

title(‘Current i2(t) wvs.t’), ylabel(‘Current in amps’);
xlabel(‘time in sec’)

subplot(2,2,3) % plots the current i3(t)
plot(t,I3)

axis([0 5 0 3])

grid on

title(‘Current 1i3(t) wvs. t’), ylabel(*Current in amps’)
xlabel(‘time in seconds’); % plots the voltage VvL(t)
disp(* The magnitude of the maximum voltage across L is:’)
VLMax = -max(abs(VL))

subplot(2,2,4)

plot (t,VL)

axis([0 5 -160 100])

grid on

title(‘Voltage vL(t) vs.t’), xlabel(‘time in seconds’)
ylabel(‘Voltage in volts ‘')

disp(‘***************************************’)
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The script file analysis_exam is executed and the results are shown as follows and in
Figure 2.65.

>> analysis exam 1020

* * * RESULTS * * *
kkkkkhkhkkhkdkhkhkhhkhkkkhkhhdkkh

The network time constants are (in sec):

taul =
1
tau2 =
0.5000
The maximum currents are:
IlMax =
8.6466
I2Max =
5.7644
I3Max =
2.8822
The magnitude of the maximum voltage across L is:
VLMax =
-156.4762

hhkhkkkhkhkkkhhkhkkhdhkkhhhkhdkhhhkkhdhkkhhhkrrhhhrkhdx

Current i1(t) versus t Current i2(t) versus t

N

N

Current in amps
Current in amps

100

Current in amps

Voltage in volts

time in seconds time in seconds

FIGURE 2.65
Transient plots of Example 2.20.

Observe that the voltage across the inductor v, () at t = 2 sis v, (t = 2) = 156.4762 V when
the applied (source) voltage is V = 100 V. Observe also that at t = 2's, I, = 8.6466
A =1 T Iimax = 57644 A + 2.8822 A verifying KCL.

max

max
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Example 2.21

Assuming that the load is R, determine the Thevenin’s equivalent circuit of the electri-
cal network shown in Figure 2.66 by

a. Hand calculations.

b. Creating the script file Thevenin that simulates Thevenin’s theorem consisting in
varying R; over therange 1 = R; =50 Q, in steps of 1 O, and computing the respec-
tive powers for each value of R;. Recall that the resistance dissipates maximum
power when R; = Ry and its Vi = 2 Vigpyy

Ri=20Q a
[ VvV
+
V=100V —— § R,
- f2=60Q R =1:1:50
a’
FIGURE 2.66
Network of Example 2.21.

ANALYTICAL Solution

Parta
The Vi and Ry are evaluated by hand.

_ 60+100 _ 6000

=— = =75V
™ 20+60 80
and
20%60 1200
Ry =R, || R, = = =15Q
i =Ry R, 20+60 80
The calculated Thevenin’s equivalent circuit, as seen through the terminals aa’, is shown
in Figure 2.67.
Rry=15Q a
| VvV .
+
Viy=75V _— R,
FIGURE 2.67

Calculated Thevenin’s equivalent circuit of Example 2.21.
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MATLAB Solution

script file: Thevenin

The Thevenin’s equivalent circuit
can be determined by experimental method
based on the maximum power theorem
Vs =100;R1 = 20;R2 =60;

RL = 1:1:50; % range of RL

Rpar = (RL.*R2)./(RL+R2);

RT = Rpar + RI1;

VL = (Rpar.*Vs)./RT;

PRL = (VL."2)./RL;

[Pmax,index] = max(PRL);

Rth = RL(index);

Vth sgrt(4*Rth*Pmax);

%...Display Vth and Rth
disp(‘*********************************’)

o° o° o o°

disp(‘*********R E S U L T S**********I)I;
disp(‘*********************************’)I-
disp(® V)i

fprintf(*The Thevenin voltage (in volts) is Vth=%f\n’,Vth);
fprintf(‘The Thevenin resistance (in ohms) is Rth=%f\n’,Rth);
disp(® Y)

disp(‘*********************************’);

The script file Thevenin is executed, and the results are shown as follows:

>>Thevenin
Ak kkhkk kR hkhhhkhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhk
khkkkkkkkkkkkkkk R E S U L T S khkkkkkkkhkkkkkkkkkkkkkkkk

khkkhkhkhkhkkhkkhkkkkhkhkhkhkkhkhkhhhkkkkkhkhkhkhkkhkkhkkkkkkkhkhkkkkkkkkkkkkkk

The Thevenin voltage (in volts) is Vth =75.000000
The Thevenin resistance (in ohms) is Rth =15.000000

hkkhkkhkhhkkhkhkhkhhkkhhkhhkhhkhhkhhkkhkhhkhkhhkhkhkhkhkkhkhkk*

Note that the calculated results completely agree with the simulated experimental
results.

Example 2.22

Analyze the series RLC circuit shown in Figure 2.68, where the current source i(t) is

15

givenby i(t) = (%) Z (% )sin(n mt). The equation for the current i(f) represents the Fourier
n=odd

series approximation of a periodic square wave (see Chapter 4 for additional details).

Create the script file analysis that returns the following plots:

1. i(t) versus t (verifies the approximation of the periodic square wave)

2. i%(t) versus t

3. [i(t) dt versus t (verifies the approximation of the periodic triangular wave)
di(t)
4. —j¢ versus t
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5. V() versus t, where V(f) = Ri(t)
di(t)
dt
7. V(t) versus t, where V(f) = (%) Ji@)dt
8. [V.(t) + Vi(t)] versus t
9. [V(t) + V()] versus t
10. Pg(f) versus t, where Pg(t) = 2(f)R
11. P,(f) versus t, where P, (t) = i,())V(t)
12. P.(t) versus t, where P(t) = i-(t)V(t)

6. V,(t) versus t, where V() =

L=30mH

1000 Q
AAAY AN
+
)
05 - =——=C=05uF
i(t) 5 t
- -05

FIGURE 2.68

Network of Example 2.22.

R=
i(

MATLAB Solution

Script file: analysis

% Analysis of RLC Series circuit
% with non DC source

echo off;

syms t;

H1l = 2/pi*sin(pi*t);

H3 = 2/(3*pi)*sin(3*pi*t);

H5 = 2/(5*pi)*sin(5*pi*t);

H7 = 2/(7*pi)*sin(7*pi*t);

H9 = 2/(9*pi)*sin(9*pi*t);

H11l = 2/(11*pi)*sin(1l*pi*t);

H13 2/(13*pi)*sin(13*pi*t);

H15 2/(15%pi)*sin(15*pi*t);
iamps = HI+H3+H5+H7+H9+H11+H13+H15;

o\°

figure(1)

ezplot(iamps, [0,3])

xlabel(* time ‘);ylabel(i(t)in amps’);
title(‘i(t) vs t’);grid on;
isquare=iamps”2;

figure(2);%part(c.2)

ezplot(isquare, [0,3])

xlabel(* time ‘);ylabel(‘i(t)*2’);
title(‘i(t)*2 vs t’);grid on;
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figure(3)

inti = int(iamps);

ezplot (inti,[0,3])

xlabel(* time ‘);ylabel(‘integralli(t)]’);
title(‘integralli(t)] wvs t’);grid on;

figure(4)

diffi = diff(iamps);
ezplot(diffi,[0,3])

xlabel(® time ‘');ylabel(*d[i(t)/dtl’);
title(‘d[i(t)/dt] vs t’);grid on;

figure(5)

Vr = 1000*iamps;

ezplot(Vr,[0,3])

xlabel(* time ‘);ylabel(‘Vr(t)in volts’);
title(‘Vr(t) vs t’);grid on;

figure(6)

V1 = 30e-3*diffi;

ezplot(Vl, [0,3])

xlabel(* time ‘);ylabel(*VL(t)in volts’);
title(*VL(t) wvs t’);grid on;

figure(7)

Vc=.5e-6*inti;

ezplot(Vve,[0,3])

title(‘Vc(t) vs t’)

xlabel(* time ‘);ylabel(‘Vc(t)in volts’)
title(® Vc(t) vs t’);grid on;

figure(8)

V1r=V1+Vr;

ezplot(Vlr, [0,3])

title(“[Vr(t)+VL(t)] vs t’);xlabel(® time ');
ylabel (*[Vr(t)+VL(t)] in wvolts’);grid on;

figure(9)

Vcr=Vc+Vr;

ezplot(Ver, [0,3])

title(*[Vr(t)+Ve(t)] vs t')

xlabel(* time ‘);ylabel(‘[Vr(t)+Vc(t)l’);
title(*[Vr(t)+Vc(t)] vs t’);grid on

figure(10)

Pr = iamps*Vr;

ezplot(Pr, [0,3])

title(‘Pr(t) vs t’)

xlabel(' time V)

ylabel(‘Pr(t) in watts’);grid on;

figure(11)

Pl = iamps*V1;

ezplot(P1,[0,3])

title(*PL(t) vs t’); xlabel(* time Y');
ylabel(*PL(t)’);grid on

figure(12)
Pc = iamps*Vc; ezplot(Pc,[0,3]);
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)i

time

vs t’);xlabel(®

title(*Pc(t)

The script file analysis is executed and the resulting plots are shown in Figures 2.69

ylabel(‘Pc(t)’);grid on;
through 2.80.

>> analysis

t) versus t

i(

time

FIGURE 2.69

Plot of i(t) of Example 2.22 MATLAB Figure (1).

i(t)2 versus t

035 7

time

FIGURE 2.70

Plot of i(t)> of Example 2.22 MATLAB Figure (2).
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integrali(t)] versus t

[(W1reJBarul

time

FIGURE 2.71

Plot of fi(t)dt of Example 2.22 MATLAB Figure (3).

d[i(t)/dt] versus t

[p/()1p

time

FIGURE 2.72

dit)

dt

of Example 2.22 MATLAB Figure (4).

Plot of
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Vr(t) versus t

SHOA Ul ()IA

time

FIGURE 2.73

Plot of the voltage across R of Example 2.22 MATLAB Figure (5).

VL(t) versus t

SHOA Ul (3)TA

time

FIGURE 2.74

Plot of the voltage across L of Example 2.22 MATLAB Figure (6).
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%1077 Vc(t) versus t
| /I /|
0.5
2
°
>
£ 0
5
>
-0.5
% \
0 0.5 1 1.5 2 25 3
time
FIGURE 2.75

Plot of the sum of the voltage across R and L of Example 2.22 Figure (7).

[Vr(t)+VL(t)] versus t

w /\/V\/\ /\/V\/\
400
2
o 200
£
s 0
>
*
S 200
o \/\/\/\/\/\/\/\}
-600
0 0.5 1 1.5 2 2.5 3

time

FIGURE 2.76
Plot of the voltage across C of Example 2.22 MATLAB Figure (8).
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[Vr(t)+Vc(t)] versus t

> /\/‘\/\/\
400

200

[Vr(t)+Ve(t)]
o

-200

. ]

-600

0 0.5 1 1.5

time

FIGURE 2.77
Plot of the sum of the voltage across R and C of Example 2.22

Figure (9).

Pr(t) versus t

2.5

g AL e A A g i
= [[VVVVRITVEV I VY

Plot of the power of R of Example 2.22 MATLAB Figure (10).
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PL(t) versus t

. |
| O | T [T
AR AR AT A R A
)WWVUU {l\j\/ VV\UI ’)UU V\/\v)

time

FIGURE 2.79
Plot of the power of L of Example 2.22 MATLAB Figure (11).

%1078 Pc(t) versus t

6 n n 7

4 J| J| J
: / / /

[ | |

6y Y v

0 0.5 1 15 2 2.5 3
time

FIGURE 2.80
Plot of the power of C of Example 2.22 MATLAB Figure (12).

Example 2.23

Determine the current i(f) for t = 0 for each value of R, R = 1, 2, and 5 Q for the RL circuit
diagram shown in Figure 2.81, assuming that the initial current is given by i;(0) = 0 A.

a. By hand calculations

b. By creating the script file RL that returns the symbolic MATLAB solution of the
loop differential equation, and

c. Each of the corresponding plots for i(t) versus ¢
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Switch closes at t=0

v

Vy=10V —

L=1H

1

FIGURE 2.81
Network of Example 2.23.

ANALYTICAL Solution

Parta

The loop differential equation, as well as its current solution i(t), is given as follows:

di(t)

LY 1 Ri(t) =V,

dt
then

i(t) = %—%E*W fort=0 forR=1,2,and5 ()

where r = L/R.

MATLAB Solution

Script file: RL

parts ( b and c )

itR _ 1 dsolve(‘Dy+y =10','y(0) =
itR 2

o
<
o

3

0',7e");
dsolve(‘Dy+2*y=10','y(0)=0","t");

itR 5 = dsolve(‘Dy+5*y=10’,’y(0)=0",'t");

disp
disp
disp
disp
itR 1
disp(‘***************************’h
itR _ 2
disp(‘***************************’L
itR _5

disp(‘***************************’h

‘***************************lh

‘The solutions i(t) for R=1,2

‘***************************’h

‘***************************’h

disp(‘***************************’h
ezplot(itR _5,[0 3]);

hold on;

grid on; ezplot(itR _2,[0 3]);
hold on;

ezplot(itR _1,[0 3]);

hold on;

and 5

title(‘i(t) vs t for L=1 & R=1,2 and 5’)

axis([0 3 0 11]);
xlabel(*time t’);ylabel(*i(t)’)

(in Ohms)

179
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The script file RL is executed and the results and plots (Figure 2.82) are shown as
follows:

>> RL
hhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
The solutions i(t) for R=1l, 2 and 5 (in Ohms) are :
khkhkkhkhkhkhkhkhkhkhkkkhkhkkhkhkhkhhkhhkhhkhkhkkhkhkkkhkhhkkhkhkhkhkhkkkkkkkkkkk
khkkkhkhkkhkkhkhkkhkhkhkhkkhhkhkhkkhkkhkkhkhkkhkkhkkhkkhkkkkkhkkkkkkhkkkkkkk
itR 1 =

10-10*exp(-t)
khkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkhkhkkkkkkkkkkkkkkkkkk
itR 2 =

5-5*exp(-2*t)
hhkhkhkkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhdhkhhkhkhkhkdhhkhkhkhdhkhkhhkhdkdhkhkhhhkdkhkhhkhkdhkhdhkdx
itR_5 =

2-2*exp(-5*t)
khkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkkkkkkkkkkk

hhkkhkkkkkkhkhkhkhhhhhkhkkhkhkhkhkhhhkhhhkhkkkkhkhkhhkhkhkhkhkkkkkhkhkhkkkhkkkk

i(t) versus t for L=1 & R=1, 2, and 5

11
10
9 time const = 1 sec L — |
8
7
6 time const = 0.5 sec
= g \
) / —
3 time const = (0.2 sec
2 //
1
0
0 0.5 1 1.5 2 2.5 3
time t
FIGURE 2.82

Transient current plots of Example 2.23.

Example 2.24

Create the script file RL_vol_plots that returns

1. The expression of v,(f) and plot v,(t) versus ¢, for t = 0
2. The expression of v(t) and plot vg(t) versus t, for t = 0

for the circuit shown in Figure 2.81, for the same three resistors: R = 1, 2, and 5 Q,
assuming that the initial current is i;(0) = 0 A.
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MATLAB Solution
% Script file: RL _ vol _ plots

itR _ 1=dsolve(‘Dy+y=10',’y(0)=0',"t");
itR _ 2=dsolve(‘Dy+2*y=10','y(0)=0','t
itR _5=dsolve(‘Dy+5*y=10',’y(0)=0',"t

disp(‘*********** RESTULTS **************’)
disp(‘*****************************************’)
disp(*The voltages across R =1, 2 and 5
disp(‘***************************’);
diSp(‘***************************I),'

vr _1=1itR _1*1
diSp(‘***************************’),'

vr 2=itR _ 2*2
disp(‘***************************’);

vr 5=itR _ 5%5
disp(‘***************************l);

figure(1)

ezplot(itR _ 1*1,[0 4]);

hold on

ezplot(itR _ 2*2,[0 4]);

hold on

ezplot(itR _ 5*5,[0 4]);

hold on

grid on;axis([0 3 0 11])
xlabel(‘time t/sec’)
ylabel(‘voltage ‘)

title(‘Voltages across R for, R=1,2 and 5

figure(2)
disp(‘***************************’)I-
disp(‘The voltages across L=1')
disp(* for R=1,2 and 5 (in Ohms)
disp(‘***************************’)’-
disp(‘***************************'),-
vlr 1=10-itR _ 1*1
disp(‘***************************’)I-
vlir 2=10-itR _ 2*2
disp(‘***************************’);
vlir 5=10-itR _ 5*5
disp(‘***************************')I-
ezplot(10-itR _ 1*1,[0 4]);hold on
ezplot(10-itR _ 2*2,[0 4]);hold on
ezplot(10-itR _ 5*5,[0 4]);

hold on

grid on;axis([0 3 0 11])
xlabel(‘time t/sec’)
ylabel(‘voltage ‘)

");
)i

are:');

‘)

title(‘Voltages across L=1, for R=1,2 and 5')

The script file RL_vol_plots is executed, and the results and plots are shown as follows:

>> RL _vol plots

dhhhkkkkkkkkkkkkkd*R E S U L T S **kkkkkkkkkkkkhhddhdd
khkkhkhkhkhkkhkhkkkkkhkhhkhkhkhhhkhkhkkkhkhkhkhkhhkhkhkhkkkkkhkhkhkhkkhkkhkkkkkkkkkk

The voltages across R = 1, 2 and 5 (in Ohms) are:
khkhkkkkhkhkhkkhkhkkhkhhkkhkhkhhkhkhhkhkhkkhkhkkhkhkhkhkhhkkhkkkkkkkkkk

(in Ohmg) are:’);

181



182 Practical MATLAB® Applications for Engineers

khkkkkkhkhkkkhkkkkhkhkkkhkhkkkhkhkkkkhkkkkkkkkkkkkkkkkk
vr 1 =

10 - 1lO0*exp(-t)
khkhkkkkhhhkhkhkhhkhkhhhkhkhhhkhkhhhkhkhhkkhhkkhkhkkkhkkkkk
vr 2 =

10 - 10*exp(-2*t)
khkkkkkhkhkkkkkkkkkkkhkhkkkhkhkkkkkkkkkkkkkkkkkkkkk
vr 5 =

10 - 1l0*exp(-5*t)
hhkkkkkkkkhkhkhkhkhhhkhkhkkkkhkhkhkhhhhhhkkkkkkhkhkhkkhkkkkkk

hhkkkkkkkhkhkhkhhhhhkhkkkhkhkhkhhhhkhhhkkkkkkhkhhkhhkkkk

The voltages across L=1

for R=1,2 and 5 (in Ohms) are:
khkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkk

khkkkkkkkkhkhkhkkhkkhkhkhkkkkhkhkhkhkkkkhkhkhkkkkkkkkkkkkkkkk

vir _ 1 =

10*exp(-t)
hhkkkkkkkhkhkhkhhhhkhkhkkkhkhkhkhhhhhhhkkkkkkhkhkhkhhkkkk
vir 2 =

10*exp(-2*t)

khkkkkkkkkhkhkhkhkhkkhkhkhkhkkkkkhkhkkhkkhkhkhkhkkkkkkkkkkkkkkk

vlir _ 5 =

10*exp(-5*t)

hhkkkkkkkkhkhkhhhhhkhkkkhkhkhkhkhhhhhhkkkkkhkhkhkhkhhkkkk

See Figures 2.83 and 2.84.

Voltages across L=1, for R=1, 2, and 5

voltage

time t/sec

FIGURE 2.83
Transient voltage plots across L of Example 2.24.
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Voltages across R for, R=1, 2, and 5

—

/ R=symS/rR:20@7//

1
/ R =1 ohm

/

voltage

N WA OO N 0 © O

S

o

0 0.5 1 1.5 2 2.5 3
time t/sec

FIGURE 2.84
Transient voltage plots across R of Example 2.24.

Example 2.25

The switch of the circuit diagram shown in Figure 2.85 is open for t < 0, and it closes at
t = 0 where it remains indefinitely. Obtain

1. Analytical expressions for v (t), vx(f), and i(t) assuming that ic(0) = 0 A, for t = 0.

2. Create the script file RC that returns the MATLAB symbolic solutions for v (f), vg(t),
and i(t) by solving the corresponding loop differential equation for each of the
following cases: R = 1,2, and 5 Q.

3. The plots of
a. v (t) versus t
b. vg(t) versus t
c. i(t) versus t

Switch closes at t=0 C=IOI.5 F
oo 1

Vo=10V — R

1

FIGURE 2.85
Network of Example 2.25.

ANALYTICAL Solution

The loop differential equation and its solution are given as follows:

doc(t)
dt

RC +ou-()=V, and v (t)=V,— Ve fort=0
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then
o) = Vy — o) = Ve forR=1,2,and 5Q
and
i(t) = vr(t) _ &e”/f
R R
where 7 = RC.

MATLAB Solution

% Script file:RC

vctR _ 1=dsolve('0.5*Dy+y=10’,’y(0)=0","t’);

vctR _ 2=dsolve(*Dy+y=10’,'y(0)=0","t’);

vctR _ 5=dsolve('2.5*Dy+y=10',’y(0)=0","t");

dlsp Vhkhkkhkhkhkhkhkhhkhkhhkhkkhkhkhkhhkhdhhhhkhkkhdhhkhkhkddhhhkhhxkx/ );

disp Vhkkkkkkxkkxkk R R S U L T s **************’)

(

(
disp(‘****************************************’ )’.
disp(*The voltages across C for R=1,2 and 5(in volta)are:’);
disp(‘****************************************’)

1

vctR 1
disp(\****************************************l );
VCtR _ 2
disp(\****************************************l )’-
VCtR _ 5

disp(‘****************************************’ );
figure(1)

ezplot(vetR _1,[0 4]);

hold on

ezplot(vctR _ 2,[0 4]);

hold on

ezplot(vectR _ 5,[0 4]);

hold on

grid on;axis([0 3 0 11])

xlabel(‘time t/sec’)

ylabel(‘voltage ‘)

title(‘Voltages across C for R=1,2 and 5 are:’)

figure(2)

disp(‘The voltages across R’)

disp(* for R=1,2 and 5 (in volts) are:’);
disp(‘****************************************’)
vrl=10-vctR 1
disp(‘****************************************')
VvR2=10-vctR _ 2
disp(‘****************************************’)
VR5=10-vCtR _ 5
disp(‘****************************************’)
ezplot(10-vctR _1,[0 41);

hold on

ezplot(10-vetR _ 2,[0 4]);

hold on

ezplot(10-vctR _5,[0 4]);

hold on

7

7

1

7
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grid on;axis([0 3 0 11])

xlabel(‘time t/sec’)

ylabel(‘voltage ‘)

title(‘Voltages across R, for R=1,2 and 5)
disp(*The current i(t) through R=1,2 and 5 (in amps) are:’);
disp(‘***************************’%
iR1=10-vctR _ 1
disp(‘***************************’L
iR2=10-vctR _ 2)/2
disp(‘***************************’L
iR5=(10-vctR _ 5)/5
disp(‘***************************’L

figure(3)

ezplot(10-vctR _1,[0 4]);hold on;
ezplot(10/2-vctR _ 2/2,[0 4]);hold on;
ezplot(10/5-vctR _ 5/5,[0 4]);hold on;
grid on;axis([0 3 0 11])

xlabel(‘time t/sec’)
ylabel(‘currents’)

title(‘Currents i(t) for:R=1,2 and 5’)

The script file RC is executed and the results and plots (Figures 2.86 through 2.88) are
shown as follows:

>> RC
hhkkkkkkkhkhkhkhhhhkhkhkkkhkhkhkhhhkhhhkhkkhkhkhkhhhhhhkkkkkhkhkhkhhhhkkkkkk
kkkkkkkkkkkkk R E S U L T S *kkkhkhkhdhhhhhhhhhhhhkhhhhhhk
khkhkkkkhkhkkkkkkkkkkkhkhkkkhkkhkhkkhkhkkkhkhkkhkhkhkkhkhkkkkkkkkkkkkkkkkkk
The voltages across C for R =1,2 and 5 (in volts) are:
khkkkhkkhkkhkkhkhkhkhkhkkhkhhhkhkhhkhkhkhkhkkhkhhkkhkhhhkkhkhkhkkhkhkkkhkkkkhkkkkkkk
vectR 1 =

10-10*exp(-2*t)
khkhkkkkhkhkhkkhkhhkhkhkkhhkhhkhhhkhkhkhkhkhkkhhkhkhkhhkkhhkkkkkkkkkkkk
vctR 2 =

10-10*exp(-t)
khkhkkhkkhkhkhkkhkkhkhkhkhhkhkhkhkhkkhkhhkkhkhhkhkhkhhkkhkhhkhkhkhhkkhkhkhkkkkhkkkkkkkkk
VvctR 5 =

10-10*exp(-2/5*t)
khkhkkhkkhkhkhkkkkhhkkhkkhkkhkhkhkhkhhkkhkhkkkkhkkhkhkhkhkhkhkkhhkkkkkkkkkkkk
The voltages across R for R=1,2 and 5 (in volts) are:
khkkkhkkkkhkkhkkhkhkhkkhkhkhkkhkhkkkkkhkhkkkhkkkkhkhkkkhkhkkkkhkhkkkkkkkkkkkkkkk
VvR1l =

10*exp(-2*t)

hhkkkkkkkhkhkhhhhhkhkkkhkhkhkhhhhhhhkhkkhkhkhkhhhhhhkkkkkkhkhhhhhkkkkkk

VvR2 =
10*exp(-t)
hhkkkkkkkkkkkkkkkkkhkhkkkkhkkkhkkhkkkhkkhkkkkkhkkkkkkkkkkkkkkkkkkk
vR5 =

10*exp(-2/5*t)
khkkkhkhkkhkkkhkkhkkhkhkkhkhkhkhkkhkhkkhkkhkkhkkhhkkkkhhkkkkkhkkkkkkhkkkkkkkkkk
The current i(t) through R=1,2 and 5 (in amps) are:
khkkkkkkkkkkkkhkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
iRl =

10*exp(-2*t)
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khkkkkhkkhkkhkkkhkkhkkkhkkkkkhkkkkkhkkkhkkhkhkkkkhkkkkkkkkkkkkkkkkkkkk
iR2 =

5*exp(-t)
khkhkhkhkhkkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhhkhkhkhkhkkhkhkhkhkkhkhkhkhkkkkhkkkkkkkkkkkkkkk
iR5 =

2*exp(-2/5*t)

khkkkkkkkkhkhkhkhkkhkhkhkkkhkhkkhkhkhkkhkhkhkkkkkhkhkhkhkkhkhkhkkkkkkkkhkkkkkkkkkk

Voltage across CforR=1,2,and 5

11 : T ‘
170 SR A S R=1ohms .
Y S Lo R=2o0hms; ]
B o e " o e
74 S A AT —— . e
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| e o = e fomeomecd e
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time t/sec
FIGURE 2.86
Transient voltage plots across C of Example 2.25.
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FIGURE 2.87
Transient voltage plots across R of Example 2.25.



Direct Current and Transient Analysis 187

Currenti(t) forr R=1,2,and 5

currents

0 0.5 1 1.5 2 2.5 3
time t/sec

FIGURE 2.88
Transient current plots across R of Example 2.25.

Example 2.26

Steady-state conditions exist in the network shown in Figure 2.89 at t = 07, when the
source V, = 10 V is connected to the RL circuit. At t = 0%, the switch is moved downward
and the source V; = 20 V is then connected to the RL circuit (while the source V, = 10 V
is disconnected), where it remains for f = 0.

1. Write and solve the differential loop equation by hand for the current i(f) (through
RL), and the voltages vg(t) and v,(t), for t = 0.

2. Create the script file RL_IC that returns the solutions for part 1 by using the MAT-
LAB symbolic solver dsolve.

3. Repeat part 2 by using the MATLAB numerical solver ode45.
4. Also obtain the plots of
a. i(f) versus t
b. vg(t) versus t
c. v, (f) versus t
over the range 0 = t = 2 s, for parts 2 and 3 and compare their results.

5. By using MATLAB, verify the solution i(t) obtained in part 2 by applying KVL
around the loop consisting of V,, R, and L.

Switch

_ = — V=10V
§R_2£2 ﬂ)q V,=20V ], — ¥

T :

FIGURE 2.89
Network of Example 2.26.
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ANALYTICAL Solution

The loop differential equation is given by

V, =20V =

d;(:) +2i(t) fort=0

with

i(O):%ZSA and i(w):?zloA

Assuming a solution for i(t) of the form i(f) = A + Be "7, where r = L/R = 0.5 s, and by
using the initial and final current conditions, the constants A and B can be evaluated.
By following this process the current is then i(f) = 10 — 5¢7* A, and the corresponding
voltages are vg(f) = 20 — 10e™ V and v, (f) = 10e >V, for t = 0.

MATLAB Solution

% Script file: RC _IC
syms t;

% symbolic solution

it 1 = dsolve(‘Dy+2*y=20',"’y(0)=5’,"t’);
disp(‘*****************************************’),-
figure(1)

subplot(3,1,1);

ezplot (it _1,[0 2]);ylabel(*i(t) in amps’);
title(‘plots of: [i(t), vr(t) and vL(t)] vs t’);
subplot(3,1,2);

vtr 1 = it 1*2;

ezplot(vtr 1,[0 2]);ylabel(*vr(t)’);title(® Y);
subplot (3,1,3);

vl 1 = 20-vtr _1;

ezplot (vl _ 1,[0 2]);ylabel(*vL(t)’);title(® Y);
xlabel (‘time in sec.’);

disp(‘**********R E S U L T S ****************’);
dlsp(‘*****************************************’)’-
disp(*The i(t) for t >0 is:’);

it 1
p(

‘The voltage across R=2 ohms is :')
vtr 1
dlsp(‘T e voltage across L=1 henry is :’)
vl 1
dlsp(‘********Verlfy solution**x*xkkxkkkkkkkkkk*/).
echo on

disp(‘******************************************’)
verify = diff(it _1,t)+2*it _1

echo off

% numerical solution

clear;

% solution using ode45
t0 = 0;R=2;

tf = 2;

ts = [t0 tfl;

i0 = 5; % initil cond.
t =linspace(0,2,100);
[t,it] = ode45(‘f’,ts,1i0);
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figure(2)

subplot(3,1,1)

plot(t,it)

title(‘plots of [i(t), vr(t), and vL(t)] vs t’)
ylabel('i(t) in amps’)

subplot(3,1,2)

vr=R*it’;

plot(t,vr);ylabel(*vr(t) in wvolts’);
subplot(3,1,3)

v1=20*ones(1,45)-vr;plot(t,vl);

ylabel(*vL(t) in volts ‘);xlabel(‘time in sec’)

function didt=£f(t,1)
didt=20-2*i;
The script file RC_IC is executed, and the results and plots are shown in Figures 2.90
and 2.91.
>> RC _IC
khkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkhkhkkkkkx
**********R E S U L T S *khkkkkhkkhkkhkhkhkkhkkhkkkx
khkkkkhkhkhkhkkhkhkhkhkhkhkhkhkhhkhhkhdhhhhkhkddhhhhkhkdhkhhhdx*x
The i(t) for t >0 is:
it 1 =

10-5*exp(-2*t)
The voltage across R=2 ohms is :
vtr 1 =

20-10*exp(-2*t)

The voltage across L=1 henry is :
vli 1 =

10*exp(-2*t)
*kkkkkkkVerify solutionk*kkkkkkkkix
verify = diff(it _ 1,t)+2*it 1
verify =

20

khkkkkhkhkkkhhkhkkhkdhkhkhhkhkrkhhkhkkhkdhrrkhhkkkd

plots of: [i(t), vr(t), and vL(t)] versus t

®» o O

i(t) in amps

0 02 04 06 08

15 | 1

vr(t)

10 . . . . . . . . h
0 02 04 06 08 12 14 16 18 2

4 - = b

10

vL(t)
(6]}

0 02 04 06 08 1 12 14 16 18 2

time in sec

FIGURE 2.90
Plots of symbolic transient solutions of Example 2.26.
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plots of [i(t), vr(t), and vL(t)] versus t
10 T T T T T T f

i(t) in amps

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

vr(t) in volts
o
T
1

10 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10 T T T T T T T T T

vL(t) in volts
o
T
1

0 I I I I I 1 T T t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time in sec

FIGURE 2.91
Plots of numerical transient solutions of Example 2.26.

Note that the symbolic results shown in Figure 2.90 fully agree with the numerical
results shown in Figure 2.91.

Example 2.27

Steady-state conditions exist in the network shown in Figure 2.92 at t = 0~, when the
V, = 10 V source is connected to the RC circuit. At t = 0%, the switch moves downward,
and the V, = 20 V source is connected to the RC circuit (while the source V; = 10 V is
disconnected), for t = 0.

1. Write and solve the loop differential equation by hand, for the current i(f) (through
RC) and the voltages vg(t) and v(f), for t = 0.

2. Create the script file RC_IC that returns the solutions for part 1 using the MATLAB
symbolic solver dsolve.

3. Repeat part 1 by using the MATLAB numerical solver ode45.
4. Also, obtain the plots of

a. i(f) versus t

b. vg(t) versus t

c. v (t) versus t

over the range 0 =t = 2 s, for parts 2 and 3.
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Switch moves down at t=0

R=2Q
———O . VW

V=10V i

I[fo—rt

FIGURE 2.92
Network of Example 2.27.

5. By using MATLAB, verify the solution v.(t) obtained in part 2 by applying KVL
around the active loop for ¢ > 0.

6. Compare the results of part 1 with the results of part 2 and 3.

ANALYTICAL Solution

The loop differential equation for ¢ = 0 is given by
20 = vo(t) + 2i(t) fort=0

with v(0) = 10 V and v(ss) = 20 V.
dv(t)

Replacing i(t) = C —in the preceding differential equation yields

dou-(t
2% +u(t) = 20

Then assuming a solution for v.(f) of the form v.(f) = A + Be ™", wherer = C*R = 25,
and knowing the initial and final voltage values across C, the constants A and B can be
evaluated. By following this process the voltage across C is given by v(f) = 20 — 10 eV,
the voltage across R is vg(f) = 10 7%V, and the current is i(f) = 5e70% A.

MATLAB Solution
% Script file: RC _ IC
syms t;

% symbolic solution

vct=dsolve (*2*Dy+y=20','y(0)=10",'t");
disp(‘*******************************************’),-
disp(‘***********R E S U L T S *****************’);

disp(‘*******************************************’)

7
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figure(1)

subplot(3,1,1);

ezplot(vet, [0 2]);ylabel(*vc(t) in volts’);
title(‘plots of: [vc(t), vr(t) and i(t)] vs t’);
subplot(3,1,2);

vrt=20-vct

ezplot(vrt,[0 2]);ylabel(*vr(t)in volts’);title(® “);
subplot(3,1,3);

it = vrt/2;

ezplot(it,[0 21);ylabel(‘it(t)in amps’);title(® Y);
xlabel(‘time in sec.’);

disp(‘The voltage across C, vc(t) for t >0 is:’);
vct

disp(*The voltage across R=2 ohms is :’)

vrt

disp(*The current i(t) is :’)

it

disp(‘********Verify Solution*******************’)I-
echo on

verify = 2*diff(vct,t)+vect
disp(‘*******************************************’)

)

% numerical solution
clear;
o

% solution using ode45
t0 = 0;R = 2;

tf = 2;
ts = [t0 tf];
v0 = 10; % initial condition

t = linspace(0,2,100);
[t,vt] = ode45(‘f’,ts,v0);

figure(2)

subplot(3,1,1)
plot(t,vt)

title(‘plots of [vc(t), vr(t), and i(t)] vs t’)
ylabel(*vc(t) in volts’)
subplot(3,1,2)

vr = 20*ones(1,41)-vt’;
plot(t,vr)

ylabel(*vr(t) in volts’)
subplot(3,1,3)

it=vr./R;

plot(t,it)

ylabel(*i(t) in wvolts )
xlabel(‘time in sec’)

function dvtdt=£f(t,vt)
dvtdt=10-0.5*vt;
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The script file RC_IC is executed, and the results and plots are shown as follows
(Figures 2.93 and 2.94):

>> RC _ IC
khkkkkkkhkkhkhkkhkkhkkkhkkhkkkhkkkkkhkkkkkkkkkkkkkkk
*kkkkkkkk*x R E s U L T S kkkkkkkkkkkkkkkk
hhkkkkkkkkkkkkkkkkkhkhkkkkhkkkkkhkkkkkkkkkkkkkk
The voltage across C, vc(t) for t >0 is:
vet =

20-10*exp(-1/2*t)
The voltage across R=2 ohms is :
vrt =

10*exp(-1/2*t)
The current i(t) is :
it =

S5*exp(-1/2*t)
********Verify solution******************
verify = 2*diff(vct,t)+vect
verify

20

hkkkkhkhkkhkhhkhkhhkhkhkhkhkkhkhkkhkhkkkkkk

plots of: [vc(t), vr(t), and i(t)] versus t

vc(t) in volts

vr(t) in volts

it(t) in amps

time in sec

FIGURE 2.93
Plots of symbolic transient solutions of Example 2.27.
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vc(t) in volts

vr(t) in volts

i(t) in volts

FIGURE 2.94
Plots of numerical transient solutions of Example 2.27.
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plots of: [vc(t), vr(t), and i(t)] versus t
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0.2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time in sec

Note that the analytical solution fully agrees with the symbolic and numerical solutions
shown in Figures 2.93 and 2.94.

Example 2.28

Steady-state conditions exist in the network shown in Figure 2.95 at t = 0~, when the
Vi, = 10 V source is connected to the RCL circuit. At t = 0%, the switch moves downward,
and the source V,, = 10 V and resistor R are disconnected from the LC structure, where
it remains for t = 0.

Write the second-order loop differential equation in terms of the current i(f), solve
and plot i(t) using MATLAB over the range 0 = f = 1 s, and verify that the LC network

is an ideal oscillator.

ANALYTICAL Solution

CL

A2i(t)

dr?

i) | 1

i =0 L
i)=0 or ="t or

i(h=0 fort=0

22i(t)
a2

+144i(H) = 0
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Switch moves down at t=0
L=1/4H

ity

Vo=10V| + +
— C,=1/36F

IF—t

FIGURE 2.95
Network of Example 2.28.

with the boundary conditions given by

| dit
i( )\t 0 =0c(0)=10V
or

d’(t)\t ,=40V and i(0)=

dz(t)

Note that L——~ ! J- i(t)=0 fort=0 satisfying KVL

MATLAB Solution
>> current it = dsolve(‘D2y+144*y=0’,’y(0)=0,Dy(0)=40",'t")
current it =
10/3*sin(12*t)
>> ezplot(it,[0 1]) % the plot is shown in Figure 2.96
>> xlabel(‘time t in sec’)
>> ylabel('i(t) in amps’)
>> title('i(t) vs t’)

i(t) versus t

i(t) in amps

0O 01 02 03 04 05 06 07 08 09 1
time tin sec

FIGURE 2.96
Plot of i(t) of Example 2.28.
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Note that the network shown in Figure 2.95 is an ideal circuit (since there is no resis-
tance, R = 0 in the LC loop for ¢t = 0), and the solution clearly indicates that the current
shows an oscillator behavior with W = 12 rad/s = \/L% and T = %s.

Example 2.29

Steady-state conditions exist in the network shown in Figure 2.97 at t = 07, when the
V, = 120 V source is connected to the RCL parallel circuit. At t = 07, the switch moves
downward, and the source V; = 120 V and resistor R = 10 Q are disconnected from the
parallel (RLC) structure.

Analyze the transient response (t > 0) of the source-free parallel RLC circuit, for each
of the following values of R, R = 3,9, and 72 Q.

1. Determine the analytical response v(t) for each value of R, for t = 0

2. Create the script file transient_RLC_parallel that returns the MATLAB solutions of
part 1 and its corresponding voltage plots

3. Compare the MATLAB solutions of part 2 with the analytical solutions of part 1

Switch moves down at t=0 R=10Q

R=39and72 Q O)(C VWV
° O_

§ L=9H ==C=1/36F —
V=120V

T

FIGURE 2.97
Network of Example 2.29.

ANALYTICAL Solution

From the circuit diagram of Figure 2.97 for t = 0, the initial conditions are v-(0) = 0 and
i;(0) = 120/10 = 12 A, and

dog(t . . ' )
¢ v;t( )‘t:O = ic(t = 0) = ic(0) = 7,(0) + ig(0)
then
dou(t .
;t( )\r:o = 36ic(0) = 36(12 + 0) = 432 V/s

Recall that the node equation is

Poct) | 1 dot) 1
o +—0v.()=0 fort=0
i "rRe ar " cpoe® or

For R = 3 Q, the resonant frequency is
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The neper frequency is

The complex frequencies are s, and s,, given by

S1, =~ Jo? — w?

then 0 > \a? — w? and is clearly the overdamped case.
Then the solution v(#) is of the form v (f) = Aje™1f + A,e 2!
For R = 9 Q, the resonant frequency is

The neper frequency is

Then s, and s, are negative and repeated frequencies, which are given by

= —y + 2 72 —
512 o F \Joum — wg o

Since 0 = ya? — w3, the case is critical damped.
Then the solution v(f) is of the form v(f) = Aje ™ + A te
For R = 72 Q, the resonant frequency is

1
w, = Jic =2rad/s
LC
The neper frequency is
o= 1.1 Hz
2RC
The complex frequencies s, and s, are given by s,, = —a * jyw3 — a® (complex conju-

gate), and is clearly the underdamped case. Then the solution v, (¢) is of the form

o(t) = e *[A, cos(w,t) + A, sin(w,t)]

where w; = w3 — a?.
Let us use MATLAB to obtain and plot the solutions just presented, and compare them
with the analytical results.

197
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MATLAB Solution
% Script file : transient _ RLC _ parallel

source free RLC parallel circuit analysis
disp(\***************************************’)

disp(‘*******R ESULT S*******************q

disp(‘Source free parallel RLC circuit’)
disp(‘***************************************w

disp(*Solution of diff. equation for R=3 ohms’)

overdamped = dsolve(‘(1/36)*D2y+(1/3)*Dy+(1/9)*y=0’,"y(0) = 0’,’Dy(0)= 32’,'t’)
figure(1)

ezplot (overdamped)

xlabel(‘time (sec)’)

ylabel(*voltage(volts)’)

title(‘v(t) vs t (overdamped case; R=3 ohms)’)

axis([0 3 0 40]);

disp(‘***************************************w

figure(2)

disp(*Solution of diff. equation for R=9 ohms’)

criticaldamped = dsolve(‘(1/36)*D2y+(1/9)*Dy+(1/9)*y=0","y(0)=0",’Dy(0)=432",t")
simple crit=simple(criticaldamped);

ezplot(criticaldamped)

xlabel(‘time (sec)’)

ylabel(*voltage(volts)’)

title(*v(t) vs t (criticaldamped case; R=9 ohms)’)

axis([0 4 0 90]);

disp(‘***************************************q

disp(‘Solution of diff. equation for R=72 ohms’)

underdamped = dsolve('(1/36)*D2y+(1/72)*Dy+(1/9)*y=0',’y(0)=0",’Dy(0)=432",'t’)

figure(3)
ezplot (underdamped)
xlabel(‘time (sec)’); ylabel(‘voltage(volts)’)

title(‘v(t) vs t (underdamped case; R=72 ohms)’)

axis([0 6 -150 200]);
QLS (M hHHk ke k ok ddek ok ok ek ok ok ek Kk kK Rk Kk KRk )

The script file transient_ RLC_parallel is executed, and the results and plots (Figures 2.98
through 2.100) are as follows:

>> transient RLC _parallel
khkhkkkkhkkkkhkkkkhkkkkhkhkkkhkkkkkkkkkkkkkkkkk
*kkkkk*R FE S UL T S*******************
Source free parallel RLC circuit
hhkkhkkkkkkkhkhkhhhhhkhkkkkhkhkhhhhhhkkkkkkhkhkkk
Solution of diff. equation for R=3 ohms
overdamped =
27%27(1/2) *exp (2* (-3+42%2"(1/2)) *t) -27*2" (1/2) *exp (-2* (3+2*27 (1/2)) *t)

khkkkhkkhkkkkhkkkkhkhkhkkhkhkhkkhkkhkhkkhkkkkkhkkkkkkk
Solution of diff. equation for R=9 ohms
criticaldamped =

432*exp(-2*t)*t
khkkkkkhkkhkkkhkkkkhkhkkkhkhkkkhkkhkkkkkkkkkkkkkkkk
Solution of diff. equation for R=72 ohms
underdamped =

576/7*%7"(1/2) *exp(-1/4*t)*sin(3/4*7"(1/2)*t)

hkkkkhkhkhkkhkhhkhkhkhkhhkhkhkhhkkhkhhkhkhkkkx
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v(t) versus t (overdamped case; R = 3 ohms)

voltage (volts)

0 0.5 1 1.5 2 25 3

FIGURE 2.98

time (sec)

Transient overdamped plot (t > 0) of the source-free parallel RLC of Example 2.29.
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FIGURE 2.99

v(t) versus t (critical damped case; R = 9 ohms)

time (sec)

Transient critical damped plot (t > 0) of the source-free parallel RLC of Example 2.29.
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FIGURE 2.100

v(t) versus t (underdamped case; R = 72 ohms)

1 2 3 4 5 6

time (sec)

Transient underdamped plot (t > 0) of the source-free parallel RLC of Example 2.29.
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Observe that by changing the value of R (R = 3, 9, and 72 Q), the three solutions for
the second-order differential equation—over, critical, and underdamped—are obtained.
Observe that the analytical solutions completely agree with the MATLAB solutions.

Example 2.30

Steady-state conditions exist in the network shown in Figure 2.101, at t = 0~, when the
Vy, = 90 V source is connected to the RCL circuit. At t = 0%, the switch opens (moves
upward) and the source V, = 90 V is disconnected from the RLC structure.

Analyze the transient response (t > 0) of the source-free series RLC circuit for the
following values of R, R = 75, 36, and 3 Q.

1. Determine the analytical response ix(t) for each value of R, for t = 0

2. Create the script file transient_RLC_series that returns the MATLAB solutions of
part 1, and its plots

3. Compare the MATLAB solutions of part 2 with the analytical solutions of part 1

R =75,36,and 3Q Switch opens at t=0
l C=1/36 F
§ Vo=90V
L=9H
FIGURE 2.101
Network of Example 2.30.
ANALYTICAL Solution
For t = 07, the initial conditions are v-(0) = 90 V and 7;(0) = 0 A.
L)+ Ri(0) = 0. (0)
dt
then
i) 2O =R _oc0) 0y,
dat L L 9

Recall that the loop differential equation is

2ih)  Rdit) . 1
+——=+—i(t)=0 fort=0
e Lo Ter'® or
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For R = 75 Q, the resonant frequency is

w, = % =2rad/s

The neper frequency is

OC=£=E=4.1667HZ
2L 18
The frequencies s, and s, are
S, = —o* \Jo? — wi

then
0> o2 —w?

and the solution i(f) is the overdamped case given by i(f) = A;e™*1 + A,e~*2".
For R = 36 Q, the resonant frequency is

1
wy = ﬁ =2 rad/s
The neper frequency is
- R_36_ 2Hz
2L 18

and s; and s, are repeated, given by

= —qg + 2 = —
512 o F L\ Jo wy o

then

2 2

0

Il
8

and the solution i(f) is the critical-damped case given by i(f) = A;e™* + A,te™".
For R = 3 Q, the resonant frequency is

w, = ﬁ = 2rad/s

The neper frequency is

=
w
| =

a=—=—=6=0.1667Hz

and the complex frequencies are s, and s, given by s,, = —a * jyw? — a?, clearly the
underdamped case.
Then the solution i(t) is of the form

i(f)y=e [A, cos(w,t)+ A,sin(w,t)]

where w,; = \w? — a.
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MATLAB Solution
% Script file : transient RLC _series

source free RLC series circuit analysis
disp(\****************************************q

disp(‘*¥***xx*kx***R E S U L T Sr*kkkkkkkkkssx/)
disp(‘*****Source free series RLC circuit***’)
disp(‘****************************************q

disp(*Solution of diff. equation for R=75 ohms’)

overdamped = dsolve(‘D2y+(75/9)*Dy+4*y=0’,’y(0)=0’, ‘Dy(0)=10’,'t")
figure(1)

ezplot (overdamped,[0 5])

xlabel (‘time (sec)’)

ylabel (‘current i(t) in amps’)

title (‘i(t) vs t (overdamped case; R=75 ohms)’)
disp (‘***************************************q

figure(2)

disp(‘Solution of diff. equation for R=36 ohms’)

criticaldamped = dsolve(‘*D2y+(36/9)*Dy+4*y=0’,’y(0)=0’,’Dy(0)=10",'t")
ezplot(criticaldamped, [0 6])

xlabel(‘time (sec)’); ylabel(‘current i(t) in amps’)

title(‘i(t) vs t (criticaldamped case; R=36 ohms)’)
disp(‘*************************************************************q
disp(‘Solution of diff. equation for R=3 ohms’)

underdamped = dsolve(‘D2y+(3/9)*Dy+4*y=0’,"y(0)=0",’Dy(0)=10)

figure(3)

ezplot (underdamped)

xlabel (‘time (sec)’)

ylabel (‘current i(t) in amps’)

title (‘i(t) vs t (underdamped case; R=3 ohmsg)’)
disp(‘**************************************************************q

The script file transient_RLC_series is executed, and the results and plots (Figures 2.102
through 2.104) are as follows:

>> transient RLC series
*hkkkkkkkkhkhkhkhkhkhkhhkhkkkhkhkhkhkhkhkhkhkhkhkkkhkhkhkhhkkhkkkkk

*kkkkkkkkkkk*R E S ULT S*******************************

***Source free series RLC circuit ***
hhkhkhkkkkkkkhkhkhhhhhkhkhkhkhkhkhkhhhhhhhkhkkkkhkhkhkhhhhhhhkkkhkhkhkhhhhhhhkkkkkhkhhhhhkhkkkkkkk
Solution of diff. equation for R=75 ohms
overdamped =

30/481%481"(1/2) *exp(1/6*(-25+481"(1/2)) *t) - 30/481*481"(1/2)*exp(-

1/6%(25+481"(1/2))*t)
hhkhkhkkkkkkhkhkhkhhhhhhkhkkhkhkhkhhhhhhhkhkkkkkhkhkhhhhhhkhkkkhkhkhkhhhhhhhkkkkkhkhhhhhhkkkkkkk
Solution of diff. equation for R=36 ohms
criticaldamped =

10*exp(-2*t)*t
khkkkhkkhkhkhkkhkkkkhkhkhkkhkhkhkhkhkhkhkhkhkhhkkhkhkhkhkhhkhkkhkhkhkhkhhkhkhkhhkkhhkhkkhkhkhkkhkhkhkkkkhkkkkkkkkkkk
Solution of diff. equation for R=3 ohms
underdamped =
60/143%143"(1/2)*exp(-1/6*t)*sin(1/6*143"(1/2)*t)

khkkkkkkkkkkhkhkkhkhkhkhhkkkkhkhkhkhkhkhhkhkkkhkkkhkhkhkkkhkkhkhhhkkkhkhkhkhkkkkhkhkhkhkkkkkkhkhkhkkhkkhkkkkkkkkk
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i(t) versus t (overdamped case; R = 75 ohms)

current i(t) in amps

0 0.5 1 1.5 2 25 3 35 4 4.5 5
time (sec)

FIGURE 2.102
Transient overdamped plot (t > 0) of the source-free series RLC of Example 2.30.

5 i(t) versus t (critical damped case; R = 36 ohms)

current i(t) in amps

time (sec)

FIGURE 2.103
Transient critical damped plot (t > 0) of the source-free series RLC of Example 2.30.

i(t) versus t (underdamped case; R = 3 ohms)

current i(t) in amps

time (sec)

FIGURE 2.104
Transient underdamped plot (t > 0) of the source-free series RLC of Example 2.30.
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Observe that by changing the value of R (R = 75, 36, and 3 Q), the three solutions for
the second-order differential equation—over, critical, and underdamped cases—
are obtained. Also observe that the analytical solutions completely agree with the
MATLAB solutions.

Example 2.31

Steady-state conditions exist in the circuit of Figure 2.105 for ¢ = 0, while the voltage
source V; = 6 V is connected to the network. At t = 07, the switch moves downward
disconnecting the source while connecting R, to the rest of the circuit.

1. Obtain analytically the loop differential equation set and the initial conditions

2. Using the MATLAB symbolic solver, create the script file transient_2loops that
returns the transient currents for each loop, and their respective plots, for t = 0

3. Also obtain simplify and pretty expressions for each of the transient loop currents of

part 2
Switch moves down at t=0
Ly=1H
+ _
0 2222
+
iy (1) ity P
V - 6 V % R3 = 6 Q
1 e § Ri=4Q + _
T § Ry=30Q .
_ »=2H
FIGURE 2.105
Network of Example 2.31.

ANALYTICAL Solution

The conditions at t = 0 are 7;,(0) = 3 A and 7,(0) = 1 A. Applying KVL to the two-mesh
network of Figure 2.105, for t = 0, results in the following set of simultaneous differen-
tial equations:

diy(t)

Ry + Ry)i () + L,

Ryiy(t) = 0

, . di, (t
R 1)+ (Ry + Ria() + 1,720 —

Replacing the elements by their values yields the following set of differential equations:

7i,(t) + M = 3i,(H) =0
di
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or
95O 7 1)+ 3i,(0)
di
and
—~3i,(t) + 90, () + 2—‘112(,” =0
1
or

di . .
22—5” = 3i,(t) — 9i,(t)

MATLAB Solution

% Script file : transient 2loops

% transient solutions for two loop network
disp(‘****************************************’)

Aisp(‘*****x**R E S U L T Sk*kkxkkkkkkkhskkkdsxs)
disp(‘****************************************’)

disp(*Solution of the two diff. loop equations for t>0 ')

[yl y2] = dsolve(‘Dyl=-7*yl+3*y2,2*¥Dy2=3*yl- 9*y2’,/'y1(0)=3','y2(0)=2','t");
figure(1)

ezplot (y1,[0 3])

axis([0 1.5 0 3.5])

xlabel (‘time (sec)’)

ylabel (‘current il(t) in amps’)

title (*il(t) vs t 7)

figure(2)

ezplot(y2,[0 3])

axis([0 1.5 0 2.3])

xlabel(*time (sec)’)

ylabel(‘current i2(t) in amps’)

title(‘i2(t) vs t )
disp(‘***************************************’)
disp(*The currents il(t) and i2(t), in amps are :’)
lyl y2l”
disp(‘***************************************’)
disp(‘The simplify solution for il(t) is:’)
simplify(yl)
disp(‘***************************************’)
disp(*The simplify solution for i2(t) is :’)
simplify(y2)
disp(‘***************************************’)
disp(‘The pretty solution for il(t) is :’)
pretty(yl)
disp(‘***************************************’)
disp(‘The pretty solution for i2(t) is :’)
pretty(y2)

disp(‘***************************************’)
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figure(3)

ezplot(yl)

hold on

ezplot(y2)

xlabel(‘time (sec)’)

axis([0 1.0 0 3.5])

ylabel(‘currents [il(t)&i2(t)] in amps’)
title(*il(t) & 1i2(t) vs t )

The script file transient_2loops is executed, and the results and plots (Figures 2.106
through 2.108) are as follows:

>> transient 2loops

khkkkkkkkhkkhkkhkhkhkkhkkkkhkhkkkhkhkkkhkkhkhkkkhkkhkkkkkkkkkkkkhkkkkkkk

*kkkkk*R E S UL T S*******************************
hhkkkkkkkkhkhkhkhhhhhhkhkhkhkhkhkhhhhhhhkhkkkkkhkhkhkhhhhkkkkkkkkkk

Solution of the two diff. loop equations for t>0
khkkkkkkhkhkkhkhkhhkhkhkkkhkhkhkhkhkhkhkhkhkkhkkkhkhkhkkkhkkkkkkkkkkkkk

The currents il(t) and i2(t), in amps are :

ans =

[ conj(-9/194*97"(1/2) *exp(-1/4*(23+97"(1/2))*t)+9/194%97"(1/2) *exp (1/4*(-
23+977(1/2))*t)+3/2*exp(1/4*(-23+97"(1/2)) *t) +3/2*exp(-1/4*(23+97"(1/2)) *t))]
[ conj(exp(1/4*(-23+97"(1/2))*t)-14/97*97"(1/2) *exp(-1/4*(23+97"
(1/2))*t)+14/97*%97"(1/2) *exp (1/4* (-23+97"(1/2)) *t) +exp (-1/4*(23+97"(1/2)) *t))]
khkkkkkkkhkkkkhkhkkkhkhkkkhkkhkkkhkhkhkkhkhkhkkkkhkkkkkhkkkkhkkkkhkkkkkkkkkkkkkkkk

The simplify solution for il(t) is:

ans =
-9/194%97"(1/2)*exp(-1/4* (234977 (1/2)) *t)+9/194*97"(1/2) *exp (1/4*(-23+97"
(1/2))*t)+3/2*exp (1/4*(-23+97"(1/2)) *t) +3/2%*exp (-1/4* (234977 (1/2)) *t)
khkhkkkkhkkkkhkhkkkhkkkkhkhkhkkhkkhkkkkhkkhkkkkhkkhkhkhkkhkhkhkkkhkkhkkkkhkkkkkhkhkkhkkhkkkkhkkkkkkkkkkkkkk
The simplify solution for i2(t) is :

ans =

exp(1/4*(-23+977(1/2))*t)-14/97*97"(1/2) *exp(-1/4*(23+97"(1/2)) *t) +14/97*97"
(1/2)*exp(1/4*(-23+977(1/2)) *t)+exp(-1/4*(23+97"(1/2)) *t)
khkkkkkhkhkkkhkhkhkhkhhkkhhkhkhhhkhkhkhhkhkhkkhhkhkhhhkhkhkhkhkhkkhkhkhkhkhhkkkhkkkkkkkkkkkkkkk

The pretty solution for il(t) is :

1/2 1/2
- 9/194 97 exp(- 1/4 (23 + 97 ) t)
1/2 1/2 1/2
+ 9/194 97 exp(1l/4 (-23 + 97 ) t) + 3/2 exp(1/4 (-23 + 97 ) t)
1/2

+ 3/2 exp(- 1/4 (23 + 97 ) t)
khkhkkkkkhkkkkkhkkkkkhkkhkkhkhkkkkkhkkkhkhkhkkkhkhkhkkkhkhkkkkhkhkkkkhkhkkkkkkkkkkkkkkkkkkkkkkk
The pretty solution for i2(t) is :
1/2 1/2 1/2
exp(1l/4 (-23 + 97 ) t) - 14/97 exp(- 1/4 (23 + 97 ) t)
1/2 1/2 1/2
+ 14/19 97 exp(1/4 (-23 + 97 ) t) + exp(- 1/4 (23 + 97 ) t)

khkkkkkkkkhkhkhkhkhkhkhkhhhkkkhkhkhkhkhhhhkhkhkkkkkhkhkhkhkkhkhkhhkkkkhkhkhkhkhkhkkhkhkhhkkkkkhkhkhkhkkhkhkkkkkkkkk
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i1(t) versus t
3-5 T T

current i1(t) in amps

1.5

time (sec)

FIGURE 2.106
Plot of i1(t) of Example 2.31.

i2(t) versus t

15| 1

current i2(t) in amps

time (sec)

FIGURE 2.107
Plot of i2(t) of Example 2.31.
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i1(t) and i2(t) versus t
35 T T T T T T T T T

currents [i1(t) and i2(t)] in amps

0 I L I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (sec)

FIGURE 2.108
Plots of i1(t) and i2(t) of Example 2.31.

2.5 Application Problems

P21 Create conversion tables and graphs for the first 21 integer values (from 0 to 20) for
the following:

British thermal units to Joules

. Joules to foot-pound force

Newton to pound-force

. Inches to centimeter

Horsepower to watts

Foot to meter

. Joules to calories

S e AN oo

. Horsepower to foot-pound force per second
Kilowatt per hour to Joules

coe

j- Electrons to coulombs
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P22

P23

P24

P2.5

P2.6

P27

P2.8

P29
P2.10

The following relations may be of help:
e 1Btu=1055] = 778.2 ft - Ib,

1] =0.737 ft - Ib;

e 1N = 0.225 Ib;

e lin. =254 cm

e 1Hp =746 W

1ft =0.3048 m

1 Btu = 252 Cal

e 1 Hp = 550 ft - Ib;/s = 33,000 ft - Ib;/min = 0.07067 Btu/s
1 kW/h = 3.6(106) ] = 3.414 Btu/h

e 1 Cal = 3.088 ft - Ib;

e 1 C = 6.24 * 10'8 electrons

Two electric charges given by Q, = +500 puC and Q, = —600 pC experience a force of
1500 N. Determine the distance separating the charges and the direction of the
force (attraction or repulsion).

An electric current I consists of 25 * 1016 electrons/s. Express I in amperes (A), mil-
liampere (mA), and microampere (pA).

An energy E of 650 | is required to move 12 C from point A to point B. Determine
the potential difference between the points (A and B).

Obtain tables and plots of the force of attraction versus the separation (force versus
distance) of two charges Q; = +1.500 uC and Q, = —600 pC, where the separation
distance r is over the range 0.5 m = r = 5 m, in intervals of 0.25 m, where the vari-
ables are evaluated using the following units:

a. Newtons versus meters

b. Pound force versus inches

c. Newtons versus foot

d. Pound force versus centimeter

The current through a 2.7 kQ resistor R is 3 mA. Determine the current direction
and the polarity of the voltage V across the resistor.

Alight bulb is rated 100 W at 120 V. Find the current through the bulb and calculate
its resistance.

If the cost of electrical energy is $0.09 kW/h, what would be the cost of using a
100 W bulb during the following time periods?

a. One day

b. One week

¢. One month

d. One year

Convert the MATLAB programs of Examples 2.2 and 2.3 into script files.

Determine the equivalent resistances of each of the networks shown in Figure 2.109
by hand and by using MATLAB.
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300 600
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o
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300
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1
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(@)
2

FIGURE 2.109
Network of P.2.10.

P211

P2.12

P2.13

P214

The potentiometer R; of the circuit diagram of Figure 2.110 varies over the range
0 = R; = 100 Q in linear increments of 5 Q. Write a MATLAB program that returns
the following plots:

a. Ryversus [

b. R; versus I,

c. Ryversus I,

d. Ry versus I,

e. Ry versus I

Repeat P.2.11 for the following cases:
a. Ry versus Vi,

b. Rs versus Vi,

c. Vg versus Vi

d. Vg, versus I5

For the circuit diagram shown in Figure 2.110, write a program that returns the fol-
lowing plots:

a. Ry versus power of R,
b. Rs versus power of (R;||R,)
¢. R;versus power of (R,||R5)
d. R; versus power of (V)

For the circuit shown in Figure 2.110, write and run a program that returns the following
plots as R; varies over the range 0 = R; = 100 Q in linear increments of 5 Q:

a. Vs versus Vi,
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b. I5 versus I,
c. I, versus I

P2.15 The current source I, shown in the circuit of Figure 2.111, varies over the range
1mA =1=0.5 A in linear increments of 10 mA.

4
I
R =100Q —
Ry=30Q
I
2 R,=20Q
. [
p— Iy s
Vo=100V| ~
R,=25Q
| "
FIGURE 2.110
Network of P.2.11.
R,=10Q
A B
I R,=5Q lp
> = E——
/ GD I3
l Ry=5Q R,=20Q Ry=10Q
c
FIGURE 2.111
Network of P.2.15.
R =100
—
& Izl Ry=20Q Ry=300Q
Vo It
= Is
R,=10Q Rs=5Q l Rs=200Q
FIGURE 2.112

Network of P.2.16.
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Write a program that returns the following plots:
a. I versus V
b. I versus V-
c. Iversus I
d. I versus I,
I versus power (R, ||R,)

®

P.2.16 The voltage source V,, shown in Figure 2.112, varies from 10 to 100 V in steps (incre-
ments) of 5 V. Write a program that returns the following plots:

a. Vyversus I

b. V,versus Vi

c. Vyversusl,

d. V, versus I;

e. V, versus power of R,

P2.17 The diagrams shown in Figure 2.113 represent the circuit equivalent A-to-Y
transformations.

Ry

Ry A,

FIGURE 2.113
Network structures of P.2.17.

FIGURE 2.114
Network of P.2.17.



Direct Current and Transient Analysis 213

The A-to-Y transformation equations are

_ Ry * R,
4 R +R,+R,

_ Ry * Ry
B R +R, +R,

R. = RZ*R3
€ R +R,+R,

Calculate the voltage Vy in the circuit shown in Figure 2.114 by
a. Applying the A-to-Y transformation to loop I only
b. Applying the A-to-Y transformation to loop II only
c. Using loop equations (with no transformations)
d. Applying Thevenin’s theorem (assuming that the load is R = 30)

A
1mA
t (seconds)
0 5 "
FIGURE 2.115
Current i of P.2.19.
Vi
A
1V
t (seconds)
»
0
FIGURE 2.116
Voltage v; of P.2.20.

e. Using node equations (with no transformations)
f. Applying Norton’s theorem (assuming that the load is R = 30)
Assume that all the resistors are given in ohms.

P2.18 From the equations for R,, Rz, and R defined in P.2.17, obtain expressions for R,
R,, and R, for the Y-to-A transformations by hand and by using MATLAB symbolic
techniques.
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P2.19 The current i.(f) through a capacitor C = 1 pF is shown in Figure 2.115.

Write a MATLAB program that returns the following plots:

a. The voltage v (t) versus ¢

b. The energy W,(f) versus t over therange 0 =t =10s
P2.20 The voltage across the inductor L = 1 mH is shown in Figure 2.116. Write a MATLAB

program that returns the following plots:

a. The current i, (f) versus t

b. The energy w,(f) versus t over the range0 =t =10s

Practical MATLAB® Applications for Engineers

P.2.21 The RC circuit shown in Figure 2.117 presents an initial voltage v-(0) = 0 V at the
instant the switch closes at t = 0.

Write a program that returns the following plots over the range 0 =t <5s:

o

Current i(f) versus t

. Voltage vg(t) versus t

. Voltage v(f) versus t

b
c
d. Energy w. in Joules stored in C versus ¢
e

. Instantaneous power in watts dissipated by R versus ¢

Switch closes at t=0

o{o
i(t) %D

% R=1kQ

_— 100V
—C=1mF

FIGURE 2.117

Network of P.2.21.

L, L,
Vi1 Vi
%4
(a)

FIGURE 2.119

Networks of P.2.23.

Switch closes at t=0

0/{0
i(t) %D

% R=1kQ

§L=1mH

—— 100V
FIGURE 2.118
Network of P.2.22.
|/ | (
I\ I\
Ve Vco

(b)



Direct Current and Transient Analysis 215

P2.22 The RL circuit in Figure 2.118 presents an initial current i(0) = 0 A at the instant the
switch closes at t = 0, where it remains indefinitely. Write a program that returns
the following plots over the range 0 =t = 10 s:

a. [Current i(t)] versus ¢
b. Voltage vy (f) versus ¢
c. Voltage v, (f) versus t
d. [Energy w; in Joules stored in L] versus ¢
e. [Power in watts dissipated by R] versus ¢

P2.23 Determine V;, and V., shown in the circuits of Figure 2.119 in a tablelike format;
given V=100V, L, = 10 H, and C, = 10 F for the following cases:

a. L, varies from L,/2 to 2L, in linear steps of L,/10.

b. C, varies from C,/2 to 2C, in linear steps of C,/10.
P.2.24 For the circuit diagrams shown in Figure 2.120

a. Evaluate by hand the expressions for the current I,

b. Plot I; as a function of L,, if L, = 5 H and L, varies over therange0 =L, =15 H
in steps (increments) of 0.5 H

c. Repeat partb for the case where C; = 5 F and C, varies over therange 0 = C, = 15F
in steps (increments) of 0.5 F

1A@,11 SN

U
-
\ |
/|
O
\ |
/|
O

FIGURE 2.120
Networks of P.2.24.

O |

FIGURE 2.121
Network of P.2.25.
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Ry R Rs Ry Ro, 4
— AN AN AAN— — —
R > 1/R, = Gy 1/R,= G, 1/Rg= Gg /Ry, = Gap
C J— J—
FIGURE 2.122
Lattice network of P.2.26.

P.2.25 For the circuit shown in Figure 2.121, evaluate
a. I, I, I I, and I;
b. Vy, Vy,and Vi,
c. Power of all the resistors in watts, horsepower, and foot-pound force per second
(see P2.1)
d. The energy stored in C;, C,, and L

P.2.26 The network structure shown in Figure 2.122 is called “lattice.”
Observe that the resistors, R, R5, ..., R,,_; (chms), placed horizontally are labeled
with odd indexes, whereas the elements in the vertical positions are admittances
G,, Gy ..., G,, (ohms™ or siemans), which are labeled with even indexes.
Verify the following expression:

R=R1+i+i+i+i+---+ LI
GZ RB G4 R5 R2n*1 G2n
20 3Q 1Q

1Q 30 5Q 70

R > 20" 40" 6Q " 8 Q!

(b)

FIGURE 2.123
Network of P.2.27.
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P.2.27 For the circuits shown in Figure 2.123 evaluate R by

P2.28

P2.29

P2.30

a. Writing a MATLAB program using the standard circuit analytical techniques

b. Writing a MATLAB program that computes R by using the relation of P.2.26
given by

R=R +2L+z 1 forn=3 and n=4
! G,,; R
G o Ry

Draw the possible circuit diagrams for the electrical network defined by the follow-
ing set of mesh equations:
a. 20[, — 5, =10

=5, + 101, = -7
b. 10 = 6l, — 2I, — 3I,

—6=—2I, + 6l, — 4I,

5= =3I, — 4I, + 12,

c. Using MATLAB, solve each system (a and b) that consists of the set of loop

equations
Verify that the equivalent resistance (between terminals a and a’) of the circuit of
Figure 2.124 is given by
Ry * Ry(R3 + Ry) + Ry * Ry(Ry + Ry) + Rs(R, + R3)(R, + R,y)

(R, + R))(R; + Ry) + (R; + R, + Ry + Ry)R;4

R:

Evaluate the equivalent resistance between terminals a and a’, of the circuit dia-
gram shown in Figure 2.124, by applying the following techniques or procedures:

a. Connect an arbitrary voltage source V across aa’, solve for the current I, and then
evaluate Raa’ = V/I

Ry Rs

FIGURE 2.124
Network of P.2.29.

FIGURE 2.125
Network of P.2.31.
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b. Directevaluation of the expression for Raa’ (P.2.29), where the element of Figure 2.124
have the following values: R; = 10, R, = 20, R; = 25, R, = 30, and R; = 70 ()
c. Use A-to-Y transformation defined in P.2.17
P.2.31 The equivalent resistance between terminals aa’ of the symmetric network shown
in Figure 2.125 is given by
R = (R, + R,)R; + 2R, * R,
R, + R, + 2R,
where R, =10 Q, R, =20 Q, and R; = 30 Q.
Verify the preceding expression by
a. Connecting an arbitrary voltage source V across aa’ (any value), solve for the cur-
rent I, and then evaluate Raa’ = V/I
b. Evaluating R by using the A-to-Y transformation defined in P.2.17
P.2.32 Draw possible circuit diagrams for the systems defined by the following set of node
equations:
7V, =3V, — 4V, =10
-3V, +6V, -2V, =4
-4V, -2V, +11V; = 20
Using MATLAB, solve for the voltages V;, V,, V3, V},, V5, and V.
L=2H p _1g 2Q
ST ULAAA — AN
() ——» 4v
30
C=2F Rx=1Q §6 Q
— ) VA~ 10V
U —— -‘7
b B
o 80 Q
o o AN 4
a ity —> Y
Vo100V Aea 3A CT) 300 60 Q
( ) VvV V B
FIGURE 2.126 FIGURE 2.127
Network of P.2.33. Network of P.2.34 and P.2.35.
20
" !
20V
10A @ 3Q 8Q
FIGURE 2.128

Network of P.2.36.
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P2.33 The switch shown in Figure 2.126 has been at (position) a for a very long time. At
t = 0, the switch is moved from position a to position b, where it remains indefi-
nitely. Write a program that returns the following plots:

a. i;(f) versus t, iy(t) versus t, and i,(t) versus ¢
b. v, (t) versus t and v(f) versus t over the range 0 <t <65

P.2.34 For the two circuits shown in Figure 2.127, determine the Thevenin’s and Norton’s
equivalent circuits as seen from terminals A and B.

P2.35 Calculate, for each of the circuits shown in Figure 2.127, the value of the resistor that
connects across terminals AB, will dissipate maximum power.

P.2.36 For the circuit shown in Figure 2.128, calculate I by using
. Node equations
. Loop equations
Source transformations

a
b
C.
d. Superposition principle
e. Thevenin's theorem

f.

Norton’s theorem

N

Switch

— 100V §H=40"9 i(t)| ==C=1microF

— ooy §R=5kQ i(ty| == c=0.1micro F
1 Switch
L=2mH
O
L oy it §R=1OOQ

FIGURE 2.129
Networks of P.2.37.
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pP2.37

P2.38

P2.39

P2.40
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For each of the circuits shown in Figure 2.129, evaluate and plot the expression for
i(t) for 0 < t = 51, if the switch is moved from position 1 to position 2 at t = 0 after
having been in position 1 for a long time.

Choose appropriate values for R to obtain the three circuit responses: overdamped,
critical, and underdamped. Write the differential equation, and use MATLAB to
obtain the three second-order solutions, as well as their respective plots of the
source-free series RLC circuit diagram shown in Figure 2.130, for t = 0.

Obtain and plot the transient response of the source-free RLC circuit shown in
Figure 2.131—overdamped, critical, and underdamped—Dby choosing appropriate
values for R (for t > 0).

Steady-state conditions exist for t = 0 in the circuit of Figure 2.132 (while the volt-
age source is connected to the circuit). At t = 0%, the switch moves downward.
Obtain the transient current responses and the respective plots for each of the loop
currents.

Switch opens at t=0

—_— C=1/16F I

FIGURE 2.130
Network of P.2.38.

Switch opens at t=0

' oto

V=120V
§R —_—C=1/27F

FIGURE 2.131
Network of P.2.39.
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FIGURE 2.132
Network of P.2.40.

V=12V

+

Switch moves down at t=0

221

"1(1‘)»

AAY
R,=3Q

iot) D

§ R=6Q

3 L=9H

P2.41 Steady-state conditions exist for = 0 in the circuit shown in Figure 2.133 (while

the voltage source is connected to the circuit). At ¢ = 0%, the switch moves upward
transient loop current.

disconnecting the source. Obtain expressions and the respective time plots for each

P.2.42 Steady-state conditions exist for t = 0 in the circuit of Figure 2.134 (while the volt-
age source is connected to the circuit). At t = 0%, the switch moves downward

R,=5Q Rz=2Q

FIGURE 2.133
Network of P.2.41.

LD

Ci=13F Co=1/6F

+

Switch opens at t=0

R,=3Q

2 s

§ R=7Q

oo

Switch moves down at t=0

NN

R=4Q

Yoo,

V=16V

R1=39

FIGURE 2.134
Network of P.2.42.
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SW, SW,
+ | Switch closes at t=0

v

VWV
R=4Q gyitch opensatt=0

T — C=118F §=2H

I

FIGURE 2.135
Network of P.2.43.

P2.43

P2.44

P2.45

P2.46
P2.47

P2.48
P2.49

P2.50
P2.51

P2.52
P2.53
P2.54
P2.55

disconnecting the source. Obtain expressions for the transient voltage across C,,
the current i, (f), and their respective time plots.

Steady-state conditions exist for ¢+ = 0 in the circuit of Figure 2.135 (while the volt-
age source is connected to the circuit). At ¢ = 07, the switch SW; which connects the
voltage source opens, while the switch SW, closes. Obtain expressions for v(f) and
i;(f), and their respective time plots for t = 0.

Write a function file that returns the length L of a circular conductor with diameter
d in meters (recall that R = p L/A), given R (ohms), p, and d.

Create a function file that returns the capacitance C (in Farads) and the strength of
its electric field, given the area of the plates of the capacitor (in meters squared), the
distance d between the plates (in meters), as well as the dielectric material of C.

Modity problem P.2.44 for the case when d is given in inches and L in foot.

Create a function file that returns a table and a plot of R versus d for a copper wire,
where the diameter d varies over the range 0.01 in. = d = 0.2 in. in steps (incre-
ments) of 0.02 in.

Convert the program of Example 2.4 (color code) into a function file.

Write a function file that requests the number and values of a set of resistors con-
nected in series and outputs its equivalent resistance.

Repeat problem P.2.50 for the parallel case.

Write a function file that requests the value of R and 7, and returns the series con-
nections of the set of resistors with the following values:

R 2R, 3R, ..., (1 — DR, nR

Repeat problem P.2.52 for the parallel case.
Write a function file that returns the Y connection, given the A.
Repeat problem P.2.55 for the A-Y transformation.

Develop a general function file that solves the set of n independent (loop or node)
equations, for 2 = n = 10.
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Alternating Current Analysis

The task of Science is both to expand the range of our experience and to reduce it to
order.

Niels Bohr

3.1 Introduction

DC is a network in which its currents and voltages have a fixed or constant magnitude
and direction except when transients occur. AC networks, in contrast, are electrical net-
works where the currents and voltages are characterized by time-dependent alternating
waveforms.

The majority of the AC signals in real life are sinusoids and they represent voltages or
currents that in general are expressed instantaneously by the following equations:

v(t) =V, cos(wt +0) =V, sin(a)t +0+ ;)

i(t) = I sin(wt +0) =1, cos(wt +0— ’2‘)

The choice of sine or cosine-based calculations is a matter of taste, and the conversions are
rather simple algebraic manipulations. However, it is imperative that the same choice be
used throughout a problem.

The term alternating waveform, in general, refers to periodic waves of time-varying
polarity. Therefore, alternating waveforms include a large family of waves such as square
waves, saw-tooth waves, and triangular waves.

Most of the equipment and appliances used in homes, industries, and commercial and
residential buildings operate with AC. The AC wave delivered to the consuming public by
the utilities companies is the sinusoid and is the most common modern form of electric
energy.

The three-phase AC is used in industries and commercial buildings, whereas the single
phase is commonly used in homes and residences.

In general, AC principles and applications discussed in this book are used in power
distribution, lighting, industrial systems, and consumer appliances and products.

The vast majority of AC problems deal with sinusoids, and because of it, mainly
sinusoidal waves will be considered in this chapter. If the wave is not sinusoidal, it
can always be approximated by sinusoids by means of a Fourier (trigonometric) series
expansion (see Chapter 4 for additional information).

223
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The general accepted universal AC wave model is, therefore, a sinusoid function, defined
by three variables given as follows:

e V  orl, the maximum or peak voltage or current
* o the angular frequency
* 0 the phase angle

Recall that the sinusoidal of the form v(t) = V,, cos(wt + 6) is a periodic function with
period T = 271/w therefore repeats indefinitely satisfying the time relation f(tx) = f(tx + nT),
for any integer value of 7.

The analysis of AC circuits presented in this chapter follows mainly the model devel-
oped by Steinmetz,* which consists in reducing the AC time-dependent circuit into an
equivalent phasor model.

This transformation consists basically in converting the sources and elements (imped-
ances) into phasor representation, by using complex numbers and complex algebra
(Chapter 6 of the book titled Practical MATLAB® Basics for Engineers) to evaluate and represent
currents and voltages. The standard circuit equations, relations, and techniques developed
for DC circuits are equally valid in AC, assuming that the interest is focused on the forced
or steady-state response.

In most cases, the transient response decays rapidly to zero, although the force response
persists indefinitely making the steady-state solution the solution of extreme practical
importance.

3.2 Objectives
After completing this chapter the reader should be able to

* Express mathematically AC currents and voltages
¢ Express AC elements and sources in phasor format
¢ Understand the concepts of
a. Instantaneous value
b. Amplitude or peak value
c. Peak to peak value
d. Periodicity and period T
e. Frequency in cycles/second ( f) or radian/second (w)

f. Phase angle in radians and degrees (note that some of these concepts were
introduced in early chapters, in particular Chapter 4 of the book titled Practical
MATLAB® Basics for Engineers and in Chapter 1 of this book)

* Charles Proteus Steinmetz (1865-1923), a German—Austrian engineer, worked at the General Electric Corp
(GE) and in the 1890s, he revolutionized the approach, used to analyze AC circuits, by reducing them to simple
algebraic phasor equations, making the process easy and simple avoiding the complications of high level
math. The method developed by Steinmetz was adapted by engineers and scientists around the world and is
commonly referred as the phasor transform method.
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e Sketch and plot sinusoidal wave forms
¢ State the standard analytic form to represent a sinusoidal wave

* Gain a working knowledge of the concepts of average, root-mean-square (RMS), or
effective value

¢ Understand the concepts of leading and lagging

® Understand the relationship between current and voltage in a resistive and reactive
network

® Recognize that the derivative of a sinusoid is directly proportional to its frequency
(see Chapter 7 of the book titled Practical MATLAB® Basics for Engineers)

® Recognize that the integral of a sinusoid is inversely proportional to its frequency
(see Chapter 7 of the book titled Practical MATLAB® Basics for Engineers)

¢ Calculate the currents, voltages, and reactances in a series and parallel AC circuits

® Learn and use complex numbers and notation to represent the electrical elements
in a resistive/reactive (RLC)* AC system

® Recognize that the j operator is a 90° counterclockwise rotation angle, and the
j represents a 90° clockwise rotation angle in the complex plane

® Understand that a phasor is a shorthand description or representation of a sinusoid
wave in which the frequency is not present and it is assumed to be constant

e Solve simple series and parallel circuits using phasor techniques for currents, voltage,
power, and energy

¢ Draw impedance diagrams

* Recognize that the voltage and current divider rule in a phasor network can be
applied

® Recognize that the DC circuit theorems are equally valid in AC networks such as
Thevenin, Norton, source transformation, and superposition

* Convert a Y-AC phasor network into an equivalent A-AC phasor network, and vice
versa

¢ Write a set of loop and nodal equations using phasor notation
e State the maximum power theorems for the AC cases
¢ Know the meaning of the power factor (PF)

¢ Calculate the reactive power, apparent power, and effective power and construct
the network power triangle

e State the conditions for the series and parallel resonant cases
¢ Know the meaning of bandwidth (BW), and quality factor (Q) of a resonant circuit
® Understand the concept of a three-phase (3 ®) system

¢ Calculate currents and voltages in a 3 @ system with a balanced and an unbalanced
load

® Solve a set of simultaneous phasor equations (loop or node equations)
e Use many MATLAB® features in the analysis of AC circuits

* RLC stands for resistive, inductive, capacitive network.
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3.3 Background

R.31

R.3.2

R.3.3

R.34

R.3.5

The general form of a sinusoid AC voltage is given by
o) =V, sin(wt = 0,)

or

o(t) =V, cos(wt + 6,)
where V,, is the maximum or peak value, given in volts, o the angular velocity or
frequency, given in radians/second, and 6, or 8, are the phase angles, expressed in
radians or in degrees. (Conversions are sometimes required between radians and
degrees depending on the nature of the problem.)

Sinusoidal waves are periodic functions, which means that the wave repeats itself
indefinitely. Obviously, it can safely be stated that by knowing one cycle of a sinusoid
wave the nature of the waveform for all and any time is then known.

Recall that one period or cycle of a sinusoid waveform is defined by the following
formula:

2= .
T =, (expressed in seconds)

The frequency of a sinusoid is the reciprocal of its period, which means that if the
value of the period T is known, then f is defined by

f:

(expressed in cycles per second (cps))

M=

where fis the frequency, given in Hertz or cps, and it is related to w by w = 27f, with
units in radians per second.

A sinusoid AC signal can be expressed either by a sine or a cosine function because

sin(wt + 0) = cos (a)t +0 - g)
or

cos(wt + 0) = sin(wt +0+ ;j

Note that when changing a sine wave into a cosine wave or vice versa, it is necessary
to change the phase angle by subtracting or adding /2 (radians) or 90° (degrees).

Recall that sinusoidal waves are related to exponential functions by the Euler’s
identities and also be expressed by a Taylor’s series as follows:

e/’ = cos(0) + jsin(0) (Euler’s identity)



Alternating Current Analysis 227

where j = V-1 (Euler’s identity) and

2 3 n
el = 1+0+%+%,---,6—|--- (Taylor’s series)

! ! n!

2 g4 06
cos(0) = 1—0—4—0——0—---

20 41 6!
3 05 7
3! 51 71

Recall that cos(0) = real[¢’’] (from Chapter 5 of the book titled Practical MATLAB®
Basics for Engineers), sin(@) = imaginary [e7%], and |e/’] = Vcos?6 + sin?0 = 1.
R.3.6 The average value of a given signal x(f) is given by

1 T
Xyve = ?'([x(t)dt

assuming that x(t) is a periodic wave with period T.
R.3.7 A DC voltmeter connected across an AC drop will indicate its average value.
R.3.8 The average value of a sinusoidal wave with period T is given by

T
Xyve = %jx sin(wt)dt
0

which is also equal to

2n
[ sin(@t)d(wt) = 0

X =
AVG 2 .

21
R.39 The average value of a sinusoidal wave over 1/2 period (T) is given by

1T
Xave = T2 '([ X, sin(wt)dt

or by

Xave = X Jsin(wt)d(w t)
T %

which is equal to

Xape = %Xm = 0.64X,,
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R.3.10 The RMS or effective value of the waveform x(t) is given by

1 T
Xens = /? ! X2(t)dt

R.3.11 If x(t) is a sinusoidal wave, then the aforementioned relation can be evaluated and
the result is given by

X s = % = 0.707X,,

Because of its importance this relation is verified as follows:
Let x(f) = X,, sin(wf) then

T
Xprums = \/;;J-[Xm sin(wt)dt
0

Xrums =\/ sz{ cos(2wt)}

\/1 }1 }1
Xpms = { — X2 dt — cos(Zwt)dt}
T|)2 )2

Note thatf (1/2) cosQwt)dt = 0, then

T
171
Xes = |7 [ 5 Xhdt =
0

- [xAT_ XA _x
RMS 2+T 2 \/’

L =X, 0707
2

If a voltage (or current) consists of a DC and AC components, such as
v(t) = A +V,sin(wt)

then its Vs value is given by

1T 5
VRMS = \/T'[O [A + Vm SIH(wt)] dt

Vs = \/; jOT [A2 + AV, sin(ot) + V2 sin?(wt)]dt

Vs =\/ [j Azdt+J AV sm(cot)dt—i—_[ V2 smz(wt)dt}
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Note that
T T
jo AV, sin(wt)dt = 0, jo A2dt = AT
and
[[Vzsin2ndt = [ v [1 - 1cos(2wt)dt]
0 0 2 2
2 2
= [ Yogp=Yur
02 2
Then
1 V2
Vins = 4| | AT +-2T
s = AT+ 727
V2 v, \
= A2+ T = 42 | T
2 (ﬁ )
Note that
Vl’)l — —
o V#0707 = Vrass—ac
Then
Vims = A2 + V3ys_ac, foro(t) = A+V, sin(wt)
If
o(t) = A+ V, sin(wyt) + V,,sin(wyt)--- + V,,, sin(w,t)
then

n 2 n
Vs = 41+ 3V = e S
k=1

k=1

for k AC sources and one DC source (A).

R.3.12 The power dissipated by a resistor R, having a current i(f) over an interval of time
[t, t,], is given by

1 %
p= [ Rix(t)at
tz - tl

41
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R.3.13

R.3.14

R.3.15

R.3.16

R.3.17
R.3.18

R.3.19
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because P = i(t)* R, then the effective current is given by

17
— 12
I= t [wat

t, — 1y

AC measurements are usually given in RMS values. An AC current x given in RMS
value, through a resistor R is equivalent to the DC current x through R, dissipating
the same power (heat by R).
Let an AC signal be a sinusoidal function of the form x(t) = X, sin(wt + 8), then x(t)
can be expressed either in phasor form as X = X,, 26 using its peak value, or in
RMS (also known as effective value) as X = (X,,/\2) 26. For example, let an RMS
phasor current be given by I = 8§ £30° then the current in the time domain repre-
sentation is either i(f) = 8V2 cos(wt + 30°), or i(t) = 8\2 sin(wt + 30°).

As a second example, let a voltage v(t) = 16 sin(wt — 75°). Then v() can be trans-
formed into an effective (RMS) phasor voltage representation given by

16
V = —=/-75°= 82 ~£-75°
NG 2

The form factor ff of x(t) is defined by ff = X s/X 4. For a sinusoidal (current or
voltage), the

(X AN2)
= @X,/m) 242 L

The crest factor (CF) of x(t), also known as the peak factor or amplitude factor,
is defined by

X

CF =
XRMS

For the case of a sinusoid (current or voltage) CF = 1.41.
Recall that the instantaneous power is defined by p(t) = v(#)i(#).
Recall that the average power is defined by

T
1

P = — t)dt

AVG T}[P( )

assuming that i(t) and v(f) are the current through and voltage across a given load z,
where i(f) and v(t) are periodic functions with the same period T (or frequency w).

The PF is defined as

PF = PAVG
VRMS ’ IRMS
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T
Viss = {%jzﬂ(t)dt
0

T T

17, 1

- I 2(t)dt  and PAVG=?J.p(t)dt
0 0

where

and

Ipps =

R.3.20 Let the current through and voltage across an arbitrary load be given by
itt) = I, sin(wt)
and
u(t) =V, sin(wt + 0) (an RL equivalent circuit since v(t) leads i(f) by 0)
Then the instantaneous power is given by
pt) =it) - o) = 1, V,, sin(wt) - sin(wt + 0)

Using trigonometric identities
Vil Vil . .
pt) = Vil m 0s(0) — ”’2’" cos(0)cos(2wt) + W’Z’” sin(0)sin(2wt)

where

VmIm — Vm Im

» L Viwms Irus-

Let Viys Irps = A
then, p(t) = Acos(f) — Acos(f) cos(2wt) + Asin(f) sinQQwt).

R.3.21 Let us explore the resistive case, where 8 = 0°. Then p() of R.3.20 becomes
pt) = A — A cos2wt)

And the average power, often referred as the real power, is given by

I
Py =A= sz = Vemslrms  (in watts)

Pyyc = real(Vips Irms®)  (the character * denotes the complex conjugate of I,

The energy dissipated by the resistor R, in the form of heat over one full cycle, is
given by

W = Vims lrms T (in joules)
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R.3.22

R.3.23

R.3.24

R.3.25
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since T = 1/f, then

W, = Viems Trms
f
The reactive power Q is defined as Q = A sin(6) with units given by volt-ampere-

reactive (var)

Then,

(in joules)

Q= (V’"ZI’") sin(0)

or
Q = (Vius Inmg/sin(0) = imaginary(Viy s Iras™

where 6 is the phase angle between V and I.
The reactive power Q can be either inductive or capacitive. Then,

QL = Vrms Irms = I’ X, = VI?MS/XL
Qc = Vrms Irus = I? Xc = VI%MS/XC

and the respective energies are

W, = M = LJ? (in joules)
L 2r
W, = VeusTrus T _ CV? (injoules)

2n
The complex or apparent power S is defined as
S =ViusIgus with units in volt-ampere (va)
2 Vi
S = IusZ = =515 = P+ jQ = abs(Vis *Ts”)
(Recall that * denotes the complex conjugate of Iy,,s.)
The PF is defined by
PF = cos(0) = P/S = R/Z
Observe that if the current through a resistance R is
ix®) = I, sin(wt)
Its voltage drop is then
vi(t) = RI,, sin(wt) = V,, sin(wt)

where V,, = RI

m*
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Observe that the phase angle 8 between the current i;(f) and the voltage vy (t) in a
resistive circuit is zero, a condition that is referred to as in phase.

R.3.26 Let the current through an inductor L be i(t) = I,, cos(wt), then its voltage is given by
di(t) _

v () = LW L%[Im cos(mt)]

v, (t) = —oLIl,, sinwt
T
v.(t) = LI, cos(a)t + 2)

then

v (t) =V, cos(wt +;)

Clearly, if v,(t) is a sinusoidal wave, then i,(t) is also sinusoidal with the same
frequency, but with a phase shift of 77/2 rad.

Observe that the inductor voltage v, (t) leads its current i;(t), by an angle of
/2 rad.

R.3.27 From R.3.26, the following relations can be observed: V,, = wLI,, then by Ohm’s law,

wL is the inductive reactance or the impedance of the inductor L in ohms, expressed
as X, (w) = jwL, where j indicates a phase angle of 7/2 rad. The inductive reactance
opposes the flow of current, which results in the interchange of energy between the
source and the magnetic field of the inductor.

R.3.28 In R.3.26, a current through the inductor was assumed and the voltage was then
evaluated across the inductor L. The same result can be obtained by assuming a
voltage across L, and solving for the current through i, () as illustrated as follows:

Let
v,(t) = V,, sin(wt)

then

i) = %J.ZJL(t)dt - %Jvm sin(et)dt

Vi

i(t) = e

(—cos(wt)) + K (where K is the initial current)

i(t) = V”isin(wt - g) (assuming K = 0 without any loss of generality)
o)

Again, the reader can appreciate that by letting X, (w) = jwL, then
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R.3.29 Let us assume that the voltage across the capacitor C is v(t) = V,, cos(wt) in volts,
then its current is given by
. do.(t d
i-(t)=C dt( ) _ CE[V'" cos(wt)]
ic(t) = —CoV,, sin(wt) = oCV,, cos(cot + Z)
Let
i-t)=1, cos(a)t + ;j
then
I,=wCV,
or by Ohm’s law
Xc(w) = L (Where j denotes a phase angle of _n)
joC 2
R.3.30 Let the voltage across C be v(t) = V,, cos(wt) (from R.3.29), then the current through
C is given by i(f) = I,,cos(wt + (1/2)). Clearly, the current leads the voltage by an
angle of 71/2 rad. Capacitive reactance X represents the opposition to the flow of
charge, which results in the continuous interchange of energy between the source
and the electric field of the capacitor.
R.3.31 Let the current be given by i(t) = I,, cos(wt), in the series RL circuit shown in Fig-
ure 3.1. Then,
vr(t) = RI,, cos(wt)
v (t) = —wLl,sin(wt) (from R.3.26) and applying KVL,
o(t) = vr(t) + v,(h)
o(t) = RI,, cos(wt) — wLlI,, sin(wt)
o(t) = I,,/R* + (wL)? cos(wt + 0)
0= tan‘l(wL) for0=0=7=
R 2
FIGURE 3.1

RL circuit diagram of R.3.31.
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i(t) i(t) ic(t)

! R e
O—
+ + +
R L VL 7T\ C
VR Vo
o—F—
s >
VL IC
iR R
————»—»
Yc

FIGURE 3.2
Phasor diagrams of R, L, and C.

or

o(t) = I,R* + X? cos(wt + 0)

where 0 = tan™! (X, /R)
Note that |Z| = \R* + X} (in ohms) represents the total impedance magnitude of
the RL series circuit.

R.3.32 The behavior of the impedances of inductors and capacitors can be expressed in
phasor form as

X (w) = joL=|oL] 4(+gj

Xc(@) = 1/joC =[1/(@C)| 4[—;)

The relation between the current and voltage for each of the three elements R, L,
and C is expressed in terms of the phasor diagrams shown* in Figure 3.2.

R.3.33 The inverse of the impedance Z (G = 1/Z) is called the admittance G, with units
1/Q = Q71 also referred to by the unit Siemen (sie).

R.3.34 For example, assume that the three elements R, L, and C are connected in series.
Compute the equivalent impedance Z and admittance G for the following case:

R=10Q, L=0.02H, C=20puF and o = 1000rad/s

* Complex quantities are usually expressed in electrical engineering in polar form rather than in exponential
form. The abbreviated complex representation is the phasor.
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ANALYTICAL Solution

Xp = joL = j+1000 +0.02 = j20 Q

X=X, +X.=j20 - j50 = —j30 Q

Then, Z =R + X = (20 — j30) Q and

1 1 20 j30 _(2 3

c=1 2 o i
130 7 130) (or sie)

= = + =
Z 20—j30 202+30%2 20%+ 302

R.3.35 For example, evaluate the voltage v(t) across the series RL connection shown in
Figure 3.3, assuming that the current through is given by i(t) = I, sin(wt).

ANALYTICAL Solution

v(t) = \R? + (wL)* L, sin(wt + 0)

where 0 = tan Y(wL/R).
The phase angle 0 is positive since the voltage leads the current in an RL circuit
(similar to R.3.31).
The phasor diagram is shown in Figure 3.4.

R.3.36 Let us explore now the parallel RL case. Compute the current i(f) for the parallel RL
circuit diagram shown in Figure 3.5, assuming that the applied voltage is given by
u(t) = V,, cos(wt)

ANALYTICAL Solution

The total admittance Y is given by

2
Y= G2 + (i) Q-

wL

v(t)

FIGURE 3.3 FIGURE 3.4
Circuit diagram of R.3.35. Phasor diagram of R.3.35.
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R.3.37

R.3.38

i(t) i(t)
— —
O
+ +
vt i L V() R C
O O
FIGURE 3.5 FIGURE 3.6
RL parallel circuit diagram of R.3.36. RC parallel circuit diagram of R.3.37.

where G = 1/R then
i(t) = V,y, cos(wt + 6)
where 6 = tan"'(—R/wL).

Clearly, the voltage v(t) across the parallel RL connection shown in Figure 3.5 leads
the current i(t), by a phase angle of 0 rad.

Let us now explore the RC parallel case. Evaluate the current i(t) of the parallel RC
circuit, shown in Figure 3.6, assuming that the applied voltage is given by

o(t) =V, cos(wt)
ANALYTICAL Solution

Then the current i(t) is given by i(t) = V,, v cos(wt + 6), where

2
Y| = [%) +(wC)* and 0= tan"'(wCR)

Clearly the current i(f) leads the voltage v(t) by an angle 6.
Let us consider now a numerical example. Evaluate for the circuit diagram shown
in Figure 3.7

a. The total admittance Y
b. V, I, and I-

ANALYTICAL Solution

Parta

1,1
=4+ - = - =
R X. 125 —j25 125 25

2 2
Yr = (—1 J +(ij Ltan‘l(—uﬁj
12.5 25 25

Y, =89 +1073£26.6°

Y, 1,1 1
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IT =15.,20°
o + C -
In Ic + R - \ | i(t) = Iy cos(ot)
VRN
R=12.5Q Xo= 250 + -
(1)
© FIGURE 3.8
FIGURE 3.7 Network of R.3.39.
Network of R.3.38.
Partb
y=lro 192200 ) 6
Y, 89x1073.£26.6°
168 £/—6.6°
Iy = v _ 1682-6.6 =13.4./—6.6°
R 12.520°
I. = v w = 6.72.£83.4°
Xc 25/-90

R.3.39 Let us analyze now the RC series case. Evaluate the voltage v(t) of the series RC
circuit, shown in Figure 3.8, assuming that the current is given by

i(t) = I, cos(wt)
then

o(t) = I,|Z]|cos(wt + 0)
where Z =R~ /

oC
2
Z| = ,|R* + (1) and 0= tan™! (—1 ) =—tan™' (1 )
oC oCR oCR

Clearly, in a series RC circuit the voltage lags the current by a phase angle
bounded by 0 = 8 = (7/2).

R.340 Let us analyze the series LC circuit diagram shown in Figure 3.9, and assume that
the current is given by

i(t) = I,,cos(wt)

then the voltage

o) = v, () + v.t) (KVL)
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O
V(0 v(t) L ~C
uo) ve(t) l

FIGURE 3.9 FIGURE 3.10
LC series circuit diagram of R.3.40. LC parallel circuit diagram of R.3.41.

R.3.41

R.3.42

o(t) = —I,,wLsin(wt) + I—’"sin(wt)
wC
or

o(t) = XI,cos(wt + 6)

where the total reactance is X = oL — 1/(wC).

Observe that the reactance X can be positive or negative. If X > 0, then v(t) =
I, X cos(wt + 11/2) (inductive equivalent), and if X < 0, then v(t) = I X cos(wt — 11/2)
(capacitive equivalent).

Let us turn our attention to the LC parallel case.

Evaluate the current i(t) in the parallel LC circuit diagram shown in Figure 3.10,

assuming that the applied voltage is v(t) = V, cos (wt).

ANALYTICAL Solution

i(ty= BV, cos(wt + gj for B> 0
where B represents the circuit admittance

m

i(t)y= BV, cos(wt - %) forB<0

where B = B — B, (admittance), B = wC, and B, = 1/(wL).

Given a circuit where the current through and the voltage across are known. Then
let us evaluate the equivalent impedance, and its phasor diagram representation
for the following case:

i(t) = 2cos(60 -2 -m-t— 30°
and

v(t) = 5c0s(60 -2 m-t+ 45°
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Imaginary axis
A

» Real axis

A
'

FIGURE 3.11
Phasor diagram of R.3.42.

R.343

Indicate also the type and its equivalent circuit in term of its simplest element
representation.

ANALYTICAL Solution

The phasor diagram in which I and V are indicated is shown in Figure 3.11.
The equivalent impedance can be calculated as indicated as follows:

_V _ 5/45°

I~ 2,30 24(45° +30°) = 2.5£75° (using peak values)

its trigonometric form is Z = 2.5c0s(75°) + j2.55in(75°) Q.
That means that the equivalent impedance is an RL circuit, with R = 2.5 cos(75°) Q and
L Bsin0)
1207 '
Let us evaluate now the voltage v(t) of a series RLC circuit, if the current i(t) is given

by i(t) = I, cos(wt).

ANALYTICAL Solution

Z=R+j[cuLfi]
wC

and

2
iz =[R2+ (a)L - L)
wC

The voltage across the series RLC is then given by

o(t) = 1,,|Z|cos(wt + 0)
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. R=2Q XL=i6
V=5,30°
“— |
FIGURE 3.12
Network of R.3.44.
where
0= tanfl(MJ for —E <=4
R 2 2
Clearly,

a. If oL > 1/wC, then 0 is positive, meaning that the voltage leads the current and the
equivalent circuit is RL.

b. If on the other hand, wL < 1/wC, then 0 is negative, meaning that the voltage lags the
current and the equivalent circuit is RC.

R.3.44 For example, evaluate for the circuit diagram shown in Figure 3.12 the following:

a. Zr
b. Vi, V., V., and I as phasors

ANALYTICAL Solution

Parta
Z,=2+j6-10)=2-j4Q
Zp =22 + 42 Ztan"1(-4/2) Q
Z; =446 /—634° Q
Partb
=V 3830 g, Z(30° + 63.4°) A

7.  446/-63.4°

I=112 £934° A

Vi = (1.12.£93.4°) % (2.£0°) = 2.24 /93.4° V
V, = (1.12.£93.4°) * (6.£90°) = 6.72£183.4° V

Ve = (1.12.£93.4°) » (10 £~90°) = 11.2£3.4° V
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FIGURE 3.13
RLC parallel circuit diagram of R.3.45.

R.3.45

R.3.46

R.347

Let us evaluate now the current i(t) of the parallel RLC circuit diagram shown in
Figure 3.13, assuming that its voltage is v(t) = V,, cos(wt)V.

ANALYTICAL Solution

Since v(t) = I, cos(wt), then the current i(t) can be determined by i(t) = |Y|V,, cos(wt + 6),
where

and
0= tanfl(wc - (1/wL))

1/R

Power analysis of electrical AC circuits is done by means of a right triangle called
the power triangle, where the active power is given by P = [I;,.]°R, the reactive
power by Q = Viuyslrus sin(6), and the apparent power by S = Viyslgus® (recall
that I,* is the complex conjugate of I, (Figure 3.14). A summary of useful
power relations are given as follows:

2

Active Power P = Iy Vs c0s(0) = [3,,sR = Vioss

= real(VRMS Irus *)
V2
Reactive Power Q = Iys Vs sin(0) = 12,4 X = % = imag (Vius Irus*)
Apparent Power §=P + jQ = /P2 + Q> Ltan'Q/P
V2

=IznsZ = %MS = abs (VRMS IRMS*)

Power Factor PF = cos(0)) =

N| =

_r
S

The following example is used to illustrate the construction of the power triangle
for the series circuit shown in Figure 3.15.
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S (apparent power
in va) .
Q (reactive power
in var)

P (active power in w)

FIGURE 3.14
Power triangle.

R=3Q
VVAS

i(t) _{>
v(t) = (14.1) cos(2t)

v
+

V=1020° <ZEZ> % L=2H
- XL=4Q

FIGURE 3.15
Network of R.3.47.

ANALYTICAL Solution
Zy =R+jX, =3+j4= mztan‘l(g)

Z,=5/,5313°

[V _ 1020

= _———=2/-53.13° (in RMS values)
Z;, 54£53.13°

P (active power) = I?*R = 22+3 =12 W
Q, (reactive power) = >+ X; = 22+4 = 16 var

S (apparent power) = P + jQ,

§=12+jl6 =122 + 1624tan*1(1—;) va

S =20453.13°va
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V=4242 /54°

S=20va

Q = 16var

0=53.13° '\ 0 =54°

P=12W

v

1=3.535 £0°

FIGURE 3.16

Power triangle of the circuit in Figure 3.15. FIGURE 3.17

Phasor diagram of R.3.48.

or
S = Vsl s = (10 £0°)(2.£—53.13°) = 20 £53.13° va

The power triangle for the circuit diagram of Figure 3.15 is shown in Figure 3.16.

R.3.48 Evaluate the active power P, apparent power S, the reactive power Q, and the PF,
if the impedance of a given circuit is Z = 7.05 + j9.7 Q and the voltage across it is
V,, =60 V.

ANALYTICAL Solution

Z =705+ 9.7 =7.05 +9.72 Ltan‘l(ﬂ)g

7.05
Z=12/540Q
1=V -0 _5p
izl 12

Vs = 0.707 + 60 = 4242V

Tms = 0.707 +5 = 3.535 A

Taking the current I as reference, the phasor diagram that relates the current I to the
voltage V is shown in Figure 3.17.

PF = cos(54°) = 0.588

sin(54°) = 0.809
then

S5 =4242+3.535=150va

P = |S|cos(0) = 150 +0.588 = 88.1 W
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+ L - + C -
+ R - \ | .
i(t) / |
+ -
I 0 1

FIGURE 3.18
RLC series circuit diagram of R.3.49.

R.3.49

R.3.50

R.3.51

R.3.52

and

Q = |S|sin(0) = 150 + 0.809 = 121.2 var

Let us revisit the RLC series circuit shown in Figure 3.18. The RLC circuit is said
to be at resonance if the phase angle between the current i(t) and its voltage v(f) is
zero. The network is then purely resistive (R) at this frequency and this particular
frequency is referred to as the resonant frequency.

ANALYTICAL Solution

The total impedance of the series RLC circuit is given by

Zo(w)= R+ j[wL - i}

and at resonant wL. = 1/wC or oy = 1/VLC, and fr = wy/27 or fr = 1/(2nVLC), where
fr is the resonant frequency, a phenomenon first observed by Thomson around 1853.

At the resonant frequency fp, a series RLC circuit presents the following
characteristics:

a. Zgis purely resistive (phase angle between I and V is zero).
b. Z;is at a minimum.

c. Current is at a maximum.

d. The effective power is at its maximum (P = I’R = V?/R).

The quality factor Q (do not be confused with reactive power) is a dimensionless
ratio of the energy stored in the inductor to the average energy dissipated by the
resistor, given by

_ inductive reactive power

Q

average power

The quality factor Q for an RLC series circuit is then given by
_ogl _ L X,

QG="r ~2Jic_ R

and the dissipation factor D is defined as D = 1/Q or D = QLRL or D = wyRC.
The BW and cutoff frequencies for the series resonant RLC circuit can be evaluated

by the following equations:

2
W, = wg 1+[2é) —%rad/s
S S
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and

2
W, = wg 1+(zéj + %rad/s
s s

1 _2%35 rad/s, and @, = wg|1 + 70, rad/s
where the BW is defined as BW = w, — w; or by BW = wy/Q. Recall that the
BW represents the range of frequencies present in the output with a significant
power content.

The frequency wg is the geometric mean of the two frequencies given by w,

and w, (or f;and f,) as

if Qg > 10 then o, = wg 1

wg = 0, -,
or

fr = \/fl fr

Let us analyze now the simple parallel RLC circuit, shown in Figure 3.19, at
resonance.
The resonant frequency for the parallel case is still given by

fo= o
© o anLC
The quality factor Q is given by

R W, —

Qp = wrCR =
wgL Wy

and the BW cutoff frequencies are given by the following equations:

) 1Y 1 11 1 4C
O =0y ~ | 5| Tanes T ae e A mr T
2RC 2RC 2C|R V\VR? L

Ay
/
9]
]

O

FIGURE 3.19
RLC parallel circuit diagram of R.3.53.
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and
0, = w;+(1j2 +1:1{1+ 1&6}
2RC 2RC  2C|R RZ L
The BW is then given by
BW = w, —w, :;r(lﬁl(:):gi

R.3.54 A parallel RLC circuit presents the following characteristics at resonance:
a. Zris at a maximum.
b. Z; = R, since the angle between I and V is zero.
c. Current is at a minimum.
d. The effective power is at its minimum.

R.3.55 Practical resonant circuits are constructed by placing a capacitor and an inductor
in parallel as shown in Figure 3.20, where R; and R, are the internal resistances
of L and C, respectively. Recall that the condition at resonance is that the complex
admittance Y is a real number, then

XCZXL
R;+X: RI+X;

and the resonant frequency is given by

o = 1 R} —(L/C)
R JLC\R2 - (L/C)

Since wy is real, R} > L/C and R} > L/C.

R.3.56 Recall that the process used in the mesh or loop equations techniques was presented
and discussed in Chapter 2, for the purely resistive DC case. The theory developed

O

R, R,

O

FIGURE 3.20
Network of R.3.55.
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50 1/20 F 12 H

—A/\/\/ (VY

" 2Q
@ v4(t) =10 sin10tV 30 591
- h 2 ls 120 F

O

A g

FIGURE 3.21
Network of R.3.57.

for DC circuits can easily be extended to include AC circuits. To use the mesh analy-
sis technique it is required that all the forcing functions be sinusoidals (either sines
or cosines) having the same frequency. The mesh equations are then expressed in
terms of phasor currents, voltages, and impedances. The passive elements such as
resistances, capacitances, and inductances can be combined using the standard
complex algebra, presented in Chapter 6 of the book titled Practical MATLAB® Basics
for Engineers.

R.3.57 The circuit diagram shown in Figure 3.21 is used to illustrate the general approach
in the construction of the loop equations. First, we recognize the existence of three
independent loops, then loop currents are assigned to each loop, thus we write the
three independent loop equations and finally solve for each unknown loop current
(I,, 1, and L)), as illustrated as follows:

ANALYTICAL Solution

Observe that @ = 10 rad/s (from the forcing function), the three loop currents are
labeled assuming a clockwise direction, then all the network reactances are evaluated
as indicated as follows:

1 1

Xe=—F%=—"—"-="j2
joC  j(10)(1/20)

. . 1 .
X, = joL = j10)5 = j5

The circuit of Figure 3.21 is then redrawn with the network elements, replaced by their
respective impedances and the source voltage, by a phasor, as shown in Figure 3.22.
The three independent loop equations are then given by

(8 — j2)I, — 3L, + 0, = 10
—3I, + (8 + j5)I, — 5I,= 0

+0I, — 51, + (7 — j2)I; = 0
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50 -j20 j5Q

N (Y
—"\/\/\/ A

@ Vy=10£0°V 30 5Q

FIGURE 3.22
Phasor network of R.3.57.

The matrix loop equation is indicated as follows:
§—jj2 -3 0

-3 8+j5 -5 [|L|=|0

0 -5 7-72||L 0

—~

fin
—_
o

and the currents I;, I,, and I; are evaluated as indicated as follows:

det(l;) det(l,)

where

8—j2 -3 0

det(Z)=| -3 8+j5 -5 |=3152162°
0 -5 7-j2
detry=| ST 70 | D100
et(l,) = 5 7_],2— . .
det) = <0 ° > |=218-16°
LRI NI
det)=| > 8P s 00
et(l;) = 0 -5 |
I, = 1020021428 g 4s g on
315./16.2°
I, = 1020 2184716 _ 6033000
315/16.2°
1L =10200—2%2% _ _0476,-162°A

315£16.2°

. _ _ [ det(y)
b det(2) 2 T det(2) > det(2)

J

2Q

—j20

249
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The calculations for the currents I, I, and I, are verified using MATLAB as follows:

>>Z = [8 - 2)J -3 0; 38+ 5] -5;,0-57 - 23]

Z =
8.0000 - 2.0000i -3.0000 0
-3.0000 8.0000 + 5.0000i -5.0000
0 -5.0000 7.0000 - 2.0000i
>>V = [10;0;0]
vV =
10
0
0
>>I = 1inv(z)*V
I =

1.4158 + 0.2159i
0.5861 - 0.3682i
0.4565 - 0.1326i
>>Current magnitude = abs(I)
Current magnitude =
1.4322
0.6922
0.4754
>>Phase angle = angle(I)*180/pi
Phase angle

8.6689
-32.1402
-16.1948

Then the instantaneous currents are

i)(t) = 1.43sin(10t + 8.7°) A
i,(t) = 0.693sin(10t — 32.2°) A
i5(t) = 0.476sin(10t — 16.2°) A
The node equations technique presented in Chapter 2 for the case of the resistive

DC networks can be extended to include AC elements (in phasor form), following
the same steps outlined for the AC loop equations.

The following example illustrates the general approach for the circuit diagram
shown in Figure 3.23. Note that this circuit has three nodes where one is grounded
(reference). Then only two node equations are required, labeled E, and E,.

ANALYTICAL Solution

Observe that the source frequency is w = 10 rad/s. Then replacing all the elements by
their respective admittances the following is obtained

R;=1/10 and Y;=10
R,=1/3 and Y,=3

1 1 1
X, = joL=j10)—=j- Y, =-—=—j5
L= Jw i )50 ]5 L i(1/5) ]
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L=1/50H

+

5cos (10 t) Cf)

Al

© 1

FIGURE 3.23
Network of R.3.58.

FIGURE 3.24
Phasor network of R.3.58.

and

O B U
joC — j(10)(3/5) j6

The circuit of Figure 3.23 is then redrawn with the elements replaced by its equiva-
lent admittances and the current source by its phasor representation, as indicated

in Figure 3.24.

The two node equations are
Fornode E;, 5/0° = (10 — j5)E; + j5E,

Fornode E,, 0=j5E; + (j + 3)E,

The corresponding matrix equation is shown as follows:

10-j5 j5 E] [540°
{ j5 <j+3>HEzH 0 }

251
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Solving for E, and E, by hand yields

[540" j5 }
0 j+3 ;
E, = T3] IS 2606 223.1986°
10-j5 j5 60 — 5j
j5 j+3
{10 —j5 5040(’}
j5 0 —25j
E, = —_ = =0.4152/—85.236
2 [10-45 /5 60 — 5j
5 j+3

The voltages E, and E, are verified by using MATLAB as follows:

>>Y = [10 - 5j - 5j:5] j + 3]
Y =
10.0000 - 5.0000i 0 + 5.0000i
0 + 5.0000i 3.0000 + 1.0000i
>>1 = [5:0]
1 =
5
0
>>node _ voltage = inv(Y)*1l

node _ voltage =
0.2414 + 0.1034i
0.0345 - 0.4138i
>>magnitude voltages = abs(node voltage)
magnitude voltages =

0.2626
0.4152
>>phase _voltages = angle(node _voltage)*180/pi
phase voltages =
23.1986
-85.2364

The instantaneous voltages are then given by

e,(t) = 0.2626 cos(10t + 23.1986°) V
e,(t) = 0.4152 cos(10t — 85.2364°) V

R.3.59 The Thevenin’s and Norton’s theorems developed for DC discussed in Chapter 2
can be extended to include the AC case. Recall that the Thevenin’s theorem states
that any linear network with a load connected to terminals aa’ can be replaced by a
voltage source called the Thevenin’s voltage V in series with an impedance Z,
where the Vi is the open circuit voltage measured or calculated across terminals
aa’ (by removing the load), and Z, is the impedance across terminals aa’ when all
sources are set to zero (with no load).

Recall that the Norton’s theorem states that any linear network can be replaced
by a current source I, which is the short circuit current across aa’, and the
Thevenin’s impedance Zy, connected in parallel.

R.3.60 Thevenin’s as well as Norton’s equivalent circuits can be evaluated if all the network
sources have the same frequency, and they are expressed as either sines or cosines.
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R.3.61 The example shown in Figure 3.25 uses the Thevenin’s theorem to calculate the cur-
rent I;, assuming that the load is Z, = 4-j4 Q.

ANALYTICAL Solution

Source transformation as presented in Chapter 2 can be extended to AC circuits as
indicated as follows:

Note that the current source I, in parallel with the impedance Z,, can be trans-
formed into a voltage source in series with Z, as shown as follows (see R.3.62):

Therefore,
E,=1xZ,=(6+j38—j4) =60V

The circuit of Figure 3.25 is transformed into the circuit shown in Figure 3.26, where
the load Z; is removed, following Thevenin’s theorem. Then,

_40+60 _100 _ 25, _ (s
16 16 4

L

Therefore, Vi = (8 — j4)6.25 + j30 — 60 = =10 + j5V

Z,=8+j4 Zo=1+j4 @

E,=30490°V [ *

I:6+j3AGD Z,=8-j4
E;=40V — Z =4-j4
FIGURE 3.25
Network of R.3.61.
Zy=8+j4 Zy=1+j4 @
E, =30 2£90°V l
I1 Zz: 8—]4

- VTH
E, =40V —
1 ] Ey=60V \%/

FIGURE 3.26
Thevenin’s model of the circuit diagram of Figure 3.25.



254

R.3.62

R.3.63

Practical MATLAB® Applications for Engineers

and

@+ 98— j4) _

Zoyy =1+ j4+
™ 4 8+ j4+8— j4

6+j40Q

(by replacing the voltage sources by shorts).
The Thevenin’s equivalent circuit is shown in Figure 3.27.

Then,

I (R L S L
bz + 2y 10

Note that source transformation concept for the DC case discussed in Chapter 2
can be extended to include the AC. Note that source transformation was already
employed in the example presented in R.3.61. Observe that a current source of
I = 6 + j3 with a parallel impedance of Z, = 8§ — j4 was converted into a voltage
source of 60 V (Z, * ) in series with Z, (Figure 3.25).

The circuit shown in Figure 3.28 is used to illustrate Norton’s theorem and source
transformation in evaluating the current I; through the load Z,.

ZTH=6+j4

+
Viy=-10+5 Cm)
- IL ZL:4_j4

FIGURE 3.27
Thevenin’s equivalent circuit of Figure 3.25.

_{ Z1=4—j2} . Zy=6+)2 2

Zy=11-j2

k _ Zy=6+j2 S
QD E=100V 58

FIGURE 3.28
Network of R.3.63.
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ANALYTICAL Solution

Replacing Z; by a short (Norton’s theorem) results in the circuit diagram shown in

Figure 3.29.

Observe that Z, and Z; are connected in parallel, then

Zs=2)\Z;=2,/2=3+]

The circuit of Figure 3.29 is further simplified and redrawn in Figure 3.30.

Then,

100

=" =207+))A

and

Iy =

I
2

=7+jA

Then Z;; can be evaluated from the circuit shown in Figure 3.31, where the voltage
source of Figure 3.28 is replaced by a short circuit.

FIGURE 3.29

a
Zi=4-j2 Z3=6+j2
, In
G\D E=100V Z2=6+)2 <
2
Norton’s model of the circuit diagram of Figure 3.28.
Z1 = 4 - /2
+
~ E=100 V
- Zs=4-j4

FIGURE 3.30
Simplified version of Figure 3.29.
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Z3=6+j2

.

Zi=4-j2 Z£=6+j2 Zy=11+)2 € Zyy

FIGURE 3.31
Zry model for the circuit diagram of Figure 3.28.

8

44
IN=T+] T An= —+ = 46 8
N 9 9 zL=;7,5

FIGURE 3.32
Norton’s equivalent circuit of Figure 3.28.

Then,
Zry = (Z41Z) + Z] || Z, Q
202, + 7, = D=2 ]21)(04 “D 6+ j2=88+ /160
and ] ]
7, - B8+10-11+/) 44, .8,
198+ j3.6 9 7’9

Finally, the Norton’s equivalent circuit is shown in Figure 3.32, and the Thevenin’s
equivalent circuit is shown in Figure 3.33. The current I; can then easily be evaluated
from either circuit, as illustrated as follows:

_ ((44/9) + j(8/9) * (7 + j)
b (44/9) + j(8/9) + (46/9) — (8/9)

A (from Figure 3.32)

I, = (300/9) :O](100/9) = % + j% A (from Figure 3.33)

4 .8
Zo == 1i%0
TH 9 ]9
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.8
“m="g /g
1 L
Vin= L
. (44 .8y 300 100
7+ )\ = +j=)=—7+j—5
7+ ) (9 /9) o tig 1+ % 8
O

FIGURE 3.33
Thevenin’s equivalent circuit of Figure 3.28.

. L =100 mH
AW Y M
—>l1 IS—>

s
-—

+
] /\/ Vg =4 cos(10t)v
Vas10V T 20 I <>

FIGURE 3.34
Network of R.3.65.

R.3.64 The superposition principle for the AC case follows closely to the DC case discussed
in Chapter 2, that is, in a linear network containing #n sources (not necessarily with
the same frequencies) any network current or voltage is the algebraic sum of the
responses or contributions due to each of the n sources acting separately by forcing
all the remaining n — 1 sources to zero.

R.3.65 The circuit shown in Figure 3.34 uses the superposition principle to evaluate each
current (I;, I,, and I;). Observe that one source is DC and the other is AC (with =
10 rad/s).

ANALYTICAL Solution

The circuit of Figure 3.34 is redrawn into the circuit shown in Figure 3.35, by setting
V3 = 0 (short), and solving for all the currents contributed by the voltage source V,,.
Note that because w = 0, X; = joL = 0 (short), then the currents I ,;, I ,,, and I,; are
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00 L =100 mH
VWV (Y M
> s Ins —™

+
-

Va=10V —/(/—
A 29§ i
— A2

FIGURE 3.35
Network of Figure 3.34 with Vy = 0.

i
" 2l
WV -

Igs Is3 +

! @ Vg=420V
29§
[ ] —
l Ig2

FIGURE 3.36
Network of Figure 3.34 with V, = 0.

Now consider the AC source by setting the DC source to zero (V,, = 0), and transforming
the source Vyinto a phasor, the equivalent circuit is redrawn in Figure 3.36.

Solving for the loop currents Iy, and I; of Figure 3.36, using loop equations the
following relations are obtained

[=2L0— 220° _55 /450 A

i+j 2 .145°
I
I = Ipp = %
Then
Iy, = \2 /—45°

Ipy = Iy = \2 /—45°

Transforming the aforementioned phasor equations into the instantaneous currents
results in

ip(t) = V2 cos(10t — 45°) A
ip,(t) = V2 cos(10t — 45°) A
ipa(t) = 22 cos(10t — 45°) A
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Then the currents of the circuit diagram shown in Figure 3.34 are evaluated by the
algebraic addition of the individual contributions of each source (superposition
principle), yielding the following:

i) =1, + ig(®
i\(t) =5 — V2 cos(10t — 45°) A
i) =L, + ig(t)
i)(t) = V2 cos(10t — 45°) A
i) = Ly — igs(®

i5(H) = 5 — 232 cos(10t — 45°) A

R.3.66 Let the Thevenin’s impedance as seen across an arbitrary load Z; be Z;;; = Ry, +
jX 1y Then maximum power is delivered to the load Z;, when Z; = Ry — jXiy
(note that Z; is the complex conjugate of Z ), as illustrated in Figure 3.37.
Let us evaluate the power delivered (in watts) to the load Z;.
The total impedance of the circuit is given by

Zy=Zy+Z = 2Ry

Then,
V.
I ZRTfH Py, = IPRey
and
Vi ) %
Py =| " | Ry W
2Ry 4Ry
Zry=Rry+] Xy
+
Vry @ Z =Ry~ ] X7y
FIGURE 3.37

Condition for maximum power transfer to Z; .
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R.3.67 Let the load impedance of an arbitrary network be Z, = R; + jX;, where R; can be

adjusted (variable), and let the load reactance X; be fixed, where X; # X Then
maximum power delivered to the load Z; occurs when R; is (adjusted) to

R, = \/R%H + Xy + XL)2

and the power delivered to the load is then

P, = V"I?HRX
RL 4
where
Ry +R
R, = N TRy
X 2
R.3.68 A'Y impedance structure can be transformed into a A equivalent impedance struc-
ture (refer to Figure 3.38) by the following set of equations:
7 Zlyg+Zyle + 727,
1 2
7 ZZg+2ZyZ-+2-2,
2 ZB
7. 22y +2ZpZc+2:2,
3 Z,
Observe that a A configuration is a structure consisting of three nodes (A, B, and C)
and three elements Z;, Z,, and Z;, where each node is the connection point of two
elements. For example, node A is the connection point of Z; and Z,.

A'Y configuration is a four-node structure, where each of the A nodes (A, B,
and C) is connected to one element Z,, Z;, and Z, and the fourth node (the center
node) is the connection point of the three elements Z,, Z,, and Z.

FIGURE 3.38

Y-A structures.
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R.3.69

R.3.70

R.3.71

R.3.72

R.3.73

R.3.74

R.3.75

R.3.76

The transformation from A to Y is accomplished by the following set of equations:

_ Z2,Z,
A2+ 7,47,

2,25

25= 7 7 +2
1 2 3

_ Z,Z,
© Z,+Z,+Z,

Note that the A to Y and the Y to A transform equations for the AC case can
be extended to the DC case, where the (Rs) resistances are replaced by (Zs)
impedances.

Polyphase systems consist of two or more AC voltage sources with the same
frequency, and with fixed differences in phase, connected in either a A or Y
configuration.

A single-phase generator outputs a sinusoidal voltage for each rotation of its rotor.
When more than one sinusoidal is generated by the system, then it is referred as a
polyphase system. Multiple-phase voltages are in general more efficient to generate,
transmit, and distribute electrical power than single phase, which results in copper
reduction (thinner conductors) of up to 25%, and substantial saving in transmission
lines and structures (transmission towers). The most common multiphase system is
the three-phase system, denoted by 3 ®.

A generator consists of a rotating shaft or rotor with coils around it that moves
in a constant magnetic field. This arrangement results in an induced voltage in
each coil. Due to the location of the windings as well as the number of turns, A 3 ®
system is a system that outputs three sinusoidal waves, 120° apart in phase, with
the same magnitudes. The generating frequency depends on the number of poles,
as well as the angular speed of the rotor. The standard commercial and residential
frequencies are 60, 50, and 400 Hz in the United States; Europe; and insulated, inde-
pendent large-scale systems such as ships, aircrafts, and satellites, respectively.

The power distribution of a 3 ® system if implemented independently would need
six wires as transmission lines, one per phase. It is far more efficient to interconnect
the winding in a way as to reduce the number of transmission lines into two struc-
tures—A or Y (also known as star) configuration, reducing the number of transmis-
sion lines, and the resulting implementation cost.

A monophase generator is one that results in one or more outputs, but all of them
with the same frequency and with the same phase.

A single-phase system that is often used in residential installations consists of
three (secondary) wires and a transformer is illustrated in Figure 3.39.

Another popular connection consists of a two-phase (2 ®) system with three wires
connected to two loads Z; and Z, as shown in Figure 3.40, with its corresponding
phasor diagram shown in Figure 3.41.

Where I, = I, — I, and E,, = E\2 /—45°.
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A

T Vap= VLO®
B AB

Vac = 2VZL0°

c T Vo= VL0

N -
|3

FIGURE 3.39
Single-phase system.

TN E=Exv
~) z

+ o
() E=Ec0v z

N
N

FIGURE 3.40
Two-phase system.

E,,=2Es-45
Ep= E£90°

FIGURE 3.41
Phasor diagram of Figure 3.40.

R.3.77 3 ® Systems are the most common configurations used to generate and deliver
electrical power. A 3 ® system, with sequence ABC is shown in Figure 3.42, where
the sequence label indicates the generation path.

R.3.78 The line voltages are the voltages V,y, Vgy, and V.

R.3.79 The system voltages are referred to as the voltage between any pair of line voltages
such as V,g, Ve, and Vi,
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Vv,
ne Vag = V £120°
A |
Q
Vg = V £0°
Vea = V £240°
D=V
3
VAB VAN = D 4900
N
(N = Neutral Ven = D £-30°
point)
Ven = D £-150°
C B
FIGURE 3.42
3 @ system with sequence ABC.
<L o
Es E; Z Z3

2

FIGURE 3.43
3 ®-Y system connected to a Y load.

R.3.80 The system voltages, as well as the loads in a 3 ® system can be connected in either
a AoraY configuration, as illustrated in Figures 3.43 through 3.46, where E, + E, +
E,=0.

R.3.81 A balance system consists of a system where the load impedances are Z, = Z, = Z,
in a Y configuration, or when Z, = Z; = Z, in a A configuration; refer to Figures 3.42
through 3.46.

R.3.82 Standard circuit techniques such as loop or node equations can be used to analyze
polyphase systems (to determine currents or voltages).

R.3.83 When a 3 @ system is connected to an unbalanced Y load, the neutral nodal point
referred by N is not at the neutral potential, and is labeled with an O. The change
in voltage between the balanced and the unbalanced case is referred as V,, and is
referred to as the neutral displacement voltage.
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Zs

FIGURE 3.44
3 ®-Y system connected to a A load.

Ey

@ . Z, Zs

FIGURE 3.45
3 ®-A system connected to a A load.

FIGURE 3.46
3 ®-A system connected to a Y load.

R.3.84 The magnitude of the line currents in a balanced 3 ® system, as well as the voltage
drops across the loads are equal, and the phases are evenly spaced by 120°.

R.3.85 The magnitude of the voltages and currents in an unbalanced 3 ® circuit can vary
considerably across the load in which the line currents are not equal and the phases
are no longer evenly spaced by 120°.
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R.3.86 The example shown in Figure 3.47 illustrates the general approach employed to
solve for all the currents (load and line) in a typical polyphase balanced network.
The voltage specs are

Vi, = 120 £0°
V,3 = 120 £-120°
V3 =120 £120°  (in volts)

The analysis shown in the following is for the load specs for the following
structures:

a. A A impedance configuration shown in Figure 3.47 with
Zyy=1Zy=12y=j10Q
b. A'Y impedance configuration shown in Figure 3.48 with
Z2,=2,=272,=j10Q
ANALYTICAL Solution
Part a

Applying Ohm’s law to the circuit shown in Figure 3.47, the following currents can be
evaluated by

_ 120£0° _ 120£0°

= - =12/-90° A
j10 10290°

Vi
I, = Zilz
12

_ Vyy _ 120£-120°

Iy, = =12£(~120° — 90°) = 12./-210° A
Zyy  10290°
L, = 12 £150°

1, = Yo 2 12021200 _ 4y 500 — 90%) = 12.230° A

- A+
Va4
- —
Vo3 p
A+ 1
Via
+ _ b

FIGURE 3.47
3 @ system connected to a A load with Z,, = Z,; = Z;, = j10.
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FIGURE 3.48
3 & system connected to a Y load with Z, = Z, = Z, = 10j.
Then, I, = I, — Iy
I, =12/-90° — 12 £30° = 1243 £—120° A
andl, =1, — I,
I, =12/150° — 12 £-90° = 1243 £120° A

and I, = I — L, = 12.£30° — 12 £150° A

I, =12\3 £0° A
Part b

The system for part b is shown in Figure 3.48.
Transforming the Y load into a A configuration, and making use of the symmetry of
the system, the equivalent impedances are evaluated.

_ 22y + 2,2, + 257,
Zy

Z12

and since Z, = Z, = Z; = j10, then

zszf _

Z
12 Z

3Z, = 3(105) = 30j Q

_ZiZy Y 2,25 + 257,

Z
23 Z,

Z,5 =30/ Q

_ZiZy + 2,245 + 257,

Z
31 Z,

and

7y =30/ Q
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Then,
I, = 12020 —4s90°
30£90°
o= 120 £—-120 — 4 150°
30.£90°
L= 1202120 — 430°
30£90°

Observe that the solution for part b is based in transforming the problem into one that
is similar to part a, and the currents just evaluated (part b) are one-third of the currents
of part a, because the loads become three times larger.

The line currents using KCL can be evaluated, and are indicated as follows:

I, =1, — I + 4V3 /—120° A
I, =4V3/120° A
L=4V320°A
The corresponding voltage drops are indicated as follows:
Viy =1, +Z = 4J3/-120° + 10 £90° V
Vi = 40N3 £/—30° V
Vyn = 40\3 £-150° V

Vi = 40N3 £90° V

3.4 Examples
Example 3.1

Create the script file XL _XC that returns the following plots:

1. magl[X, (w)] versus w
2. mag[X (w)] versus w

for L =2H and C = 1 pF, over the frequency range 200 = » = 2000 rad/s.
MATLAB Solution

% Script file: XL _XC
L = 2;
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C = le-6;
w = [200:50:2000];
XL = w*L;

XC = 1./(w*C);

plot(w,XL,’o’,w, XC,'*’)

title(*[XL(w) and XC(w)] vs w’)

xlabel(‘frequency in rad/sec’), ylabel(‘Magnitude in Ohms’)
legend(‘XL’,’XC")

grid on

hold; plot(w,XL,w,XC)

The script file XL_XC is executed and the results are shown in Figure 3.49.
Example 3.2
Evaluate the impedance Z and admittance Y = (1/Z) for the circuit shown in Figure 3.50

first by hand, and then by writing the script file Z_Y; for an angular frequency of w =
1rad/s.

[XL(w) and XC(w)] versus w

5000 T
O XL
4500 \ * XC 4
4000 \
A
3500
§ 3000 =°
£ /YQQ*
g 2500 -
:‘é‘
g 2000 \
1500 :;M?:
1000 y@/g@;z
Tttty
500 y@,@* WW(——M
L
0
200 400 600 800 1000 1200 1400 1600 1800 2000
frequency in rad/sec
FIGURE 3.49
Plots of Example 3.1.
7 C=15F | §L—2H %R=4Q
w=1rad/s
FIGURE 3.50

Network of Example 3.2.
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ANALYTICAL Solution

Xc(w) = =5
X () = j2
XC(CU)XL(U)) _ _]5 ]2 — ﬁ Q)

X=X =3 )+ X0) ~ 52 o

X@) =%

X(@R _ j333+4
X(@)+R j333+4

Z(w) = X(w) /R = =1.639 + j1.967 (Q)

and

_ 1
Y©) =77
_j333+4

Y
@)= "33

= 0.25— j.3 (sie)

MATLAB Solution

% Script file: Z Y
W = 1;

C = 1/5;

L = 2;

R = 4;

XC = -3/ (W*C);

XL = J*WL;

XC*XL/(XC+XL) ;

= X*R/(X+R);

Y = 1/7;

digp (VIIANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARANAT)
disp(*The impedance Z (in Ohms) and admittance (in Siemens) are given
by :7);

z,Y,
disp

N X
o

PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAW

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

The impedance Z (in Ohms) and admittance (in Siemens) are given by:
Z =
1.6393 + 1.9672
Y =
0.2500 - 0.3000i

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Example 3.3

Evaluate the impedance Z of the circuit of Figure 3.51 for @ = 10 rad/s by hand, and by
creating the script file imp_Z.
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%,:1'1:39
z §R2=1OQ

w =10 rad/s
—— C=1/40F
FIGURE 3.51
Network of Example 3.3.
ANALYTICAL Solution
1 .
Xe(w) = ,i= ——=—j4Q

X =3-j4(Q)
Then, Z = X//R,.
7=X210 _ s 3600
X 110

MATLAB Solution

)

% Script file: imp Z

W = 10;

R1 = 3;

R2 = 10;

C = 1/40;

XC = -j/(W*C);
X = R1+XC;

Z = X*R2/(X+R2);

Zmag = abs(Z);
Phase = angle(Z);
Phase deg = Phase*360/(2*pi);

] TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI
disp(® )
disp(‘Magnitude of Z (in Ohms) and phase (in degrees) is given by :');
Zmag
Phase deg
disp(‘TAMMMAAAAAAAAAMMMMMMMAAAAAAAAAAAMMMMMMMAAAAAAA,)

The script file imp_Z is executed and the results are shown as follows.
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>> imp 2

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Magnitude of Z (in Ohms) and phase (in degrees) is given by :
Zmag =
3.6761
Phase deg =
-36.0274

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Example 3.4

Evaluate by hand and by using MATLAB the voltage v(t) across the series RL circuit
shown in Figure 3.52, if the current is i(t) = 5co0s(100t) A.

i(t) _{>

%Fﬁ: 40 Q

g L=0.3H

v(t)

FIGURE 3.52
Network of Example 3.4.

ANALYTICAL Solution
I=520°
Z =40+ j+100%0.3 = 40 + j30
V=27Zx1= (40 + j30)5,0° = 250 £(36.52°)

then
o(t) = 250 cos(100t + 36.87°)

MATLAB Solution
% Script file: vol RL
W=100;

Z=40+]*W*.3;

V=5%Z;

Vmax=abs (V) ;
Phase=angle(V);
Phasedegree=Phase*180/pi;

)

% Print results

disp(‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,)

disp(*The peak value (in volts) and the phase (in degrees) of v(t)
are=');

Vmax,

Phasedegree,

disp(‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,)
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The script file vol_RL is executed and the results are as follows:
>> vol _RL
The peak value (in volts) and the phase (in degrees) of v(t) are=
Vmax =
250
Phasedegree =
36.8699
The preceding result means that v(t) = 250 cos(100t + 36.8699°) V.
Example 3.5
Evaluate the current i(f) for the circuit shown in Figure 3.53 by hand, and by using
MATLAB.
0 D
v(t) = 200 cos(500 t) v<+> % R=200Q
[av}
—= C=125uF
FIGURE 3.53
Network of Example 3.5.
ANALYTICAL Solution
j .
V=2004£0%5Z=20-—-7"—— =20-/16
125 # 100 * 500 J
then
=V 20 _ N0 ;g 3864

Z 20-j16 5-j4
Therefore, i(t) = 7.8 cos(500t + 38.6°) A.

MATLAB Solution

>> W = 500;
>> V = 200;
>> R = 20;
>> C = 125e-6
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>>

>>

>>

>>

>>

>>

>>

>>

1.2500e-004

XC = -j/(W*QC)

L]
Q
n

0 -16.0000I

Z = R+XC

20.0000 -16.0000I

Zmag = abs(Z);
phase = -angle(Z)*180/pi

phase =
38.6598

I = V/Zmag;

% Print results

disp(‘The peak value of the current (in amps) is ='),
disp(‘with a phase angle(in degrees) of =), disp(phase)

The peak value of the current (in amps) is =
7.8087
with a phase angle (in degrees) of =
38.6598

The meaning of the aforementioned results is that the current is given by

Create the script file curr_volt that returns the plots of v(t) versus t and i(t) versus t, over
the range 0 = t = 0.06 s, for the circuit shown in Figure 3.54, where i(f) = 5 sin(300t) A.

i(t) = 7.8087 cos(500t + 38.6598°) A

Example 3.6

i(t) {>

R=10Q

VA

§ L=60mH

FIGURE 3.54
Network of Example 3.6.

disp(I);
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MATLAB Solution

% Script file: curr _ volt

300;

= 19;

= 60e-3;

Ang = W*L/R;

t = [0:.0001:.06];

V = (R™2+(W*L)"*2)".5*5*sin(W.*t+atan(Ang));
subplot(2,1,1)

I = 5*sin(W.*t);

plot (t,V), title(® wv(t) wvs. t’)

grid on

ylabel(‘Amplitude in wvolts’), title(‘v(t) wvs.t’)
subplot(2,1,2)

plot(t,I)

grid on

title(*i(t) wvs. t’), ylabel(® Amplitude in amps’)
xlabel(‘time in sec.’)

B ® =

The script file curr_volt is executed and the resulting plots are shown in Figure 3.55.

v(t) versus t

200

P ——

T

L 100 pF---\c---- i B e L e —
<} 1 ;
> '
£ i .
g OofF--------X-- ECEEEETERy & it N CEEEELERTE R EEGEEEEELE
3 . | i |
'?;1 i ; . : :
<-100 -mmmmmmeees N/ A PO ATt v

200 | | ; ; ;

0 0.01 0.02 0.03 0.04 0.05 0.06
i(t) versus t
5

Amplitude in amps

0 0.01 0.02 0.03 0.04 0.05 0.06
time in sec.

FIGURE 3.55
Plots of Example 3.6.
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Example 3.7

Let the current in the RC circuit shown in Figure 3.56 be i(t) = 5 sin(200t) A. Create the
script file curr_vol_RC that returns the plots of v(t) versus t and i(t) versus t, over the
range0=t=0.1s.

i(t) = 5sin(200 t) A
‘{> % R=0.5*10°Q
vi)| "o

~—— C=10"108F

FIGURE 3.56
Network of Example 3.7.

MATLAB Solution
% Script file: curr vol RC

clf

W = 200;

R = 0.5e5;

C = 10e-8;

Ang = 1/(W*C*R);

t = 0:.001:.1;

V = (R*2+(1/W*C)"2)".5%5*sin(W.*t-atan(Ang));

I =5*sin(W.*t);
subplot(2,1,1)

plot(t,V)

ylabel (*Ampitudelv(t)]’);
xlabel(‘time in seconds’);
title(*v(t) wvs. t )
subplot(2,1,2)

plot(t,I)

title(‘i(t) vs. t ')
xlabel(‘time in seconds’);
ylabel (*Amplitude([i(t)]’)

The script file curr_vol_RC is executed and the returning plots are shown in Figure 3.57.

275
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x 105 v(t) versus t
T T T T T T T T T
=
(0]
°
2
£
£
<
time in seconds
—4 Il Il Il Il Il Il Il Il Il
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
i(t) versus t
5 T T T T T T
=
20 1
2
£
<
time in seconds
_ 1 1 1 1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
FIGURE 3.57
Plots of Example 3.7.
Example 3.8

Given the following periodic functions defined over one period (T):

a. f1(t) = 5cos((2m/3)t), with T = 3's
b. () =t for0=t=1withT=1s
C-f(t)={1 0=t=05

’ 0 05=t=1 withT=1s

Create the script file ave_rms_sym that returns the following plots over the range
—1=t=3:

a. f,(t) versus t
b. f,(t) versus t
C. f4(t) versus ¢

Also evaluate the average and the RMS (effective) value for each one of the preceding
functions using

a. a symbolic approach by creating the script file ave_rms_sym (use int)
b. a numerical solution by creating the script file ave_rms_num (use trapz)

Recall that the average value of the arbitrary f(t) is given by

1T
Fave = ?_[f(t)dt
0

1T
Fras = ?J.f(t)%lt
V 0

and its RMS value is given by



Alternating Current Analysis 277

MATLAB Solution

Script file : ave _rms _ sym

returns the functions f1,f2,& £3

and computes the average and rms values of f1,f2 & £3
using symbolic (int) technique

= linspace(-3,3,100);

flt = 5.*cos(2*pi./3.*x);

subplot(3,1,1)

plot(x,flt);

title(*Plots of f1(t),f2(t) & £3(t)’);
ylabel(‘f1(t)’),axis([-3 3 -6 6]);

subplot(3,1,2)

a = linspace(0,1,25);

y = [a a a al;x=linspace(-1,3,100);
plot(x,y);ylabel(*f2(t));axis([-1 3 -.5 1.5]);

b = [ones(1,12) zeros(l,13)];bb = [b b b bl;subplot(3,1,3)
plot(x,bb);ylabel (‘£3(t)’);axis([-1 3 -.5 1.5]); xlabel(‘time’);

)

% Figure 3.58

o° o° o° o°

b

syms t;

w = 2%*pi/3;

T = 2%pi/w;

flave=1/T*int (5*cos(w*t),0,T); % part(a)
disp(‘****************************************************’),-
disp(M***xxxxxxx**Symbolic Results (using int )****kkkskr).
disp(‘****************************************************’)’-
disp(‘The average value of fl(t) is =');
ansl=vpa(flave);disp(ansl);
flrms=sqrt(1/T*int(25*cos(w*t)”*2,0,T)); % part(b)
disp(*The RMS value of f1l(t) is =');
ans2=vpa(flrms);disp(ans2);

T1=1;

wl=2+%pi/T1;

Vave2 = 1/T1*int(t,0,T1);%part(b)

disp(‘The average value of f2(t) is =');

ans3 = vpa(Vave2); disp(ans3);

Vrms2 =sqgrt(l/T1*int(t"2,0,T1));

disp(*The RMS value of f2(t) is =');

ans4 = vpa(Vrms2); disp(ans4);

w2 = 2%pi/T1;

Vave3 =1/Tl*int(sym(‘Heaviside(t)’),0,T1/2); $part(c)
disp(*The average value of f3(t) is =');

ans5 = vpa(Vave3);disp(ans5);

Vrms3 =sgrt(l/T1*int(sym(‘Heaviside(t)”*2’),0,T1/2));
disp(*The RMS value of f3(t) is =');

ans6 = vpa(Vrms3);disp(ansé);
disp(‘****************************************************’),-
The results of executing the script file ave_rms_sym are shown as follows:
>> ave_rms_sym
khkhkkkhkkhkkkhkkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkkkkhkhkkkkkkkkkkkkkk

*kkkkkkkkkkk*k* Symbolic Results ( using int) ****kkkkskkkk*
hkkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhd

The average value of fl(t) is =
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The RMS value of fl(t) is =
3.5355339059327376220042218105243
The average value of f2(t) is =
.50000000000000000000000000000000
The RMS value of f2(t) is =
.57735026918962576450914878050196
The average value of £3(t) is =
.50000000000000000000000000000000
The RMS value of £f3(t) is =
.70710678118654752440084436210485

hkkhkhkkhkhkkhkhhkhhkhhhkhhkhhhkhhhkhhkhhkhhkhhkhkhhkhhkhkhkhhkkhkhhkhkhhkhkkkkk

Script file: ave rmst num

evaluates the average and rms values of f1,f2 and £3
using numerical techniques (trapz)

tl= linspace(0,3,100);

yl= 5*cos(2*pi/3*tl);

avecos =1/3*trapz(tl,yl);

vlsq = y1.72;

rmscos = sgrt(l/3*trapz(tl,ylsq));

t2 =linspace(0,1,100);

v2 = t2;

avesaw = trapz(t2,y2);

y2sq = y2.72;

rmssaw = sgrt(trapz(t2,y2sq));

y3 = [ones(1,50) zeros(1,50)];

avesqr = trapz(t2,y3);

y3sq = y3.72;

rmssqgr = sqrt(trapz(t2,y3sq));
disp(‘*********************************************************')

o° o o°

i
disp(®  *********x Numerical Results (using trapz)rxx*kkkkxx*r),
dlsp ‘*********************************************************’)

(
( H

disp(® )

disp(*The average value of fl(t) is =)

disp(avecos)

disp(*The rms value of f1(t) is =')

disp(rmscos)

disp(® )

disp(*The average value of f2(t) is =')

disp(avesaw)

disp(*The rms value of f2(t) is =')

disp(rmssaw)

disp(® )

disp(‘The average value of f3(t) is =')

disp(avesqr)

disp(*The rms value of fl1(t) is =')

disp(rmssqgr)

disp(‘**************************************************’)

The script file ave_rms_num is executed and the results are as follows:

>> ave rms num
khhkhkhkkkkkkhkhkhhhhhhkhkkhkhkhkhhhhhhhkhkkkhkhkhhhhhhhkkkkkhkhkhhhhkkkkk

**kkk**k* Numerical Results (using trapz) ****kkkdkkikdk
khkkkkkhkkkhkhkhkkhkhkkkhkhkhkkkkhkkhkkkhkhkkkhkkkkhhkkkhkkkkkkkkkkkkkkkkkkk
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The average value of fl(t) is =
-6.8464e-016
The rms value of fl1l(t) is =
3.5355
The average value of f2(t) is =
0.5000
The rms value of f2(t) is =
0.5774
The average value of £3(t) is =
0.5000
The rms value of fl(t) is =
0.7071

hhkkhkkhkhkhkkhkhkhkhhkhkhhkhhkhhkhhkhhkhkhkhhkhkhhkhkhkhkhkkhkhkkkkk

Observe that the numerical results fully agree with the symbolic results.

Example 3.9

Create the script files circ_Fig_359 and circ_Fig_360 that return for the circuits shown in

Figures 3.59 and 3.60, the following plots:

1. |Z(w)| versus w
2. /Z(w) versus @

Plots of f1(t), f2(t), & f3(t)

FIGURE 3.58
Plots of the periodic functions of Example 3.8 (a, b, ¢).
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L1 4

FIGURE 3.59
Network with R = C = L = 1, over the range 0 =
® = 5rad/s of Example 3.9.

Practical MATLAB® Applications for Engineers

A%
R

FIGURE 3.60
Network with R = 1000 Q, L = 30 mH, and C = 047 pF,
over the range 7500 = w = 9500 rad/s of Example 3.9.

ANALYTICAL Solution

For the circuit shown in Figure 3.59 (part a),

1/0)(jw)

Z() = — /
(jo)? + (1/RC)(joo) + (1/LC)

ForR=L=C=1, ]
Zw)y=— U2
(joo)* + (joo) +1

For the circuit shown in Figure 3.60 (part b),

_ R(jow)* + (1/C)(jw) + (R/LC)
(joo)* +(1/LC)

Z(w)

For R = 1000 Q, L = 30 mH, and C = 0.47 pF (Figure 3.61),

1 . 1000
U0t 20107 %047 ¢ 106

1000 * (joo)? + —————
Z(w) — 0.47 *10°°

(joo)* +

301073 %+ 0.47 +10°°

MATLAB Solution

% Script file: circ Fig 359

R, L, and C in parallel
R=C=1L = 1.

echo on;

w = 0:0.1:5;

num = [0 0 1];

den = [1 1 1];

ZW = fregs (num, den, w);

subplot(2, 1, 1);

plot(w, abs(ZW));

grid on;

title(*‘Magnitude and phase of Z(w)’);
xlabel(‘w(rad/sec)’);
ylabel(‘magnitude’);

subplot(2, 1, 2);

plot(w, angle(ZW)*180/pi); % Figure 3.61
xlabel(‘w(rad/sec)’);

ylabel(‘phase in degrees’);

grid on;

o°

o\°
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Magnitude and phase of Z(w)
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FIGURE 3.61

Plots for the circuit of Figure 3.59.

% Script file: circ Fig 360

echo on;

w = 7500:50:9500;
R = 1000;

L = 30e-3;

C = 0.47e-6;

num = [R 1/C R/(L*Q)];

den = [1 0 1/(L*C)];

ZW = fregs(num, den, w);

subplot(2, 1, 1);

plot(w, abs(ZW));

grid on;

title(‘Magnitude and phase of Z(w)’);
xlabel(‘w(rad/sec)’);
ylabel(*magnitude’);

subplot(2, 1, 2);

plot(w, angle(ZW)*180/pi);
xlabel(‘w(rad/sec)’);

ylabel(‘phase in degrees’);

grid on; % Figure 3.62
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5 x 104 Magnitude and phase of Z(w)
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FIGURE 3.62

Plots for the circuit of Figure 3.60.
Example 3.10

Given the current and voltage shown in the circuit diagram of Figure 3.63, write a pro-
gram that returns the following:

1. Plots of i(t) versus ¢, v(t) versus f, and p(t) versus f over 0 = ¢t = 0.01
2. Evaluate using MATLAB
a. The average power delivered to the load

b. The RMS value of i(t) and v(t) by using numerical techniques and verify the
results by Vs =V, * 0.707 and I,,s = I, * 0.707

c. The PF

i(f) = 5 sin(200**t + 60°) A

_{>

v(t) =9 cos(200*n*t + 45°)V

FIGURE 3.63
Network of Example 3.10.
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MATLAB Solution

>> % Instantaneous power plot

>> T= 2*pi/(200%pi);

>> X= [0:.01:1];

>> t = X.*T;

>> IT 5*cos(200*pi*t+pi/3);

>> VT 9*cos(200*pi*t+pi/4);

>> PT = IT.*VT;

>> plot(t,PT,’o’,t,VT,'*',t,IT,'+'); % Figure 3.64
>> legend(‘i(t)’, ‘v(t)’, ‘p(t)")

>> grid on

>> title(‘Instantaneous Power, Current, and Voltage’)
>> xlabel(‘time in seconds’),ylabel(* Amplitudes of P, I, &V’)

>> VTSQ=VT.*2; g v(t)"2
>> IntVTSQ = .01*T*(trapz(VTSQ)) % integral ofv(t)”2
IntvVTSQ =
0.4050
>> ITSQ = (5*cos(200*pi*t+pi/3))."2; i(t)*2

o° o°

>> IntITSQ = .01*T*(trapz(ITSQ)) integral of i(t)*2

IntITSQ =
0.1250
>> VRMS = sqgrt((IntVTsSQ)/T) % RMS value of voltage
VRMS =
6.3640
>> IRMS = sqrt((IntITSQ)/T) % RMS value of current.
IRMS =
3.5355
>> $ average power using trapz
>> PowerWave = .01*T*trapz(PT)/T
PowerWave =
21.7333
>> % Power Factor numerical
>> PF = PowerWave/(VRMS*IRMS)
PF =
0.9659
>> % verify results analytically

>> VRMSANA = 9%.707

VRMSANA

6.3630

>> IRMSANA = 5%.707

IRMSANA

3.5350
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>> PowerWaveAna = (45/2)*cos(15*%pi/180)

PowerWaveANA =
21.7333

)

>> % results are printed for
comparisons
>> fprintf(‘Average Power, Numerical:%f\n’,PowerWave)

Average Power, Numerical: 21.733331
>> fprintf(‘Average Power, Analytical:%f\n’,PowerWaveANA)
Average Power, Analitical: 21.7333
>> fprintf(‘VRMS, Numerical:%f\n’,VRMS)
VRMS, Numerical: 6.3640
>> fprintf(‘VRMS, Analytical:%f\n’,VRMSANA)
VRMS, Analytical: 6.3630
>> fprintf(*IRMS, Numerical:%$f\n’,IRMS)
IRMS, Numerical: 3.5355
>> fprintf (‘IRMS, Analytical:%f\n’,IRMANA)
IRMS, Analytical: 3.5350
>> fprintf (‘PowerFactor, PF:%$f\n’,PF)
PowerFactor,PF: 0.965926

Observe that the analytical results fully agree with the numerical results.

Instantaneous Power, Current, and Voltage

50 ——
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FIGURE 3.64
Plots of i(t), v(t), and p(t) of Example 3.10.
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Example 3.11

Write a MATLAB program that returns

1. The phasor diagram of the voltages V4,yeqy V1, Vi, and Vp of the circuit shown in

Figure 3.65

2. The angle between the I and V
3. Verify KVL, thatis, V=V, + V. + V;

V=220, f=60 Hz

FIGURE 3.65
Network of Example 3.11.

MATLAB Solution

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

V = 220;
R = 100;
C = 40e-6;
L = .5;

R=100Q C=40uF

®

|
VY |1

D

gL:O.SH

Omega = 2*pi*60;
Z = R+j*((L*Omega)-1/(C*Omega));
Magnitude = abs(Z);

Phase = 180*angle(Z)/pi;

I = V/Z;
I = abs(I);
VR = I*R;

VL = j*L*Omega*I;

VC = -j*I/(C*Omega);
Vapplied = VR+VL+VC;
abs (VApplied)

Check _ KVL =
Check KVL =

phase in _deg

220.0000

phase in deg =

L(1) = 0;
L(2) = VR;
L(3) = VR+VL;
L(4) = VR+VC;

50.7011

Voltage = [0 VApplied];

axis(‘square’)
plot(real(L),
grid on

xlabel(‘Real Axis’),

title(‘Phasor

% the result should be 220 (KVL)

= 180*angle(VApplied)/pi

)

% construction of the phasor diagram

imag(L), real(Voltage), imag(Voltage))

ylabel(‘Imaginary Axis’)

Diagram’) (Figure 3.66)
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Phasor Diagram
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FIGURE 3.66
Phasor diagram of Example 3.11.

Example 3.12
Create the script file phasor_time_plots that returns the circuit diagram shown in Fig-
ure 3.67, the following plots:

1. The phasor diagram for Vg, Vi, and Vi
2. vg(t) versus t, vg(f) versus t, and v(t) versus t

R=1Q
M
Vg(t) = sin(1000*t) V —{>
—— C=1yF
FIGURE 3.67
Network of Example 3.12.
MATLAB Solution
% Script file: phasor time _ plots
clf
vsS = 1;
R = le3;

C = le-6;
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F = 1000;

W = 2*%pi*F;
ZC = -3/(WxC);
ZT = R+zZC;

I = VS/ZT;
VR = R*I;

VC = ZC*I;

subplot(2,1,1)
% Phasors diagram.

VSS = [0 VS];

VAYS [0 VvC];

VVR = [0 VR];
plot(real(VSS),imag(Vss),’*’,real(VVC),imag(VVvC),’'+’,real(VVR),imag(VVR),'0’);
xlabel(*‘Real’), ylabel(‘Imaginary’),

title(‘Phasor Diagram (Example 3.12)'); % Figure 3.68 (top)
grid on
hold ; %$hold plot

plot(real(VsSS), imag(VSS), real(VVC),imag(VVC),real(VVR),imag(VVR));
legend(‘VSs’, ‘VC’, ‘VR');

)

% Check the Phasor Diagram by applying Kirchhoffs Voltage Law.
disp(‘**********************************************************’)
disp(‘****Check the Phasor Diagram results by applying **xxxr)
disp(‘*********** Kirchhoffs Voltage Law *******************q
Check Voltage = VR+VC
disp(‘**********************************************************q
disp(* (Note:Check _V should be equal to VS=1.)’)
T = 1/F;
t = [0:2*T/50:2*T]; % t for 2 periods
VS = sin(W.*t);
VRT = abs(VR)*sin(W.*t+angle(VR));
VCT = abs(VC)*sin(W.*t+angle(VC));
subplot (2,1,2)
plot (t,VS,’o’,t,VRT,’'*’,t,VCT, '+')
xlabel (‘time in seconds’),
ylabel (‘Amplitude in Volts’)
title(‘Voltages of the RC Circuit of Example 3.12');

% Figure 3.68 (bottom)
grid on
legend(*vs(t)’,'vr(t)’,'vc(t)’)

The MATLAB script file phasor_time_plots is executed, and the results are shown as
follows:

>> phasor _ time _ plots
Current plot held

khkkkkkkkkhhkhkhkkkhkhhhkkkhkkhkkhkkkhkhkhkkkkkhkhkhkhkkhkhkkkkkkkhkkkkkkkkkkk

****Check the Phasor Diagram results by applying*****
*kkkkkkkkkkxk* Kirchhoffs Voltage Law ***kkkkkkkkkkkkkkk

Check Voltage =
1

hhkhkkkkkkkhkhhhhhhkhkhkhkhkhkhkhhhhhhhkhkkkkkhkhkhhhhhkhkkkkkkkkkkk

(note that the correct result is verified by Check Voltage=1)
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Phasor Diagram (Example 3.12)
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FIGURE 3.68
Plots of Example 3.12.
R=10Q
° VN
/F 3 L=5mH
100 rad/s < w< 10,000 rad/s
. ||
I
C=125uF
FIGURE 3.69
Network of Example 3.13.
Example 3.13

Create the script file impedance_plots that returns for the series RLC circuit shown in
Figure 3.69, over the range 100 = w = 10,000 rad/s, the following plots:

1. |Z(w)| versus w
2. /L Z(w) versus w

3. Repeat parts 1 and 2 for the case where the three elements (R, L, and C) are connected
in parallel
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ANALYTICAL Solution (series case)

|Z(@w)] = |R + j(X, — XJ)|
|Z(w)| = \/Rz + (X, — Xeof

The magnitude equation is given by

{Z(w) =,|R? - (wL - wlc)ﬂ

The phase equation is given by
LZ(w) = arc tan[%}

ANALYTICAL Solution (parallel case)

1,1

V(@)= &+
R joL 1ljoC

The magnitude equation is given by

R ORC

The phase equation is given by

(e —2)
ZY(w) = arctan wa
R
MATLAB Solution
% Script file: impedance plots
clf
R = 10;
L = 5e-3;
C = 12.5e-6;
w = [100:100:10000];
Z = R+ J*(w*L-1./(C*w)); % series case

subplot(2,2,1);

plot(w,abs(Z));

title(‘Mag. [Z(w)] vs w (series case)’);
ylabel(*‘Mag[Z(w)] in Ohms’);

grid on;

subplot(2,2,2);

plot(w,angle(Z)*180/pi); grid on;
title(‘Phasel[Z(w)] vs w (series case)’);
ylabel(‘Phase angle in degrees’);
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XC = -j./(w*C);

XL = J*w*L;

ZLC = XC.*XL./(XC+XL);

ZRLC = R.*ZLC./(R+ZLC); % parallel case
subplot (2,2,3);

plot (w,abs(ZRLC));

title(‘Mag. [Z(w)] vs w (parallel case)’);
xlabel (‘w in rad/sec’);

ylabel (*‘Mag[Z(w)] in Ohms’);

grid on;

subplot(2,2,4);

plot(w,angle(ZRLC)*180/pi); grid on;
title(‘Phase[Z(w)] vs w (parallel case)’);
xlabel(‘w in rad/sec’);

ylabel(‘Phase angle in degrees’);

The script file impedance_plots is executed, and the results are indicated in Figure 3.70.

Mag. [Z(w)] versus w (series case) Phase[Z(w)] versus w (series case)
800 o 100
® o
£ 600 2 50
(@] °
£ c
g 400 2 0
N, &
& 200 o -50
= \ @
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0 &_100
0 5000 10,000 0 5000 10,000
Mag. [Z(w)] versus w (parallel case) Phase[Z(w)] versus w (parallel case)
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E 8 =3 \
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2 4 2
N
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FIGURE 3.70
Plots of Example 3.13.

Example 3.14

Analyze the circuit diagram shown in Figure 3.71, and obtain by hand the system loop
equations, as well as the matrix loop equation.
Create the script file loops that returns

1. The system matrices Z and V
2. The loop currents I, I,, and I, in phasor form
3. The instantaneous loop currents #;(t), i,(t), and i;(f)
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Ry=10Q Cy=2F Ly=3H R;=10Q
Il
- b 5
+
vi(t) =5 cos (10*t) V( ~u B § pm—
» R,=20Q C,=4F

Vo(t) =9 cos(10*t + 45°) V

FIGURE 3.71
Network of Example 3.14.
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FIGURE 3.72
Phasor circuit diagram of Example 3.14.

ANALYTICAL Solution

The circuit of Figure 3.71 is transformed into the phasor circuit diagram shown in
Figure 3.72.
The three loop equations are

{(10 +20)— ](210)} +1, =20 % I, + 0l = 50 .£0°

, 1 1
—20I, +| 20+ j{ 30 — — ||+ I, = [ —j—= |* I, =
oI, [0 ](30 40)} 2 (]40) ;=0

0l — {—juoﬂ oI, + (10 - j%) I, = 9/45°

The matrix loop equation is given by

(10 + 20) — (1/20) -20 0 1, 5.0°
-20 20+ j(30 — (1/40))  +j(1/40) |«|L|=| ©
0 +j(1/40) 10— j(1/40)| |I,| |9445°
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Note that the aforementioned matrix equations can be expressed as [Z] = [I] = [V],
where

(10 + 20) — (1/20) -20 0
Z= -20 20+ j(30 — (1/40))  +j(1/40)
0 +j(1/40) 10 — (1/40)
and
5£0°
V= 0
9£45°

The currents I, I,, and I; can be evaluated by using the following MATLAB matrix
relation

I =inv(Z) =[V]

MATLAB Solution
% Script file: loops

disp(‘**********************************’)

disp(® System Matrices )
disp(‘**********************************’)

disp(*The impedance matrix is given by:’)

Z [30-j*1/20 -20 0;-20 20+3j*(30-1/40) Jj*(1/40); 0 3F*(1/40) 10-j*(1/40)]
A 9*exp(j*45*pi/180);

disp(‘The voltage matrix is given by:’)

V= [5; 0; A]

disp(‘**********************************l)

disp(® Loop Currents ")
disp(‘**********************************’)
% Solve for loop currents Il1l, I2 and I3
I = inv(Z)*V;

% Solve for Magnitude and Phase Angle.
Ilmag = abs(I(1));

I2mag = abs(I(2));

I3mag = abs(I(3));

Ilang = angle(I(1))*180/pi;

I2ang = angle(I(2))*180/pi;

I3ang = angle(I(3))*180/pi;

)

% Print currents

disp(‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,)
disp(® phasor domain ")
disp(‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI)

fprintf(‘The magnitude of the Current I1 (in amps) is :%f\n and its
phase angle in degrees is :%f\n’,Ilmag,Ilang)

fprintf(*The magnitude of the current I2 (in amps) is :%f\n and its
phase angle in degrees :%f\n’,I2mag,I2ang)

fprintf(*The magnitude of the current I3 (in amps)is :%f\n and its
phase angle in degrees is :%f\n’,I3mag,I3ang)

disp(‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,)

disp(® time domain )

disp(‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,)
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fprintf(*The current il(t)=%fcos(10t %f)amps\n’,Ilmag,Ilang)
fprintf(*The current i2(t)=%fcos(10t %f)amps\n’,I2mag,Il2ang)
fprintf(‘The current i3(t)=%fcos(10t+ %f)amps\n’,I3mag,I3ang)
disp(‘*******************************************************q

The script file loops is executed and the results are indicated as follows:

>> loops

khkkkkhkhkkkkkhkhkhkhkhkhkhkhkhkhkhkkkkhkhkhkhkhkkhkhkkkkkkkkkk

System Matrices
khkhkhhhkkkkkhkhkhkhhhhhkhkkkkhkhkhhhkhhhkkkkkkkkkk

The impedance matrix is given by:

Z =

30.0000 - 0.0500i -20.0000 0

-20.0000 20.0000 + 29.9750i O + 0.0250i

0 0 + 0.0250i 10.0000 - 0.0250i

The voltage matrix is given by:
VvV =

5.0000

0

6.3640 + 6.36401
T T

Loop Currents
khkkkkhkkhkkhkhkhkkkhkkkhkkhkkkhkkhkhkkhkkhkhkkhhkkkhkkkkhkkkkhkkkhkkkkkkkkk

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

phasor domain
The magnitude of the Current Il (in amps) is :0.195625
and its phase angle in degrees is :-21.209060
The magnitude of the current I2 (in amps) is :0.109148
and its phase angle in degrees:-77.628332
The magnitude of the current I3 (in amps)is :0.899767
and its phase angle in degrees is:45.152608
time domain

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

The current il(t) = 0.195625cos(10t -21.209060)amps
The current i2(t) = 0.109148cos(10t -77.628332)amps
The current i3(t) = 0.899767cos(10t+ 45.152608)amps

khkkkkkkkhkkkkhkkkkhkkhkhhhkkkkhkhkhkhkhkkhkhhkhkhkhkkkkkkkkhkkhkhhkkkkkkkkkkk

Example 3.15

Analyze the circuit diagram shown in Figure 3.73, and obtain by hand the system node
equations, as well as the matrix node equation (all elements are given as admittances).
Create the script file nodes that returns

1. The system matrices Y and I
2. The node voltages V, and V, in phasor form
3. The instantaneous node voltages v,(t) and v,(t)

293
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NN

—ja

5/0°A ]

@) 3—/' — §2 P §4 3-8 <$ 6 /-90°A

|||—<

FIGURE 3.73
Network of Example 3.15.

ANALYTICAL Solution
The two node equations are
fornode Vy: (2 —j)V, +jV,=520°
fornode V,: jV, + @ — j4V, = —6,-90°

The matrix node equation is given by

2—j v,] [ 5«0°
joo4—jal |V, | |-6£-90°

The aforementioned matrix equation can be expressed as [Y] * [V] = [I], where

o
Y{ K ].}
jo o4-j4

[ 5.£0°
T —62£-90°

where the phasor current sources are converted to complex numbers as

and

5.0°=5 and —6/-90° = —(—j6) = j6

MATLAB Solution

)

% Script file: nodes
disp(‘*****************************************************’)

disp(® System Matrices )
disp(‘*****************************************************’)
disp(‘The admittance matrix Y is given by:’)

Y = [2-7 j;] 4-4*7]

disp(*The current matrix I is given by:’)

I = [5;j*6]
disp(‘******************************************************’)

disp(® Node voltages ")
disp(‘*****************************************************’)
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% Solution for nodal voltages V1 and V2

V = inv(Y)*I;

% Solution for the magnitude and phase angle
Vimag = abs(V(1));

V2mag = abs(V(2));

Vlang = angle(V(1))*180/pi;

V2ang = angle(V(2))*180/pi;

)

% Print voltages

disp(‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq

disp(® phasor domain ")

Aisp (\IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAARAAT)

fprintf(*The magnitude of the voltage V1 (in volts) is :%f\n and its
phase angle in degrees is :%f\n’,Vlimag,Vliang)

fprintf(*The magnitude of the voltage V2 (in voltss) is :%f\n and its
phase angle in degrees is:%f\n’,V2mag,V2ang)

QLED (MAAAAARAAARRAAAAAAAARRANAANAAAARANRANAAAARANRANAAAA S )
disp(® . d , y

isp time domain
disp(‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,)

fprintf(*The voltage vl(t)=%fcos(10t+%f)voltss\n’,Vimag,Viang)

fprintf(‘The voltage v2(t)=%fcos(10t+%f)voltss\n’,V2mag,V2ang)
disp(\****************************************************q

The script file nodes is executed and the results are indicated as follows:

>> nodes

khkkhkhkhkhkkkhkkkkkhkhkhkkhkhkhkhkkkkkkhkkkkkhkhkhkkkkkkkkkkkk

System Matrices
khkhkhkhkhkkhkkhkhkkhkkhkhkkhkhkhkkkhkhkhkhkhkhkkkhkkhkkkkkkkkkkkkk
The admittance matrix Y is given by:

Y =
2.0000 - 1.0000i 0 + 1.0000i1
0 + 1.00001i 4.0000 - 4.0000i
The current matrix I is given by:
I =
5.0000
0 + 6.0000i1
hhkkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Node voltages

khkkhkhkhkkkhkkkkkkhkhkhkhkkkhkhkhkkkkhkkkkkkkhkhkhkkkkkkkkkkkkkkk

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

phasor domain
The magnitude of the voltage V1 (in wvolts) is: 2.523265
and its phase angle in degrees is : 29.811543
The magnitude of the voltage V2 (in volts) is: 0.709196
and its phase angle in degrees is:116.778840

time domain

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

The voltage vl(t) = 2.523265 cos(10t+29.811543) volts

The voltage v2(t) = 0.709196 cos(10t+116.778840) volts
hhkhkkkkkkhkhkhkhhhhhkkkkhkhkhhhhhhhkhkkkhkhkhhhhhhkkkkkkhkhkhkhkhkkkk
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Example 3.16

The objective of this example is to verify the maximum power transfer theorem, when
the load reactance varies over a given range.

Let the Thevenin's equivalent circuit of an electrical network be given by V =
5£0°V and Z;; = 10 — j50 Q. Let the load impedance be given by Z, = 10 + jX,;, where
X, varies over the range 0 = X; = 150 Q, in steps of 1 Q, as indicated in the circuit
diagram of Figure 3.74.

Create the script file max_power_AC that returns the plot of P, versus X;.

[
®

Zy=10-j50

R.=10Q §
+ .
) Vgy=520°V X Z =R +jX,
T TH

X, =1:1:150

FIGURE 3.74
Network of Example 3.16

MATLAB Solution

% Script file: max _ power _ AC

Max. power delivered to the load ZL = RL + jXL
% where XL varies from 0 to 100 Ohms

o\°

echo on
Xth = -50;
RL = 10;
Rth = 10;

X1l = 0:1:150;

Zth = Rth+507;

Z1 = RL+X1.*j;

Zt = Zth+Zzl;

magZt = abs(Zt);

magZl = abs(zl);

Pload = (5./magZt).”2.*magzl;
plot(X1l,Pload);grid on;

xlabel (‘XL(Ohms)’);

ylabel(‘Power deliver to ZL(Watts)’);
title(‘Power ZL vs XL, for 0<XL<100’)
text(41,.118,’XL=50] Ohms’)

The script file max_power_AC is executed and the results are indicated in Figure 3.75.
Observe from Figure 3.75 that the maximum power delivered to the load Z; occurs
when | X | = [Xpyl.
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Power Z_ versus X, for 0 <X <100
0.125

0.12 o

» / X_ = 50j Ohm\
0.11 / \
0.105 / \
/ N

Power deliver to Z_ (Watts)

0.095 /
0.09 /
0.085
0.08
0 50 100 150
X, (Ohms)
FIGURE 3.75
Plot of Z, versus X; of Example 3.16.
Example 3.17

The objective of this example is to verify the maximum power transfer theorem, when
the load resistance varies over a given range.

Repeat Example 3.16 for the case where the load impedance is Z, = R; + jX;, where
X, = j30, whereas R, varies over the range 1 =< R; = 100 Q in steps of 1 Q, as indicated
in Figure 3.76, with the Thevenin’s equivalent circuit given by V;; = 520° Vand Z; =
10 — j50 (Q).

Let us call this new file max_power_AC_RL.

o Z,=10-j500Q

Z =R +jXQ
R =0:1:100 Q

+
CDVT”:MOOV X =30

FIGURE 3.76
Network of Example 3.17.
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MATLAB Solution

Script file: max power AC _RL
Max. power delivered to ZL=RL+jXL
where RL varies from 0 to 100 Ohms.

o° o° o°

Xth = -50;
RL = 1:1:100;
Rth =10;

X1 = 30;

Zth = Rth+Xth*j;

71 = RL+X1*j;

Zt = Zth+Z1;

Pload = (RL.*25)./(abs(Zt).”2);

plot(RL,Pload);grid on;

xlabel (*RL(Ohms)’);

ylabel(‘Power deliver to ZL(Watts)’);

title(‘Power ZL vs RL, for 0<RL<100')
text(18,.35,'RL=22.3607 Ohms’)
text(13,.32,’RL=sqgrt(Rth*2+(Xth+XL)"*2)’)

Rload _cal=sqgrt(Rth”*2+(Xth+X1)"2);
disp(‘*********************************’)I-

disp(*The calculated RL ,to deliver max.power is=’);
disp(Rload cal);
(

disp Vhkhkkkkhkkkhhkhkkhdhkhkhhkkrhhkhkhdhkhhx/ );

The script file max_power_AC_RL is executed, and the resulting plot is shown in
Figure 3.77.
Observe that maximum power occurs at the theoretical value given by

R, = R%, + (Xpy, + X,)? = 223607 Q

Power Z_ versus R, for 0<R <100
0.4 T T

0.35 R, =22.3607

R, = sqrt(Rth+(Xth+X, )?
0.3

0.25 / \
0.2
0.15 /
0.1 /

0.05

Power deliver to Z_ (Watts)

0 10 20 30 40 50 60 70 80 90 100
R_ (Ohms)

FIGURE 3.77
Plot of Z; versus R, of Example 3.17.
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Example 3.18

Create the script file I_versus V_RLC that analyzes the effect of changing R of the series
RLC circuit diagram shown in Figure 3.78, for the following values of R—540 Q, 1.35kQ,
and 2.7 kQ, over the range 4 + 10° = w = 27 » 15 » 10° rad/s, linearly spaced every Aw =

500 rad/s, and returns the following plots:

1. Z(w) versus w
2. I(w) versus w
3. £Z(w) versus w
4. V(o) versus w

V=520°

4 krad/s < w< 6.28*15 krad/s

FIGURE 3.78
Network of Example 3.18.

MATLAB Solution
% Script file: I _vsV _ RLC

$ R = 540, L = 30mH, C =. OluF
VvV = 5;

RI = 270;

Rl = RI*2;

C = .0le-6;

L = 30e-3;

W = [4000:500:2*pi*15e3];

XC = -1./(W.*C);

XL = W.*L;

Z1 = sqgrt(R1%2+(XL+XC)."2);

Anglel = atan((XL+XC)./R1);

I1 = V./Z1;

VCl = (V*XQC)./Z1;

% R = 1.35K, L = 30mH, C =.
R2 = RI*5;

72 = sqrt (R272+(XL+XC)."2);
Angle2 = atan((XL+XC)./R2);

12 = V./Z2;

VC2 = (V*XC)./Z2;

$ R = 2.7k, L = 30mH, C =.
R3 = RI*10;

73 = sqrt(R3%2+(XL+XC)."2);
Angle3=atan((XL+XC)./R3);
I3 = V./Z3;

VC3 = (V*XC)./Z3;
figure(1)

C=0.01puF

299
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subplot(2,2,1)
plot(W,Z1,"*',W,22,'s’,W,Z3,’0")
grid on
legend(*R=540 Ohms’, ‘R=1.35KOhms’, ‘R=2.7KOhms’);
title(‘[Z(w)] vs w')
ylabel (*Impedance (Ohms)’)
subplot(2,2,2)
plot(W,I1,’*",W,I2,’s’,W,I3,’0")
title(*[I(w)] vs w')
ylabel (*‘Amplitude (amps)’)
grid on
legend(‘I for 540’, ‘I for 1350’, ‘I for 2700');
subplot(2,2,3)
plot(W,Anglel,’*’,W,Angle2,’s’,W,Angle3,’0’)
title(® [ang(Z(w)] vs w')
ylabel(*Amplitude (radians)’); xlabel(‘ frequebcy w (rad/sec)’);
legend(‘angle for 540/, ‘angle for 1350, ‘angle for 2700');
grid on
subplot(2,2,4)
plot(w,vC1,’*’,W,vC2,’s’,W,VC3,’0")
grid on
title(‘[Vc(w)] vs w’)
ylabel(‘Amplitude (volts)’); xlabel(‘frequency w (rad/sec)’);
legend(‘Vc for 540’, ‘Vc for 1350’, ‘Vc for 2700');
The script file I_vsV_RLC is executed, and the resulting plots are shown in Figure 3.79.
3 x 104 [Z(w)]yersusw 0.01 [I(w)] Yersusw
_ i : + | for 540
g 23} : g 0.008 |-cvreree B 0 | for 1350
é Z.E ,,,,,,, # R =540 Ohms g ! < | for 2700
g O R=1.35 KOhms Y 0.006 £
§ o] 3:2.7 KOhms 2 0.004 e
g 1T e 1 8 ;
£ < 0.002f e
0 5 10 00 5 10
x 104 x 104
2 [ang(Z(w)] versus w 0 [Ve(w)] versus w
% | * angle for 540
S| [ angle for 1350 —
8 |_© angle for 2700 %
§ (1] s A :g *Vf
= 2 « for 540
€ it ... g 0 V, for 1350
< < oV, for 2700
-2 - -20 : I
0 5 10 0 5 10
frequency w (rad/sec) 10t frequency w (rad/sec) % 104
FIGURE 3.79

Plots of Example 3.18.
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Example 3.19

Create the script file RLC_parallel_analysis that returns the following plots of the circuit
shown in Figure 3.80, over the range 1000 Hz = f = 20,000 Hz in linear increments of

Af =250 Hz:

1. Figure(1)
a. |Zy(w)| versus o
b. £Z(w) versus w
¢ |Yrw)| versus w
d. £Y(w) versus w
2. Figure(2)
a. |I(w)| versus w
b. £l(w) versus »
c. |V.(w)| versus w
d. £V () versus w
3. Figure(3)
a. |L(w)| versus
b. £I(w) versus w
c. |I(w)| versus w
d. 4] (w) versus w

where Z; is the impedance seen by the source.

MATLAB Solution
% Script file: RLC _parallel analysis
deg = 180/pi;

V= 5;

R1 = 47e3;

R2 = 270;

C = 0.0le-6;

L = 30e-3;

f = [1000:250:20e3];

W = 2%pi.*f;
XC =1./(3*w.*C);

5
Ry =270 Q ,Cl
+ l == C=001pF y
V =5,0° [aw] IL c
T L=30 mHg
VVAA o
Ry = 47 kQ

FIGURE 3.80
Network of Example 3.19.
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XL = j*w.*L;ZS=R2+XL;
ZP = (ZS.*XC)./(ZS+XC);

ZT = R1+ZP;
YT =1./ZT;
I = V./2T;
VC = (V.*ZP)./ZT;
figure(1)

subplot(2,2,1)

plot(w,abs(ZT))

grid on

set(gca,’fontsize’,9)

title(tabs[Z2T(w)] vs. w’,’FontSize’,9)
ylabel (*‘Amplitude (Ohms)’)
subplot(2,2,2)

plot(w,angle(ZT)*deg)

grid on

set(gca,’FontSize’,9)
title(‘angle[ZT(w)] wvs. w’,’FontSize’,9)
ylabel(‘Angle (degrees)’)
subplot(2,2,3)

plot(w, abs(YT))

grid on

set(gca,’FontSize’,9)

title(‘abs(YT) vs. w’,’FontSize’,9)
xlabel(‘frequency w (rad/sec)’), ylabel(‘Amplitude (Ohm™-1)’)
subplot(2,2,4)

plot(w,angle(YT)*deg)

grid on

set(gca,'FontSize’,9)

title(angle(YT) vs. w',’FontSize’,9)
xlabel(‘frequency in w (rad/sec)’), ylabel(‘Angle (degrees)’)

figure(2)

subplot(2,2,1)

plot(w,abs(I))

grid on

set(gca,’fontsize’,9)
title(tabs[I(w)] vs. w’',’FontSize’,9)
ylabel(‘Current (amps)’)
subplot(2,2,2)

plot(w,angle(I)*deg)

grid on

set(gca,’FontSize’,9)
title(*angle[I(w)] vs. w’,’FontSize’,9)
ylabel(‘angle (degrees)’)
subplot(2,2,3)

plot(w, abs(VC))

grid on

set(gca,’FontSize’,9)

title(tabs(VC) vs. w’,’FontSize’,9)
xlabel(‘frequency w (rad/sec)’), ylabel(*Amplitude (volts)’)
subplot(2,2,4)

plot(w,angle(VC)*deg)

grid on

set(gca,’FontSize’,9)
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title(angle(VC) vs. w’,’FontSize’,9)
xlabel(‘frequency in w (rad/sec)’), ylabel(‘angle (degrees)’)

figure(3)

IC = VC./XC; IL = VC./ZS;
subplot(2,2,1)

plot(w,abs(IC))

grid on

set(gca,’fontsize’,9)

title(abs[IC(w)] vs. w’,’FontSize’,9)
ylabel(*Current (amps)’)
subplot(2,2,2)

plot(w,angle(IC)*deqg)

grid on

set(gca,’FontSize’,9)
title(‘angle[IC(w)] wvs. w’,’FontSize’,9)
ylabel(‘angle (degrees)’)
subplot(2,2,3)

plot(w, abs(IL))

grid on

set(gca,’FontSize’,9)

title(‘abs(IL) vs. w’,’FontSize’,9)
xlabel(‘frequency w (rad/sec)’), ylabel(‘Current (amps)’)
subplot(2,2,4)

plot(w,angle(IL)*deg)

grid on

set(gca,’FontSize’,9)

title(*angle(IL) vs. w',’FontSize’,9)
xlabel(‘frequency in w (rad/sec)’), ylabel(‘angle (degrees)’)

The script file RLC_parallel_analysis is executed and the results are shown in Figures 3.81

through 3.83.
x 104  abs[Z(w)] versus w angle[Z(w)] versus w
7 T 10 T T
§ 5.5 %\
o> >
(]
[} o
3 oA
=2 2
3 5 2
£ <
<
45 ‘ 1
0 5 10 15
x 104
x 10-5 abs(YT) versus w
22 7 T
W -
£ 3
< [
o =3
g s
2 [
5 =)
£ c
£ <
-10 : :
0 5 10 15

frequency w (rad/sec)

FIGURE 3.81
Plots of Example 3.19.
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Amplitude (volts)
o
N

x 10-5  abs[l(w)] versus w

abs(VC) versus w

Plots of Example 3.19.

0.2
0
0 5 10 15
frequency w (rad/sec) % 104
x 104 abs[IC(w)] versus w
P o\
e b N boooonneees
0 H
0 5 10 15
x 104
x10~4  abs(IL) versus w
6 ; ;
/0 S 0 S S
2fcenmme /e R CERECREECEEPCRETEE
0 H H
0 5 10 15
frequency w (rad/sec) 104

FIGURE 3.83

Plots of Example 3.19.
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R=1000 Q L=30mH
NN A0AS

i(t) —_— C=05uF

1

FIGURE 3.84
Network of Example 3.20.

Example 3.20

Let the current in the series RLC circuit diagram shown in Figure 3.84 be given by

i) = £ + 2 - 12t A.

Create the script file sym_analysis_RLC that returns the following plots using sym-

bolic techniques:

. i(f) versus t

. 1%(t) versus t

. [i(t)dt versus t

. (di(t))/dt versus t

. vg(f) versus t, where vi(t) = Ri(f)

. v,(t) versus t, where v, (f) = Ldi/dt

. vo(f) versus t, where v(f) = 1/C [i(t)dt
. [o,(t) + vg(t)] versus t

. [oc(t) + vg(f)] versus t

O ® g O U W N

1
11. p,(t) versus t

o

. pr(t) versus f, where pg(t) = ()R

12. p(t) versus t

and the instantaneous expressions of i(t), V(t), V, (), Vo (), Vg (t) = Vi) + VL (b), Vi) =

Vi(®) + Vc(t), Pr(t), PL(t), and P(b).

MATLAB Solution

Script file : sym _ analysis _RLC
Analysis of an RLC series circuit
where the current isiamps=t”3+t”2-12+*t
R=1000 Ohms, L=30 mH, and C=0.5 microF
echo off;

syms t;

iamps=t*3+t*2-12*t;

o° o o°

o°

figure(1)

subplot(2,2,1)
ezplot(iamps)

title(*i(t) wvs.t’);

ylabel (‘Amplitude (amps)’);
grid on

isquare=iamps”*2;
subplot(2,2,2)
ezplot(isquare)
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title(*[i(t)*2] vs. t’); ylabel (‘Amplitude’);
grid on

subplot(2,2,3)

inti=int(iamps);

ezplot(inti)

xlabel(* time ‘);ylabel(‘amplitide’);
title(integralli(t)] vs. t’)

grid on

subplot(2,2,4)

diffi=diff(iamps);

ezplot(diffi)

xlabel(* time '); ylabel(*Amplitude’)
title(“d[i(t)/dt] wvs.t’)

grid on

figure(2)

Vr=1000*iamps;
subplot(2,2,1)

ezplot(Vr)

title(*vr(t) vs.t’);ylabel(‘voltage (volts)’)
grid on

subplot(2,2,2)
V1=30e-3*diffi;

ezplot(Vl)

ylabel(* voltage (volts) ‘)
title(*vl(t) wvs.t’)

grid on

subplot(2,2,3)
Vc=.5e-6*inti;

ezplot(Vc)

title(‘ve(t) vs. t’)
xlabel(® time )
ylabel(‘voltage (volts)’)
grid on

subplot(2,2,4)

V1r=V1+Vr;

ezplot(Vlr)
title(M[vr(t)+vl(t)] vs. t’)
xlabel(* time ‘)
ylabel(*voltage (volts)’)
grid on

figure(3)

Vcr =Vc+Vr;
subplot(2,2,1)
ezplot(Vcr)
title(M[vr(t)+ve(t)] vs. t’)
ylabel(‘voltage (volts)’)
grid on

subplot(2,2,2)
Pr=iamps*Vr;

ezplot (Pr)

title(‘pr(t) wvs. t’)
ylabel(‘power (watts)’)
grid on
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subplot(2,2,3)

Pl = iamps*Vl;
ezplot(Pl)

title(‘pl(t) vs t')
xlabel(* time )
ylabel (‘power (watts)’)
grid on

subplot(2,2,4)
Pc=iamps*Vc;
ezplot(Pc)

title(‘pc(t) wvs. t’)
xlabel(* time ‘)
ylabel(‘power (watts)’)

grid on

disp (\VIANAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAARAAAAAARAAARARAAA)
disp(® time domain results ")
Aisp (VIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARARAAAT)
disp(*The current i(t) (in amps) is given by: ‘'), pretty(iamps)
disp(*The voltage drop across R=1000 Ohms (in volts) is:’),pretty(Vr)
disp(*The voltage drop across L=30 mH (in volts) is : ‘'), pretty(Vl)
disp(‘The voltage drop across C=0.5 microF (in volts) is :’),pretty(Vc)
disp(‘The voltage drop across the RL (in volts) is :’),pretty(Vlr)
disp(‘The voltage drop across the CR (in volts) is : '),pretty(Vcr)
disp(‘The power R(t) (in watts) is :’),pretty(Pr)

fprintf(*The power L(t) (in watts) is :’),pretty(Pl)

fprintf(*The power _C(t) (in watts is :’),pretty(Pc)

Aisp (VIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARARAAAT)

The script file sym_analysis_RLC is executed and the results are shown as follows
(Figures 3.85 through 3.87):

>> sym analysis RLC
time domain results
The current i(t) (in amps) is given by:
3 2
t + t - 12 t
The voltage drop across R=1000 Ohms (in volts) is:
3 2
1000 t + 1000 t - 12000 t
The voltage drop across L = 30 mH (in volts) is:
2
9/100 t + 3/50 t - 9/25
The voltage drop across C=0.5 microF (in volts) is:

4722366482869645 4 4722366482869645 3
—————————————— t + memmmmmeeeme---- t
37778931862957161709568 28334198897217871282176
14167099448608935 2
e --—— t

4722366482869645213696
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The voltage drop across the RL (in volts) is:

100009 2 599997 3
------ t - ------ t - 9/25 + 1000 t
100 50

The voltage drop across the CR (in volts) is :

4722366482869645 4 28334198901940237765045645 3
------------------- t + g t
37778931862957161709568 28334198897217871282176
4722366468702545765087065 2
4 mm e t - 12000 t

4722366482869645213696
The power _R(t) in watts is :

3 2 3 3 2
(¢t + t - 12 £) (1000 £t + 1000 t - 12000 t)
The power L(t) (in watts) is:

3 2 2
(t +t - 12 t) (9/100 t + 3/50 t - 9/25)
The power C(t) (in watts) is:

3 2 / 4722366482869645 4 4722366482869645 3
(t+t - 12 t) ---------mmmmm- t 4+ mememmmmeeeeee- t
\37778931862957161709568 28334198897217871282176
14167099448608935 2\
B t |
4722366482869645213696 /
i(t) versus t [i(t)2] versus t
150 ‘ :
g 100 15,000
= %0 é 10,000
g 5000 -
§: -50
-100
integral i(t) versus t
100 :
. 1 .
2 50 : 2
s : s
£ : £
< ol- 3 <
-50 :

FIGURE 3.85
Plots of parts 1-4 of Example 3.20.
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vr(t) versus t

vr(t) versus t

x 105

—

(s)on) ebeyop

ve(t)+vl(t) versus t
time

x 105

vc(t) versus t

x 1075

(s)on) abejjon

FIGURE 3.86

Plots of parts 5-8 of Example 3.20.

pr(t) versus t

[vr(t)+vc(t)] versus t

x 105

15}--
1 I

x 106

10 |-

(snem) Jamod

DR e s

0.5(--
0f---

(s)on) ebeyjop

pc(t) versus t

x 103

pl(t) versus t

B

R R T

-0.5

(spem) Jamod

1..

M

F==fi=---====-=-==f-=--=--==-------F-~-

1

time

200 1--
100

(snem) Jamod

-100
-200

time

FIGURE 3.87

Plots of parts 9-12 of Example 3.20.
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1
3.5 Application Problems

P3.1 Which of the following relations hold
a. 3£135° = —3cos(wt — 45°)
b. =2 +j2 = —2.82cos(wt — 45°)
c. =3 —j4 = —5cos(wt + 53°)
d. 32300° = 3cos(wt — 60°)
e. 4/-225° = —4cos(wt — 45°)
P3.2 A sine wave x(t) has a frequency of f = 1000 Hz, a peak value of 3.0, and a phase
angle of —45°.
a. Determine its period T and angular frequency o
b. Obtain the equation for x(f)
c. Sketch by hand x(t) versus degrees, radians, and time
d. Write a program that returns the plots for part c over two complete cycles

P.3.3 Verify that the current is 53.8 A with a phase ® = 57°30’, when a 200 V RMS, 50 Hz
is applied to a series RL circuit with R =2 Q and L = 0.01 H.

P34 Verify using MATLAB that 100 £45 + 80 £120° = 30.7 + j140.

P3.5 Verify thatif V = 100 £45° and Z = 20 £60°, then I = 5 /-15° by hand and by using
MATLAB.

P3.6 Verify thatif V =50 + j75 Vand I = 3 + j5 A, then its power is 225 + j475 W.

P.3.7 Show that when the frequency is 151 Hz and its impedance is 28.8 280° Q, then the
current is lagging the voltage by 80° if the circuit is a series RL, with R = 5 Q and
L =30mH.

P3.8 Let the impedance of a given circuit be Z = 15 + 20;j Q, and the voltage across it be
v(t) = 100cos(100f) V. Verify that the current through it is i(f) = 4cos(100t — 53°8") A.

P39 For the problem P.3.8, verify that Z is equivalent to an inductor L = .2 H in series
with a resistor R = 15 Q.

P.3.10 For what frequency is the series RLC circuit of Figure 3.88 equivalent to the parallel
RC circuit of Figure 3.89?

FIGURE 3.88
Series network diagram of P.3.10.

R=200Q ——C=23.1yF

FIGURE 3.89
Parallel network diagram of P.3.10.
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P3.11

P3.12

P3.13

Let the impedance of a given circuit be given by Z = 705 + j9.7 Q, and the peak
sinusoidal voltage across be V,, = 60 V. Verify the following:

a. Z =12 /54°Q

b.I,=5A

c. Vyp=4242V

d. I =3.535 A

e. S=P,p=150va

f. P=881W

g Q=P,.=1212var

h. p(t) = V,,- L, [cos(0) sinQwt) — (1/2)sin(8) sin(2wt)], where cos(f) = cos(54°) = 0.588

and sin(d) = sin(54°) = 0.809
Evaluate the maximum and minimum of p(t) by solving the equation given
dp(t
i
Check if the solutions occur at wt = 27 rad or 117 rad

and if p,,,. = 238 W

=

and
pmin = _617 W

A resistor of 50 Q and an inductor of L = 0.1 H are connected in series where the
applied voltage is sinusoidal with 110 Vy,,s, and frequency f = 60 Hz. Verify the
following:

a. o(t) = 156sin(2m 60t) V

b. Z =50 + j37.7 Q

c. Z=625137°Q

d. I =25/-37°A

e. i(t) = 2.5sin(2mr 60 t — 37°) A

f. Iyys =176 A

. |Z] =62.5Q

A series RC circuit consisting of a resistor R = 10 KQ and a capacitor C = 10 pF, with

an applied voltage given by sine wave of 10 V, with a frequency of 1 kHz. Verify the
following:

a. o(t) = 14.14 sin 6283t V

b. Z =10,000 — 15,900 Q

c. Z=18,800 £—58° Q

d. I =0.752 £58° mA

e. i(t) = 0.752 sin(6283t + 58°) mA
f.

&

h

aQ

Tpys = 0.532 mA
 Vigeay = 752V
Ve = 532V

Vepey = 1196 V
i Vewus = 846 V

-



312

P3.14

P3.15

P3.16

P3.17

P3.18
P.3.19

100£0° V@

Practical MATLAB® Applications for Engineers

Solve for the loop currents shown in the circuit diagram of Figure 3.90, and verify
the following relations:

L=2-jA
L,=05-/15A
L=-1-12A

where all the impedances are given in ohms.

Given the following loop system equations:
2+, —jl,=5
il + (1= I, = 3

Draw its circuit diagram.

Solve for the loop currents shown in the circuit diagram of Figure 3.91 and verify if
IL=—4A1,=08A,and ;= —1.6 — j4 A.

For a given circuit, if the applied voltage is v(f) = 200sin(wt + 15°) V and the resulting
current is i(f) = 20sin(wt — 30°) A, draw its power triangle.

Given the series RLC circuit of Figure 3.92, draw its power triangle.
Write a MATLAB program that returns the following plots:

a. |Z(w)| versus w

b. /Z(w) versus w

for circuit diagram of Figure 3.93.

Ri=10Q X;=j10Q

Ry=10Q R,=10Q
+

— / 4

X3=j10Q

X,={10Q

R,=10Q

FIGURE 3.90
Network diagram of P.3.14.
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V, =10020°V
AN
. h .
Z,=j25Q Z,=-j25Q
Iy Zs =50 Q
Z3=-j50 Q
Z,=j25Q Zs =450 Q
kb
V, =100£90°V
FIGURE 3.91
Network diagram of P.3.16.
R=3Q
VvV
30 £90° é) . X=-3Q
YY)
i X = j50
FIGURE 3.92

Network diagram of P.3.18.
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O
Z(w) P
O
FIGURE 3.93
Network diagram of P.3.19.
O
R=2Q
Y(w)
T~ C=1F
O
(@)
FIGURE 3.94

Network diagrams of P.3.20.

L=3H

Y(w)
=

Ay

(b)

P.3.20 Write a MATLAB program for each circuit shown in Figure 3.94 that returns the

following plots over 1 rad/s = o = 150 K rad/s:
a. [Y(w) = 1/Z(w)] versus w

b. £Y(w) versus w

P.3.21 Write a program for the circuit diagram shown in Figure 3.95 that returns the

voltage across R, = 2 Q by using

a. Node equations
b. Loop equations
c. Thevenin’s theorem

d. Norton’s theorem
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XC = —15 Q

R =6Q
+
60 40"@ R,=20Q
X =j6Q
Q
FIGURE 3.95
Network of P.3.21.
O
R, Ry
Z (o)
I
L (o
O
FIGURE 3.96
Network of P.3.22.

P.3.22 Verify that the resonant frequency for the circuit shown in Figure 3.96 is given by

o = L [RI—(L/C)
R JLC\R2 —(L/C)

P.3.23 Given the series RLC circuit consisting of R = 5Q, L = 6 mH, and C = 10 pF, create
a function file that returns the following plots:

a. |Z(w)| versus w

b. /£Z(w) versus w

¢ |l(w)| versus w

d. £ I(w) versus w

over the range 0.7w; = w = 14w, assuming that the applied voltage is 10 V RMS.
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BQ
R e
I
2Q
5,0°A 40Q
T o~ 3Q
7/30°V
FIGURE 3.97
Network of P.3.24.
1oo/f<° RMS R -30
-\ +
Y W |
Iy *
z; y
100.£120° RMS R,=20) | ¢ +
O\ + 3 | Z
& VVV IR RS
Iy z -
B VB
100 2-120° h
A+ Re=°¢7 b | -
Q) AVAVAY,
FIGURE 3.98

Unbalanced 3 ® network of P.3.25.

P.3.24 Create a program that returns the current I (through the inductor) shown in the
circuit diagram of Figure 3.97 by using

a. Superposition

b. Thevenin’s theorem

¢. Norton's theorem

d. Source transformation

P.3.25 For the unbalanced 3 ® system shown in Figure 3.98, find the currents I;, I,, and I,
and the voltages V,, Vi, and V,, where

Z,=2+3Q
Zy,=4-j6Q

Zo=12+j8Q
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+

@ Ey=210,120°V
E3=21040°V@

—
b
@ E;,=2104-120°V

_ Ry=1Q —

AVAYAY,

FIGURE 3.99
Unbalanced 3 ® network of P.3.26.

P.3.26. Write a program that returns the line currents and the voltage drop across each
impedance of the 3 ® system shown in Figure 3.99, where

Z,=2+j3©Q
Zy=4-j6(Q

Ze =12+ j8 (Q)
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Fourier and Laplace

What we know is but a little thing;
what we are ignorant of is immense.

Pierre Simon de Laplace

4.1 Introduction

This chapter is devoted to the Fourier series (FS) and the Fourier and Laplace transforms
named after the French mathematicians Jean Baptiste Joseph Fourier (1768-1830)* and
Pierre Simon de Laplace (1749-1829).

The FS expansion (presented in 1807), called “the great mathematical poem” by Lord
Kelvin, deals with waves that are periodic in nature, such as sound, light, radio, thermal,
ocean, pressure, or force waves.

Fourier (1822) while studying the problem associated with the flow, propagation, and
conduction of heat, showed that any arbitrary wave can be expressed as a linear infinite
series of sinusoidal (sines and cosines) functions of harmonic-related frequencies. The pur-
pose of representing a function in terms of an FS is that the function can be analyzed in
terms of its frequency components, making it much easier to understand and calculate its
power and energy distribution content.

This model is, in many cases, the preferred form to analyze a function. The FS can be used
to evaluate the amount of power concentrated at each harmonic; hence, the relative impor-
tance of each harmonic of a given wave. The theory developed by Fourier is used for solving
many engineering problems in diverse areas such as communications, signal processing,

* Baron Jean Baptist Joseph Fourier—distinguished scientist, professor of mathematics and physicist, politi-
cian, and diplomat—served Napoleon and King Louis XVIIL He played an important role in Napoleon’s expe-
ditions, in particular the one to Egypt. He is credited (1807) with the idea that any arbitrary function, defined
by different analytical expressions over adjacent segments of its range can be expressed by a single analytical
expression.

* Pierre Simon Laplace (a count and years later a marquis)—distinguished scientist, mathematical astronomer,
and mathematician, professor at the Paris Ecole Militaire, a member of the Académic Royale des Sciences,
astronomer, and an accomplished diplomat and politician—served Napoleon and King Louis XVIII govern-
ments, as president of the senate, and as a member of the Chamber of Peers. As a scientist he was second only
to Newton; but as a person his qualities are mixed. Laplace was born at Beaumont-en-Auge, Normandy, on
March 23, 1747. Facts of his life were destroyed by a fire in the year 1929, and lost during the bombardments
of Caen, in WWII Laplace adapted easily to the social and political changes of his time. He prospered finan-
cially, scientifically, socially, and politically. In 1784, Laplace was appointed examiner to the royal artillery,
a lucrative and prominent post. There he had the good fortune to examine a young ambitious 16-year-old
sublieutenant named Napoleon Bonaparte, who years later became the ruler of continental Europe. This rela-
tionship gave Laplace a number of opportunities that he took advantage of.

319



320 Practical MATLAB® Applications for Engineers

controls, heat and wave propagation, electronic power supplies, and signal generation, as
well as nonengineering areas such as biology, physiology, economics, and music.

The illogical concept that a continuous varying function such as a sinusoidal could be
used to approximate functions with square corners and discontinuities was first received
by the best minds of the time, such as the members of the French Academy of Science, with
skepticism. Probably this concept will also be received with skepticism by the reader, but
Fourier was right.

The Fourier transform (FT) is an extension of the FS for the case of nonperiodic func-
tions as well as the series; it represents the original function in a format that is, in many
instances, easier to analyze and understand. The FT is a compact, clever, and symmetrical
relation between a function and its Fourier complex expansion.

The transform of a function is referred to as its spectrum, and physically constitutes
a model that is as good as, or better than the function itself. For example, an electrical,
optical, or acoustical wave can be observed and studied using a spectrum analyzer in fre-
quency, as well as an oscilloscope in time.

The Laplace transform (LT), a cousin of the FT, is introduced later in this chapter as a tool
to solve linear, ordinary differential equations (DEs) (with initial conditions).

The main idea is to convert the DE such as the loop or node equations of an electric net-
work from the time to the frequency domain (referred as the s-domain). This conversion
transforms the DE into an algebraic equation. The algebraic frequency domain equation
provides, in many situations, information and insight into a system, not evident in the
time domain, such as stability and its pole/zero constellation, and is, in general, an easier
system model to deal with.

Once a solution of the algebraic equation is found in the frequency domain (in terms
of s), an inverse transform is required to convert the solution from s (frequency) into ¢ (time
domain).

For this purpose, a conversion table (Table 4.2) can be used, or if the symbolic MATLAB®
toolbox is available, the commands laplace and ilaplace can be used for the evaluation of
the direct and inverse transformations. The forerunner of the LT method was the opera-
tional calculus, created by Oliver Heaviside (1850-1925), which was used to solve tran-
sients in a circuit described by a set of DEs; a method not fully understood and accepted
by the leading scientists and mathematicians of his time. Heaviside was a gifted practical
engineer who had the physical insight to pick the correct solution from a number of
possible solutions—a heuristic approach that lacked the mathematical rigor. Years after
Heaviside’s publications, his method was rigorously verified by men such as Bromwich,
Giorgi, Carson, and others.

The verification came basically from Laplace’s work in 1807. The Laplace method of solv-
ing DEs is particularly useful in circuit analysis since initial conditions are automatically
incorporated into the equation, as sources, in the first step rather than the last.

The FTs as well as the LTs are sophisticated mathematical techniques that engineers
and scientists have developed over the past 100 years, which are extensively employed
in research and development. Many achievements, discoveries, major contributions, and
applications in modern technology are based on the concepts developed by Fourier and
Laplace in a variety of areas such as analysis and filtering of data, image and music pro-
cessing, image and music enhancement, sound effects, system analysis, controls, and many
other applications.

The Fourier and Laplace methods introduced over the past century a new point of view
of system analysis and synthesis, new terminology and new concepts that evolved and
over time became a part of the specialized vocabulary used by engineers and scientists to
communicate with one another.
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Objectives

After completing this chapter, the reader should be able to

Mathematically state the trigonometric and exponential FS

State that sine and cosine are the basic periodic (orthogonal) functions used to
approximate an arbitrary function

State that any arbitrary periodic function can be resolved into harmonic components
Evaluate the coefficients of the FS expansion of any arbitrary signal

Compute the FS coefficients of a square and sawtooth wave

Improve the partial sums of the FS by the use of a window function

State the FT and the inverse FT (IFT) equations

Understand the importance of the Fourier analysis

Determine the linear and power spectral distribution of arbitrary signals

Demonstrate that any arbitrary time function can be represented in the frequency
domain by two plots referred as the amplitude and phase spectrum plots

Understand the physical implications of a periodic and nonperiodic signal in the
frequency domain

Evaluate the FT of periodic signals

State the concept and conditions for amplitude and delay distortion
Evaluate the percentage of harmonic and total distortion

Define the concept and purpose of an equalizer circuit (to correct distortion)

Use Parseval’s theorem to calculate the power for periodic and nonperiodic time
signals

Understand the concept of energy and power signals

Revisit the concepts of root mean square (RMS), power, and energy in the fre-
quency domain

State the integral definition of the direct and inverse LT (ILT)
Use the LT pairs in the analysis of electrical circuits, systems, and signals

Find the LT of simple functions by using tables, as well as the symbolic MATLAB
toolbox

Understand the purpose and power of the LT in the analysis of electrical circuits

Express electrical circuit elements using the s-domain model (Laplace), where ini-
tial stored energy conditions are incorporated in the model (as sources)
Understand the procedure by which integral differential and DEs can be solved by
using the LT

State and be able to apply the initial and final value theorems in the solution of
electrical circuit problems

Identify the effects of waveform symmetry in the computational steps involved in
spectra analysis

State the basic relationships (referred to as properties) between the time- and
frequency domain
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* Revisit the process of partial fraction expansion when evaluating the ILT

¢ Understand the differences between the FT and the LT

¢ Know when and how the FS, FT, and the LT are used

¢ Use MATLAB as a tool to solve circuit, signal, and system problems using Fourier

and Laplace techniques

4.3 Background

R4.1

R4.2

R4.3

R44

Recall that a continuous time function f(t) is periodic if it satisfies the following
relation:

ftt) = ftt = uT), forn=0,1,23, ...

where T is referred to as its period, which is the smallest possible value that satis-
fies the preceding relation.

Let f(t) be a periodic function with period T, then the trigonometric FS is given by

f(t) = ”70 + i [a, cos(nw,t) + b, sin(nwgt)]

n=1
where

T
a, = % [ f(®ycos(nwyt)dt forn =0
0

T
b, = %Jf(t) sin(nwyt)dt forn=1
0

where w, = 2n/T, forn =1,2,3, ..., %
The cosine-sine series is the most popular way to define the FS and its coeffi-
cients, but as will be seen later in this chapter, it is not the most convenient.

An alternate form to evaluate the coefficients (a,s and b,s) is to evaluate the inte-
grals with respect to w,t, over the period defined by 2r radians. The equations used
to evaluate the coefficients of the trigonometric FS are then given by

2n
a, = %j F(t)cos(nwyt) d(w,t)
0

2n
b, = % [ fHsin(nuwyt) d(wyt)
0

Observe that the limits of integration in the evaluation of the Fourier coefficients, in
either of the preceding cases, with respect to t or wt, must be over one full period, but
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R4.5

R4.6

R4.7

R4.38

R49

R.4.10

R4.11

need notbe from 0 to T, or from 0 to 277, but may be from —T to 0, —T/2 to +1/2, —2m to0,
or —m to +r.

The FS converges uniformly to f(t) at all the continuous points and converges to its
mean value at the discontinuity locations.

The constant w, is called the fundamental frequency, and all of its integer multiples
(nw,) are referred to as harmonic frequencies. The fundamental frequency w is the
lowest sinusoidal frequency in the FS expansion. All other frequencies are integer
multiples of the fundamental frequency.

The coefficient [a,/2] is referred to as the DC component of the series, and repre-
sents the average value of f(t) over a period T.

The sufficient conditions that ensure the existence and convergence of the FS
expansion for an arbitrary function f(t) are referred as Dirichlet’s conditions. These
conditions are

a. f(t) should present a finite number of discontinuities in any period

b. f(t) should present a finite number of maxima and minima over any period T

T,

c. f(t) should be absolutely integrable over a period T, that is j 2 ‘ f(t)‘dt <k<oo,
T2

where k is a finite quantity -
d. f(t) must be single valued everywhere

All practical (electrical or mechanical) waveforms in nature satisfy the Dirichlet’s
conditions.

Let f{t) be a periodic function, then it can be represented by a sum of either cosine
or sine terms, indicated as follows:

“+oo oo
fit)= b 4 Z ¢, cos(nwyt +0n) = %0 + 2 C, sin(nwot + 0n + ;j

n=1 n=1

where ¢, = /a; + b2 and 0, = —tan"'(b, /a,).

Note that the FS is an expansion of f(t), over the range —co =t = +eo (everywhere).
Let f(t) be a periodic function, then it can be expressed in terms of an exponential
FS as indicated in the following (by replacing the sinusoids of FS by the Euler’s
identities):

n=+oo

f="3 Fera
where
1T
—_ = — jnwqt
F, = T_([f(t)e ot g
The complex exponential coefficients F, can be evaluated in terms of the trigono-

metric coefficients (2,s and b,s), by replacing the exponential e /% with cos(nw,t) +
j sin(hwt), and by equating the trigonometric FS with the exponential FS, obtain-
ing the following relations:

a, = 2 real{F,}
b, = —2 imag(F,}

n
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The Fourier coefficients a,, b,, and F, represent the degree of similarity between f(t)
and each of the frequency components nw,,.

The relation between the exponential coefficients F, and the trigonometric coef-
ficients a,s and b,s are as follows:

Fo= 20, = b)

aOZ Fn +F7n
b,= j(F,—F.)

¢, = (a2 + b2)=2|F

Recall that the average power of a periodic function f(t) may be evaluated in the
time domain by

P.. = l}\ fo)far
ve T 0

The time function f(t) may be viewed as a current or a voltage that acts on a resistor
of 1Q (normalized).

Recall that

2
Power = % =0t W

or Power = i%(f)R = ()W (assuming R = 1 Q without any loss of generality) and the
average power is therefore given by

;}z 12dt = jv(t)Zdt

0 0

Parseval’s relation (also known as Parseval’s theorem) states that if f(f) is a real and
periodic function, then the average power denoted by P, , may be conveniently
evaluated in the frequency domain by

1% 2 -~ 2
= ZJlfofde= 3 |
0

n=—oo

Note that the evaluation of P,,, in the frequency domain is much easier than in the

time domain, since integration is substituted by the summation. Observe that P,

can be easily evaluated if the coefficients F, are known by using MATLAB in the
following way:

Let
F=[F_,F_,,4...F FF ...F,]

Then P, =F = F".
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R4.16 For example, let us verify Parseval’s theorem by means of the function f(t) =
2 s5in(100t), evaluating by hand the average power of f(t) in

a. The time domain by using integration
b. The frequency domain by using addition

ANALYTICAL Solution

1. Time domain solution

w, = 100 rad/s T = 2m/w, = [21/100] s

1 T ) 100 21/100
_1 _ 100 ) ,
Poe =7 ! @) dt . { {2sin(100¢)}2dt
27/100
Pave = @ l — lcos(200t) dt = @ (1] th/lOO
2n 2 2 an \2)0

e (31
2 A\ 2 )\ 100
2. Frequency domain solution

/100t _ o—j100

f(t) = 2sin(100¢) = 2[ ¥ } by Euler’s identity
]

2sin(100t) = —je/100t 4 je=/100t
Then
F=0, |[R|=1 |F,4|=1
and all the coefficients

F,=0, forn=2,3,..,%

Then

n=1
Pye = Y |F|=|E|+[Fy|=1+1=2W
n=-1
R4.17 Any periodic wave f(t) can be approximated by cosine terms only; then

+oo
f(t) = izo +3 ¢, cos(nwyt +0,,)

n=1
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Then its RMS value can be evaluated by

e ORI ECYRCY)

Note that the RMS value can be easily evaluated using MATLAB as indicated in
the following:

let

F=[V2ay2 ¢, ¢, ... cn]'*(\/lg)

Then the MATLAB command, Frms = norm(F), returns the RMS value of f(?).

Harmonic distortion is an index that indicates the discrepancy between the series
approximation of f(), and the actual waveform of f(#). The percentage distortion due
to a particular Fourier component (harmonic) is given by

Percentage distortion for the n-harmonic component (PDn) = %’; * 100%

The percentage of total harmonic distortion (PTHD) is given by

2 2 2
PTHD = \/(Cz] + [%] +ot (cj +100%
G G G

Gibb’s* phenomena states that if f(t) presents some discontinuities, then the FS
approximation at the discontinuities would show a significant amount of ripple,
and the synthesized function converges to the average value at the point of the
discontinuity, if a sufficiently large number of terms are employed in its series
approximation. Recall that a discontinuity refers to any point of f(t), whose ampli-
tude abruptly changes from one value to another (step).

Josiah Willard Gibbs first published the preceding observation in 1899.

Recall that the word synthesis means that the sum of the parts constitutes the
whole.

For the case of the Fourier analysis, the term synthesis means that the recombi-
nation of the terms of the FS, usually the first five or six terms, represent a good
approximation of the original wave.

The coefficients F,, F,, F_;, F,, F_,, ..., F, of the exponential FS represent the
magnitude of the fundamental and all the harmonic frequencies at 0, w,, —w,, 2w,,
—2w,, ..., Znw,, respectively.

* Josiah Willard Gibbs (1839-1903), a physicist-chemist at Yale University, where he served honorarily for
10 years; he also served with a reduced salary at John Hopkins University.
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R.4.23

R.4.24

R.4.25

R.4.26

R.4.27

A one-sided spectrum consists of only the positive frequencies w = 0, whereas
the two-sided spectrum is over —% = w = +o. In this book, the term spectrum
refers to the two-sided spectrum.

The plot of Fn versus nw, is called the line or discrete spectrum of f().
Since Fn is, in general, a complex function, two plots are required to completely
define its behavior. They are referred to as

a. The magnitude spectrum plot
b. The phase spectrum plot

If the line (spectrum) representing the magnitudes of the coefficients F,s decrease
rapidly, then the FS converges rapidly to f(t), implying that the wave is continuous.
If, on the contrary, f(t) has discontinuities, then the F,s slowly decrease, and f(?) is
referred to as having strong high harmonic components, implying that many terms
are required for a good approximation of f(t).

For example,
Let

£ty =Y Fnemaot

Then the generic sketches shown in Figures 4.1 and 4.2 represent typical plots of
the following;:

a. Line spectrum

b. Phase spectrum

¢. Magnitude spectrum

d. Power spectrum, assuming that T = 1s

ANALYTICAL Solution

The generic spectrum plots are shown in Figures 4.1 and 4.2.
Note that Fy=3,F,=F-1=2,F,=F-2=05and F;=F-3=1

Observe from the plot of Figure 4.1 that the amplitude spectrum is always symmet-
ric, thatis, Fn = F — n, whereas the phase spectrum is always asymmetric, given by
On=—60—n.

One of the features of the exponential FS coefficients is their symmetry regard-
ing the variables t and nw,. Symmetry considerations are of great computational
advantage in evaluating the components of f(t) as indicated in the following:

a. If f(t) = f(—t), indicating that f() is an even function with respect to ¢, then

fit)y= Zancos(nwot)

where

/2
a, = % J f(t)cos(nwyt)dt for n=1, and all the coefficients b, = 0
0
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Line spectrum Phase spectrum
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Plots of line spectrum.
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FIGURE 4.2
Plots of magnitude and power spectrum.

b. If f(t) = —f(—t), indicating that f(t) is an odd function with respect to t, then

f(t) = b,sin(nw,t)
where

T/2

4 J f(t)sin(nw,t)dt for n =1, and all the coefficients a, = 0
0

b, = =
T
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c. If fit) = — fit = T/2), a condition referred to as half wave or rotational symmetry
(with respect to t), then

a,=0 a,=b,=0 formneven
and
ft) =Y [a,cos(nwgt) + b,sin(nwt)]
n=odd
where
472
a,=— f f(t) cos(nw,t)dt
Ty
and

T/2

4 '[ f(t)sin(nwyt)dt forn=1,anda, = 0 for all ns
0

b, = =
T

R.4.28 If f(t) is a real and even function of f, then the coefficients F,s are also real and
even.

R4.29 If f(t) is a real and odd function of ¢ then the coefficients F,s are imaginary
and odd.

R4.30 Recall that any arbitrary function f{(#) can be expressed as

ft) = fe(t) + fot)  (see Chapter 1)

where
fet) = 05[f(t) + f(—t)]  (even component of f(t))
and

fo(t) = 0.5[ft) — f(—1)] (odd component of f(t))

R4.31 By decomposing a signal (or system) into its frequency components, the BW of the
signal (or system) can be estimated, and the relative contributions and importance
of each frequency, or range of frequencies can then be estimated. Recall that the BW
represents a range of frequencies that can pass through a device, system, or com-
munication channel without significant attenuation.

R4.32 The exponential FS of an arbitrary signal f(t) states that f(t) can be decomposed into
components of the form

Fne /mwot - forn =0,%1,+2,...,+%

Then by applying each individual component as an input to a given system
(assuming the system is linear), and by evaluating the output of each individual
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component, it is possible to predict the output of the composite input by adding all
the individual outputs (superposition principle).

Recall that the superposition principle states that the sum of the inputs applied to
a linear system returns as its output, the sum of the individual outputs.

Practical considerations dictate that the FS representation of an arbitrary function
f{t) cannot have an infinite number of terms and must be truncated at some point,
and will, therefore, consist of a finite number of terms. This truncation process
creates an error that can be best evaluated by what is referred to as the mean square
error (MSE), defined as follows:

T
MSE = ;l[error(t)]zcit

where

error(t) = f(t)— > Fe /" for a finite m

n=—m

then

T n=m 2
MSE = ;I{f(t) -3 Fne-fwo"f} a
0

n=—m

The process of truncation, or approximation of f(t) by a partial sum is equivalent to
passing f(t) through an ideal low pass filter, and eliminating the high frequencies. If
f(t) presents discontinuities, then high frequencies are present with a considerable
amount of power, and the elimination of these frequencies would create distortion
and oscillations.

The resulting truncated waveform can be improved if a window (see Chapter 1) is
used with the objective of gradually reducing the high-frequency components.
Observe the existence of negative frequency components in the exponential FS
expansion. These frequencies have no physical meaning at this point, and rep-
resent a convenient mathematical model of representing the series. The physical
implications will become evident when analyzing, for example, the process of
modulation.

Let f(t) be now a nonperiodic function of t. Then by using the FT equations given
below, f(t) can be transformed from the time domain to the frequency domain, and
vice versa. These equations are also referred as the inverse and direct FT, given by

ft) = ;ﬂij: F(w)eivdt

and

F(w) = T F(tye it
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R.4.37

R.4.38

R.4.39

R.4.40

Observe the notation used. The same letter is used for f(t) and its transform F(w),
where the lowercase denotes a time function and the uppercase is used to define
their transforms (Fourier and later in this chapter Laplace). Thus, the transform
of v(t) would be V(w) for a voltage, and the transform of i(f) would be I(w) for a
current.

Note also that the FT can be considered a limiting case of an FS, as the period
T is extended to infinity.

The notation used to indicate the (direct) FT is given by
3[f (O] = F(w)
whereas

STF@)] = f(#)

denotes the inverse FT of F(w).
The FT of f(t) exists, if the following condition is satisfied:

“+oc

e

—oo

dt <k <o

where k is a finite value constant.

The existence of the FT of f(t) denoted by F(w) is guaranteed if the Dirichlet’s condi-
tions are satisfied. The Dirichlet’s conditions state (similar to the FS case)

a. f(t) may have a finite number of maxima and minima and a countable number of
finite discontinuities within a given time interval

b. f(t) must be absolutely integrable, that is, f_:‘ f (t)‘dt <

Note that, strictly speaking, a periodic function does not have a transform, but if

+T/2

[ [f@)dt <o

-T/2

then in the limit, as T approaches infinity, the FT exists. The preceding signals are
referred to as power signals and, therefore, satisfy the relation given by

1 +T/2
lim; ., {T | f(t)zdt} <

-T/2

On the contrary, if

+T/2

[ [f)at <o

-T/2

then f(t) is referred to as a finite energy signal. The FT exists for finite energy signals
and its evaluation is an exercise in calculus.
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Let f(t) be a real function of t, then
Fw) = F*(w)

(Recall that the character * denotes the complex conjugate of ).

Since F(w) is in general a complex function, then two equations that are translated
into plots are required to fully specify F(w). They are referred as

a. The magnitude spectrum
b. The phase spectrum
The magnitude spectrum is an even function of w, that is, F(w) = F(—w); whereas
the phase spectrum is an odd function of w, that is, 8(w) = —6(—w). Recall that
those conditions are similar to the case of a periodic function, in which the FS was
employed. Recall that in the series case
Fn=F—-n

whereas

Onw,) = —6(—nwy)

Table 4.1 summarizes some of the most frequently used time/frequency function
transforms, where

f(t) = 217t'[: F(w)g/lvtdw =4 F(w) = Ef(t)e]wtdt

The functions f(t) and F(w) constitute an FT pair, indicated by the following
notation:

ftt) & Fw) or fit) & Fw)

The FT is one of the most common forms of describing the frequency domain char-
acteristics of a signal or system. Note that the FT can also be used for periodic sig-
nals (Table 4.1, transform No. 17), instead of the more traditional FS expansion.

Note that the FT of a periodic function f(#) is given by

S{f(t)} = f 27F,0(w — nw,)

n=—co

where

1 T
F, = ?j F(B)e oot dt

n
0

Observe that the difference between the FS and the FT in the case of a periodic
function is given by 27, a constant that equally affects all the frequencies, and
therefore, with no effect on the relative importance of the frequencies that consti-
tute the spectrum.
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TABLE 4.1

Time Frequency Transformations

Signal/Time Domain

Transform/Frequency Domain

AS(t) A
A 2m8(w)
Alut + a/2) — u(t— a/2)] (wf;‘;z) sin(wa/2)

Aa

sin(ta/2) 2rAlu(w + a/2)—u(w — a/2)]
(za/2)
Aelaut 2mAS(w — wy)
Acos(w,t) mA[S(w — wp) + S(w + wy)]
Asin(w,t) —jrA[d(w — wy) + S(w + wy)]
Asgn(t) 2A/jw
Au(t) TAS(w) + (A/jw)
Ae~ - u(t),a>0 A/(jw + a)
Ate - u(f) 1/(jw + a)*
Ate™ - yu(—t),a >0 A/(—jw + a)
Aeltl 2Aa/(w?* + a?)

b+ jw

Ae Pt cos(wyt)u(t), b >0

333

b? + w} — w? + 2jwb

w,

Aetltsin(wt)u(t), b >0 g :vz Y
Alt| —2A/w?

Yoo +oo

2 E, eimvot 2n z Fné(w — nw,)

+oo e

S 6t —kT) leé(w—%)
et T ,~. T

R.4.48 Itis useful to know the relations and the effects that operations in the time domain
have in the frequency domain, and vice versa, to be able to get an insight of the
transformation process, and in many cases to avoid the integral definition of the
transform.

Let the FT pair time/frequency be represented using the short notation

f(t) & F(w)

Then the most important properties that relate the two domains are summarized
as follows:

a. Linearity
Let

a, f1(t) & a, F;(w) and a4, f,(t) <> a,F,(w)
Then g, f,(t) + a, f,(t) <> a, F,(w) + a,F,(w), where a, and 4, are arbitrary (may be

complex) constants, and the addition is complex.

b. Time scaling

Flat) & ;F(Z{f)
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where a is a real nonzero constant. If 2 < 1, then f(t) is expanded in time, whereas
F(w) is compressed in frequency by a similar factor.

Note that if 2 > 1, then the function f(at) is compressed in time, whereas F(w) is
expanded in frequency by a similar factor.

. Duality or symmetry

F(t) < 2nf(-w)

obtained by the following subtitution t - w and w — t.
Observe that this property can be used to double the table of transform pairs,
by simply interchanging the time and frequency variables.

. Time shifting

f(t = ty) & F(a)e T

where a time shift translates as a linear phase shift in frequency.

. Frequency shifting

f(t)eiot > F(w — w,)

This property is also referred to as the modulation property. It is a funda-
mental property in communication theory, and is used to prove the modulation
theorem that states

f(t)- coswyt <> %{F(w + w,) + F(w — w,)}

Observe that multiplying an arbitrary time function f(t) by cos(w,t) shifts the
spectrum of f(t), so that half the original spectrum is centered at w, and the other
half is centered at —w,. The signal f(t) is referred to as the modulating signal,
whereas cos(w,t) is referred as the carrier signal (in practical applications the
frequency w, must be much higher than the highest frequency of ft)).

. Time differentiation

% < jwF(w)

or the more general relation given by

d"f(8) i
T < (jw)"F(w)

g. Frequency differentiation

dF(w)

Cinfe o =
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or the more general relation given by

d"F(w)

iy f o <

h. Time integration
[ foydz o [?jf(w) )
S jw

Note that differentiation of f() in the time domain has the effect of multiply-
ing F(w) by jw in the frequency domain, similarly integration of f(t) in the time
domain has the effect of dividing F(w) by jw in the frequency domain.

i. Frequency integration

w

1
= fH) & [ Fyda

—oo

j- Multiplication in time

~+oo

A0 )& - [ RO B = i = - [F () © B
T 21

This property states that multiplying two time domain functions given by f,(t)

and f,(t) in the time domain has the effect of evaluating the convolution of their

spectrums F,(w) with F,(w) in the frequency domain times 21_n This property is
used extensively in linear controls and communication system analysis.

k. Convolution in time
AO® ()= [ A1) folt = D)dh & [Fw)Ew)]

This property states that the convolution of the time functions f;(t) with f,() (in
the time domain) has the effect of multiplying their spectrums F,(w) with F,(w)
(in the frequency domain). Observe that the convolution integral (indicated by
the character ®) is in general a process not easy to evaluate, and that is precisely
the reason why the transform is used just to avoid it. Note that the convolution
process in one domain is translated into a product in the other domain.

1. Cross correlation in time

| fWf(t + Ddi & Frw)E(w), = K(-w)Ey(w)
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The cross correlation of two signals f,(t) with f,(t) provides an indication of
the degree of similarity between them. If f,(t) = f,(t), then the cross correlation
becomes an autocorrelation. Note the similarity between the correlation and
convolution process.

m. Time reversal

f(=t) & F(-w)

Recall that the integral equation
+oo
J 1G)- fult = 23

is called the convolution integral of f,(f) with f,(t), and is indicated using the
notation

H(B)® fo(t)

Recall also that the convolution integral is a powerful way of defining the input-
output relations of a time invariant linear system (see Chapter 1).

From the transform equation pair, and their properties, the following can be
observed: if f(t) is a real and an even function of ¢, then F(w) is also a real and an
even function of w.

If f(t) is a real and an odd function of ¢, then F(w) is an imaginary function of w.

If f(t) is a periodic function in the time domain, then F(w) is a discrete function in
the frequency domain.

If f(t) is a periodic function in the time domain, then F(w) is a nonperiodic function
in the frequency domain.

If f(t) is a continuous and nonperiodic function in the time domain, then F(w) is a
nonperiodic and continuous function in the frequency domain.

Let the input to a given system be x(t), and its impulse system response be h(t),
as indicated in Figure 4.3. Recall then that the output y(t) of the system is
given by

y(t) = x(t) ® h(t) = T X()h(). — t)dA

—oo

Let x(t) be the input to a given system (as indicated in Figure 4.3), and let
x(t) <> X(w) and h(t) <> Hw)

Then the general block box system diagram given in the time domain indicated
in Figure 4.3 can be transformed to the equivalent block box system diagram in the
frequency domain indicated in Figure 4.4.

Recall that the convolution integral in the time domain is transformed into a
product of its spectrums in the frequency domain (R.4.48, property k).
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(t)—P h(t) —>  y(t)=x(t) ® h()
X

FIGURE 4.3
System expressed in the time domain.

X(w) ——»  Hw) ——> Y(w)=HWw)X(w)

FIGURE 4.4
System expressed in the frequency domain.

R.4.57

R.4.58

R.4.59

R.4.60

R.4.61

R.4.62

Let the input to a system be x(t) = d(t), since X(w) = 3{5(¢)} = 1, then
Y(w) = H(w)

where h(t) <> H(w).
Recall that h(t) is referred to as the impulse system response, for obvious reasons.

Recall some useful convolution properties (from Chapter 1)

a. f1(t) ® fo(t) = fr(t) ® fy(t)

b. 1) @ [f,(t) + f5(B)] = 1) @ fot) + £1(t) ® f5(8)

As a consequence of the convolution properties of R.4.58, the block box system
transformation diagrams shown in Figure 4.5 can be obtained.

Note that the system input and the system equation can be interchanged with-
out affecting its output. Also note that there is no distinction between a signal or
system, and the analytical tools developed for signals can be applied equally well
for systems.

Recall that a system can be thought of as a method or algorithm of processing or
changing an input signal x(#) (or x(n)) into an output signal y(t) (or y(n)). If the system
is linear then it can be characterized by h(t) or H(w), its system impulse response in
time, or its FT in frequency. The system transfer function H(w) thus modifies, or fil-
ters the spectrum of the input X(w). The objective of the system transfer function is
to change the relative importance of the frequencies contained in the input signal,
both in amplitude and phase. H(w) is also called the gain function since it weights
the various frequencies’ components of the input x() to generate its output y(t).

Let x(t) be the input to a linear system, then its output y(t) is said to be distortionless
if it is of the form y(t) = kx(t — a), where k and a are constants, referred as the gain
and delay, respectively.

The distortionless time—frequency relation is then given by

kx(t —a) = KX(w)e /®n

See R.4.48, property d. Therefore, for distortionless transmission the system
returns a constant gain K, and a linear phase shift of the form —aw, when its input
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Xw) —> Hw) >  Y(w) = Xw) - Hw)
Hw) —> X(w) > Y(w) = X(w) - HWw)
g0
0 YO = H,(H® B(t) + {()® fy(t)
|0
fa(1)
Bl = y(t) = [fa(t) + f3()] ® fy(t)
fa(t) y(t) = f1(t) ® f(t) + f1(1) ® f5(1)
FIGURE 4.5

Block box system representations

R.4.63

R4.64

R.4.65

R.4.66

has a gain of k, where k and K are constants, and in general K # k (in passive sys-
tems k > K).

Strictly speaking the process of distortion occurs if the output y(t) of a system is not
its input scaled by a constant, and its phase is not linear with respect to w.

If the phase shift associated with its output is not linear with respect to w, the
various input frequencies will appear at the output with different time delays,
creating what is referred to as delay distortion. Most electronic devices introduce
both amplitude and delay distortion to same degree. The amount of distortion that
can be tolerated by a device depends on the application.

Waveform distortion can be compensated or reduced by a network connected to
the system output called an equalizer. For example, if Y(w) = X(w)H(w), and the
system or filter H(w) introduces distortion, then by placing an equalizing net-
work, defined by the transfer function H,(w) = 1/H(w), the input signal x(t) can
be recovered distortionless. Meaning that the poles of H,(w) should fall exactly at
the zero locations of H(w), and the zeros of H,(w) should fall at the locations of the
poles of H(w), such that H(w) - H,(w) = K, where K is a constant. Of course, perfect
pole—zero cancellations may be difficult to implement, and only approximations
may be achievable.

In summary, note that the spectrum of a time signal is a valuable tool when study-
ing the effects of processing it, such as sampling, modulation, and transmission of
that signal through a linear system.
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R.4.67

R.4.68

R.4.69

Parseval’s theorem, used to evaluate the energy of a periodic function or signal, can
be extended to include the nonperiodic function f(t), given by

+oo 1 +oo
L F(bpdt = Tnijm\l—ﬂ(w)z\dw

The proof of Parseval’s theorem is beyond the scope of this book, but its relation-
ship is verified by numerical examples in the following sections.

Let Hw) = Y(w)/X(w), then the MATLAB function [Real_H, Imag_H, w] = nyquist
(Y, X) returns the real and imaginary part of the transfer function, where Y(w) and
X(w) are its system output and input in vector form that represent the coefficients
of the polynomials arranged in descending powers of jw. The range of w, as well as,
the number of points used are chosen automatically by MATLAB.

If no output argument is specified then MATLAB returns the Nyquist* polar plot
consisting of the plot of [Real_H] versus [Imag_H], referred as the nyquist plot.

The frequency w defines its output range, is an optional variable, and may be
included in the function indicated by

[Real_H, Imag_H] = nyquist(Y, X, w)

The nyquist command can be used with the system transfer function (Y and X) or
by specifying the systems zeros, poles, and gain k. The range w may be supplied by
the user in the form of a frequency vector (in radian/second), or it may be specified
by its upper and lower limit by wmax and wmin indicated as follows:

[Real_H, Imag_H] = nyquist(Y, X, (wmax wmin))

Recall from Chapter 7 of the book entitled Practical MATLAB® Basics for Engineers
that the log-log plot of mag[H(w)] versus w, and semilog phase[H(w)] versus w, is
another popular way to represent H(w) by engineers, referred as the Bode' plots.

For example, let

s+5
s3+3s2+4s5+5

H(s) =

where s = jw. Create the script file nyquist_bode that returns the following (Figures 4.6
and 4.7):

a. The nyquist plot (over the range w = —1:0.4:10, and without w)
b. Bode plots (over the range w = 0.1:0.1:5, and without w)

¢. Nyquist default points

d. Bode default points

* Harry Nyquist (1889-1976), Swedish electrical engineer employed by the Bell Telephone Laboratories, made
important contributions concerning system stability. He is also credited with formulating the sampling condi-
tions by which a continuous band-limited signal can be converted into a discrete sequence. The sampling rate
used in the analog-digital conversion is referred as the Nyquist rate or Nyquist frequency.

* Hendrik Wade Bode (1905-1984), an engineer employed by Bell Telephone Laboratories, and later in his life a
faculty member at Harvard University is credited with being the first in using logarithmic scales to represent
the system gain H(jw) in db versus frequency.
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FIGURE 4.6
Nyquist plots of R.4.69.
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Bode plots of R.4.69.
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MATLAB Solution
% Script file: nyquist bode

Y=[1 5]; X=[1 3 4 5];

[real H, imag H,wl] = nyquist(Y,X);
[mag, phase,w2] = bode(Y,X);

Aisp (\IAAAAAAARAAAAAAAAAAAAANRAARARAANRAAAT)
disp(* Bode default points ‘)

disp(* w mag [H(w)] angle [H(w)] )

. AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
disp(® "

[w2 mag phasel
disp(‘***********************************q
disp(‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,)
disp(* Nyquist default points ‘')

disp(* w real [H(w)] imag [H(w)] ")

. AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
disp(® ")

[wl real H imag H]
disp(‘***********************************q

figure(1) % nyquist plots
w=-1:0.4:10;

subplot(1,2,1)

nyquist(Y,X,w)

subplot(1,2,2)

nyquist(Y,X)

figure(2)

ww=0.1:0.1:5; % bode plots
subplot(1,2,1)

bode (Y,X,ww)

subplot(1,2,2)

bode(Y,X)

The script file nyquist_bode is executed and the results are indicated as follows:

>> nyquist bode

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Bode default points
w mag[H(w)] angle[H(w)]

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

ans =
0.1000 1.0030 -3.4442
0.1184 1.0042 -4.0793
0.1401 1.0059 -4.8330
0.1658 1.0083 -5.7285

1.4810 1.6782 -104.0615
1.5850 1.5145 -119.4969
1.7139 1.2510 -135.5458

60.3237 0.0003 -181.8893
71.3935 0.0002 -181.5988
84.4947 0.0001 -181.3524
100.0000 0.0001 -181.1436

khkkhkkhkkhkkhkkkhkkhkkhkhkkhkhkkhkhkhkhkhkkhkhkkhkhkkhkhkkdkhkkkkxx
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Nyquist default points
w real[H(w)] imagl[H(w)]

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

ans =
1.0e+003 *
0 0.0010 0
0.0001 0010 -0.0001

o

0.
.0001 0.0010 -0.0001
0.0001 0.0010 -0.0001

0.0010 0.0010 -0.0011
0.0011 0.0009 -0.0012

0.0014 -0.0003 -0.0017
0.0015 -0.0004 -0.0016

0.0031 -0.0002 0.0000
0.0036 -0.0001 0.0000

0.0202 -0.0000 0.0000

0.5356 -0.0000 0.0000
0.6261 -0.0000 0.0000
0.7318 -0.0000 0.0000
0.8555 -0.0000 0.0000
1.0000 -0.0000 0.0000

khkkkhkkhkkhkkhkkkhkhkkhkkhkkhkhkkhhkkhkhkkhkkhkhkkhkhkkhhkkdkkkhkkk*x

R4.70 The MATLAB command F = fourier (f, x) returns the FT of f (denoted by f(t) — F(w)),
where f is given as a symbolic object.

R.4.71 For example, use MATLAB to obtain the FT of the following time functions:
a. f1(t) = cos(3t)
b. f2(t) = cos(3t + m/4), and factor F2(w)
c. f3(t) = sin(3t)
d. ft) =1/t
e. f5(t) = e'u(t), and pretty F5(w)
£ f6(t) =t - etu(t)
g f7t) = el
h. f8(t) = Pul,(t) = u(t + 1) — u(t — 1)
i f9(t) = u)

MATLAB Solution[[TI1]]
>> syms t w
>> F1 = fourier(cos(3*t)) % part (a)
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>>

>>

>>

>>

>>

>>

>>

>>
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Fl =

pi*Dirac(w-3)+pi*Dirac(w+3)
F2 = fourier(cos(3*t+pi/4)) % part (b)
F2 =

1/2*2%(1/2)*pi*Dirac(w-3)+1/2*i*2"(1/2)*pi*Dirac(w-

3)+1/2%27(1/2) *pi*Dirac(w+3)1/2*i*2”(1/2) *pi*Dirac (w+3)
factor(F2)
ans =

1/2*2%(1/2)*pi*(Dirac(w-3)+i*Dirac(w-3)+Dirac(w+3)- i*Dirac(w+3))
F3 = fourier(sin(3*t)) % part (c)
F3 =

-i*pi*Dirac(w-3)+i*pi*Dirac(w+3)
F4 = fourier(l/t) % part (d)
F4 =

i*pi*(Heaviside(-w)-Heaviside(w))
F5 = fourier(exp(-t)*sym(‘Heaviside(t)’),t,w) % part (e)
F5 =

1/(1+i*w)
pretty(F5)

1
1 +iw

F6 = fourier(t*exp(-t)*sym(‘Heaviside(t)’),t,w) % part (f)
F6 =

1/(1+i*w) 2
F7 = fourier(exp(-abs(t)),t,w) % part (g)
F7 =

2/(1+w™2)
F8 = fourier(sym(‘Heaviside(t+1l)’)

-sym(‘Heaviside(t- 1)’),t,w)

% part (h)
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F8 =
exp (i*w)* (pi*Dirac(w)-i/w)-exp(-i*w)*(pi*Dirac (w)-i/w)
>> F9 = fourier(sym(‘Heaviside(t)’),t,w) % part (i)
F9 =

pi*Dirac(w)-i/w

The MATLAB function f = ifourier(F), where F is a symbolic object with an inde-
pendent variable w, returns the inverse FT of F, which is a function of x, denoted
by F(w) — f(x). The MATLAB command f = ifourier(F, w, t) returns the function f(t),
given the symbolic function F(w).

For example, use MATLAB to obtain the inverse FTs of the following functions:
a. F1 = pi* Dirac(w — 3) + pi * Dirac(w + 3), default version

b. F2=1/2%2"(1/2)*pi*(Dirac(w — 3) + i* Dirac(w — 3) + Dirac(w + 3) — i* Dirac(w + 3)
(w — t), default and factor

F3 = —i*pi* Dirac(w — 3) + i * pi * Dirac(w + 3), (w — t)
. F4 = i * pi * (Heaviside(—w) — Heaviside(w)); (w — t)
CES=1/1+i*w), (w—1)
Fo=1/1+i*w"2, (w—1
L F7=2/1 + w"2), (w—1)

. F8 = exp(i = w) * (pi * Dirac(w) —i/w) — exp(—i* w) * (pi * Dirac(w) —i/w), (w — t) and
simplify

e S N S W

.

F9 = pi * Dirac(w) —i/w, (w — t) and simplify.

MATLAB Solution

>> sym t w

>> F1 = pi*Dirac(w-3)+pi*Dirac(w+3);
>> f1 = ifourier(Fl)

f1l =
1/2*exp(3*i*x)+1/2*exp(-3*i*x)

>> F2 =1/2%2"(1/2)*pi*(Dirac(w-3)+i*Dirac(w-3)+Dirac(w+3)- i*Dirac(w+3));
>> f2 = ifourier(F2,t,w)

f2 =
1/2*2%(1/2)*pi*(Dirac(w-3)+i*Dirac(w-3)+Dirac(w+3)-i*Dirac(w+3))
*Dirac(w)
>> factor(f2) % observe that f2 is a function of x
ans =
-1/4%27(1/2) *(-exp (3*i*x) -i*exp (3*i*x)-exp(- 3*i*x)+i*exp(-3*i*x))
>> F3 = -i*pi*Dirac(w-3)+i*pi*Dirac(w+3);
>> f3 = ifourier(F3,w,t)
£f3 =

1/2*i*(-exp(3*i*t)+exp(-3*i*t))
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>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

F4 = i*pi*(Heaviside(-w)-Heaviside(w));
f4 = ifourier(F4,w,t)

f4 =
-i*pi*(-Heaviside(-t)+Heaviside(t))*Dirac(t)

F5 = 1/(1+i*w);
f5 = ifourier(F5,w,t)

f5 =
1/(1+i*t)*Dirac(t)

F6 = 1/(1+i*w)"2;
fé6 = ifourier(Fé6,w,t)

f6 =
1/(1+i*t)*2*Dirac(t)

F7 = 2/(1+w™2);
£f7 = ifourier(F7,w,t)
2/(1+t*2)*Dirac(t)

F8 =exp(i*w)*(pi*Dirac(w)-i/w)-exp(-i*w)*(pi*Dirac(w)-1/w);
f8 = ifourier(F8,w,t)

£f8 =
-(pi*Dirac(t)*t-i)*(-exp(i*t)+exp(-i*t))*Dirac(t)/t

simplify(£8)

ans =
2*Dirac(t)

F9 = pi*Dirac(w)-i/w F9;
f9 = ifourier(F9,w,t)

f9 =
(pi*Dirac(t)*t-i)*Dirac(t)/t

simplify(£9)

ans =
-i*Dirac(t)/t

345

R4.74 Another popular transform, employed in system analysis, as well as in the solution
of initial value DEs is the LT.

Let a real signal (or function) be given by f(t). Then the LT of f(t) is given by

F(s) = T f(t)estdt
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The LT can be viewed as a generalized case of the FT.
Recall that the FT was defined by

F(w) = JEC f(t)e 7™dt

Observe that in the LT, f{f) is expressed in terms of e”*, whereas the FT represents
f(t) in terms of e 7. The FT is then a special case of the LT in which s = jw. In gen-
eral, the Laplace variable s is complex, defined as s = o + jw, where o and w are
real.

F(s) is referred as the direct LT of f(t), denoted by

F(s) = £[f(t)]

The process of obtaining the time function f(t) from the LT F(s) is referred to as the
ILT. Assuming its existence, ILT is denoted by

Sft) = £71[F(s)]

Mathematically, the variable s represents a complex frequency; however, it is not
necessary to pursue this interpretation to make use of the transformation.

The sufficient conditions for the existence of the LT are that f(#) must be sectionally
continuous in every finite interval 0 = t = M, and of exponential order a for t > M,
then the LT F(s) as well as the ILT exist and are unique over the range s > a. Unique-
ness will always be assumed unless otherwise stated (Lerch’s theorem).

The region of convergence (ROC) of the LT is the region where the transform exists,
and is unique. Recall that causal signals are defined by f(t) = 0, for t < 0 and causal
systems are defined by h(t) = 0, for t < 0. In either case the ROC is in the right half
of the complex plane, and the transform used is called, for obvious reasons, the
unilateral LT, given as follows:

E[f(B)] = F(s) = [ f(t)eds
0

As mentioned earlier, the notation used to define f(#) from its ILT is given by
fi) = £7E(s)]
where

a+jw

f(t)=21nj | Fs)etds

g—jw

Table 4.2 summarizes some of the standard time—frequency (assuming causality)
LT pairs.
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TABLE 4.2

Transform Pairs

Signal/System—f{(t)

Transform—F(s)

a(t)

u(t)

tu(t)

Fru(t)

e~ "u(t)

te "u(t)
cos(w,t)u(t)
sin(w,t)u(t)
e~ cos(w,)u(t)
e~ sin(w,t)u(t)
cosh(wt)u(t)
sinh(wt)u(t)

tn—l atyy(t
TR

(e = el

1 = e™u(t)
[1 = cos (wyt)]u(t)

[sin (wyt + 0)]u(t)

[cos (wyt + 6)]u(t)

1
1/s
1/s%
n!/sn+1
1/(s + a)
1/(s + a)?
/(s + w?)
wy/ (8% — w?)
(s+a)/((s +a)+ o3)
(s + wp)/((s + a)* + w?)
s/(s*> — w?)
W/ ($* + w3)

1
(s—a)

1

(s—a)(s=b)

—a
s(s—a)

2
Wy
s (82 + a?)

s sin(0) + w, cos(0)
§2 + w,’

s cos(0) — w, sin(0)
2 + w,’

347

R.4.82 The most important time (f)—frequency (s) properties and relations of the unilateral
LT are given as follows (similar to the FT properties):

a. Linearity
Let

then

b. Time scaling

c. Time shifting

d. s-Shifting

E[fi(D] = F(s) and £[f,(H] = E(s)

af1(t) + ay fo(t) > a,F(s) + a,55(s)

f(at) &

1
a

)

f(t =) &> F(s)e™"

f(t)eo < F(s—s,)
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. Differentiation in freq(s)

dF(s)
ds

—t f(t) &

or a more general relation is given by

n

1 £ e L E)]

dsn

. Differentiation in t

IO ¢, sr6) - f00)

The second derivative is given by

dldf)]_ a o
dt[ dt} 2 Lf (O] slsE(s) = f(07)] = f107)

$2E(s) — f(0) — £(0)

The preceding process can be repeated for higher-order derivatives.

. Integrationin s

@ “ IF(s)ds

. Periodic functions f{t), with period T > 0

T
J e fae

f(t)Hm

i. Integrationin ¢

j. Convolution in ¢ or product in s

AO® £(1) = [ LDt = Ddi o [RS)E(O)]

. Product in t or convolution in s

AOAD © IR © BE)]
]
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R.4.83

R.4.84

R.4.85

R.4.86

R.4.87

R.4.88

R.4.89

R.4.90

The initial value (t = 0) and the final value (t = ) of a given function f{) can be
evaluated from its LT F(s), by the relations stated as follows, known as the initial
and final value theorems, respectively.

a. The initial value theorem is given by
f(0*) = lim,_..[s- F(s)]

(test that all the poles of sF(s) are real and negative)
b. The final value theorem states that

f(eo) =1limg_ [s- F(s)]

(test if all the poles are on the left half of the s-plane)

The initial and final value theorems permit to calculate f(0*) and f(=), if one exists,
directly from the transform F(s), without the need of inverting the transform.

For example, the initial and final value for the case of f(t) = u(t) are evaluated as
follows (recall that £[u(t)] = 1/s), then

a. u(t =0%) = limit,_,,, [sF(s)] = limit,__[s(1/s)] =1
b. u(t = o) = limit,_, [sF(s)] = limit,_,,[s(1/s5)] =1

The results just obtained confirm what is already known, that is, u(f = 0%) =
u(t = o0) = 1.
The final value theorem evaluates f(=), if all the singularities are in the left half of
the s-plane. A simple pole (of F(s)) at the origin is permitted, but all the remaining
poles must be in the left half of the s-plane, and the degree of the denominator must
be greater or equal to the degree of the numerator of F(s). If any of the preceding
conditions are not met, f(t) becomes unbounded as t approaches infinity, or physi-
cally f(t) would sustain nondecaying oscillations.

The transfer function, or system function, is the equation that defines the dynamic
properties of a linear system given by

H(s) = Laplace transform of the output

Laplace transform of the input

where H(s) is in general a rational function, given as the ratio of two polynomials
Y(s) (its output) and X(s) (its system input).

Recall from previous chapters that the values of s that make H(s) go to zero and
infinity are called the system zeros and poles, respectively. Hence the transfer func-
tion can be completely defined in terms of its poles, zeros, and a constant multiplier
referred to as gain.

The LT of any function, including H(s) must be accompanied by its ROC; only
then the corresponding time function h(t) is unique. If H(s) is a one-sided trans-
form then the ROC is not needed, and defines a unique inverse.

For obvious reasons, the ROC must exclude the system’s poles.

A causal system can be defined in the frequency domain as the one with the ROC
located to the right of the pole having the largest real part.
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Similarly, a noncausal system can be defined as the one with the ROC located to the
left of the pole having the smallest real part.

Mix systems are the ones that have poles in the left-half plane (causal), as well as,
poles in the right-half plane (noncausal). The ROC then lies between the pole hav-
ing the smallest real part, of the causal subsystem, and the pole having the smallest
real part of the noncausal subsystem.

The stability of a system is given by the location of its system’s poles. Stable causal
systems must have all the poles to the left of the imaginary axis, and the axis itself
may be considered part of the ROC.

The MATLAB function pzmap (Y, X) returns the plot of the poles and zeros specified
by the coefficients of the polynomials of Y and X, the numerator and denominator
of H(s), expressed as vectors arranged in descending powers of s. It is customary to
indicate the location of the system’s poles by xs, and the system’s zeros by os, on the
s-plane (complex plane).

The command pzmap uses those characters and returns the pole and zero
constellation.

For example, create the script file map_pz that returns the constellation plot of the
poles and zeros of the transfer function H(s) given by

552 + 55 — 30
H(s) =
(©) s+ 352 +4s5+2

their respective values (poles and zeros), and indicate the ROC (Figure 4.8).

MATLAB Solution
% Script file: map pz

num = [5 5 -30];

den = [1 3 4 2];

pzmap (num,den);
disp(‘***************************************************************q
disp(*The zeroes and poles of H(s) are:’)
disp(‘***************************************************************q
zeroes = roots(num)

poles = roots(den)

real s = min(real(poles));
disp(‘***************************************************************q
disp(*The ROC lie in the region given by : real part greater than ‘')

roc
disp(‘***************************************************************q

The script file map_pz is executed and the results are indicated as follows:
>> map _ pz

hhkkhkhkkhkhhkhhkhkhhkhhhkhkhhkhhkhhkhkhkhkhhkkhkhkhkhkkkk
The zeroes and poles of H(s) are:
khkhhkhkhkkkkkkhkhkhhhhhkhkhkkkhkhkhkhhhhkhhkhkkkkhkhkhkhhhhkkkkkkk
zeroes =

-3

2
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poles =

-1.0000 + 1.0000i

-1.0000 - 1.0000i

-1.0000
khkhkhhkhkkkkkkhkhhkhhhhhkhkkkhkhkhkhhhhhhhkkkkkhkhhhhhhkkkkkkkk
The ROC lie in the region given by: real part greater than

real s =
-1.0000

khkhkhkkkkkkkkhkhkhkhhkhhhkhkkkkhkhkhkhkhhkhkhkhkkkkkhkhkhkhkhkhkkkkkkkkk

Pole—zero map

1 5 T T T T T : T T T
1} o .
/ Region'of convergence —
0 05 I : N
5% .
© H
E. 1
o O@--------mmmmmmmmmmm oo R g
D I
(o] 1
§ _05 - : -
1| ; J
-1.5 ] 1 Il Il Il ] Il Il 1
-3 25 -2 -15 - -0.5 0 0.5 1 1.5 2
Real axis
FIGURE 4.8
Pole/zero plot of R.4.95.

R.4.96 Recall that the linear time invariant (LTI) system transfer function H(s) is a rational
function, given as the ratio of two polynomials in s. These rational functions can be
expressed in terms of a partial fraction expansion, a format that can be used in the
evaluation of the ILT, by using the transformation Table 4.2.

Recall from Chapter 7 of the book entitled Practical MATLAB® Basics for Engi-
neers, that the MATLAB function [r, p, k] = residue(num, den) returns the coefficients
(residues) r, the poles p, and the stand-alone term k of the partial fraction expansion
given by the ratio of the num(Y) and den(X) polynomials expressed as vectors con-
sisting of its coefficients arranged in descending powers of s.

Recall also that the poles can be distinct real, repeated, and complex, where com-
plex poles always occur as conjugate pairs. In the evaluation process of the LT of a
real function of ¢, distinct real poles are rather easy to deal with (see Chapter 7 of
the book entitled Practical MATLAB® Basics for Engineers).

When repeated poles are present in the form (s + 4)", the partial fraction expan-
sion must include the following terms: b, /(s + a), b,/s + a)?, ..., b, /(s + a)".

R.497 For example, let

5s% + 752 4+ 352 + 55 — 30
s+ 453 + 752+ 65+ 2

H(s) =
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be a system transfer function.
Verify that multiple poles are present in H(s), and evaluate the MATLAB partial
fraction expansion of H(s).

MATLAB Solution

>> num = [5 7 3 5 -30];

>> den = [1 4 7 6 2];

>> [r,p,k] = residue(num,den)

PFE coefficients

K
[}
o°

-6.5000 -20.5000I
-6.5000 +20.5000i

0.0000
-34.0000
P = % poles
-1.0000 + 1.0000i
-1.0000 - 1.0000i
-1.0000
-1.0000
k = % stand alone term
5

The partial fraction coefficients given by the column vector r are then matched
with the corresponding poles given by the column vector p, obtaining the follow-
ing expansion:

—6,5—20.51 +—6.5+20.5l+ 0 —34

H(s)=5+ . -
s+1—i s+1+i s+1 (s+1)?

Observe that H(s) has repeated poles at s = —1, then the PFE consists of two terms,
a linear and a quadratic as a consequence of the repeated pole, as well as, two other
terms as a consequence of the pair of complex poles, and the stand-alone term k.

Four examples of the evaluations of the direct and inverse LTs by hand calcula-
tions, using Table 4.2, are provided as follows, to gain practice and insight into the
process.

a. Example (#1)
Let

ft) = 5u(t) + 2e73'u(t) + 10sin(3t) u(t) + 5e > cos(7t)
Find F(s).

ANALYTICAL Solution

(From Table 4.2)
E(s) = £[f()] = £[5 + 2e73 u(t) + 10 sin(38) u(t) + 5e~2 cos(7H)]
F(s) = £[5] + 2£[e 3t u®)] + 10£[sin(3t) u(t)] + 5£[e~% cos(7t)]
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then

2 10B) . 5(s+2)
s+3 2432 (s+2?+7?

mp§+

b. Example (#2)
Let
10 |, 20 30

Fis)=—+—+
(©) s 2 s+3

Find f(t)
ANALYTICAL Solution

(From Table 4.2)

— g — =g 10,20 30}
ft)=£7YE(s)] = f(t) = £ {S +Sz +S+3
then
f(t) =10 + 20t u(t) + 30e 3 u(t)
c. Example (#3)
Let

_ 85430
sz +25

F(s)

Find f(t).

ANALYTICAL Solution

(From Table 4.2)

F(s) = — 28 +6[ > }

52 4+ 52 52 + 52

then
ft) = £7Y[F(s)] = 8cos(5t) u(t) + 6sin(5t) u(t)

d. Example (#4)

Let
Y(s)= A5 +10
s(s +1)(s + 2)
Find y(1).
ANALYTICAL Solution
ye =2+ B 4 €

s+1 s+2
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where y(t) = £7[Y(s)]. The process of evaluating the coefficients A, B, and C by hand
is illustrated as follows:

A:(4s+10).(s)\ _ 10
ss—D+2)_, (D2

B— (4s+10)(s+1)

)6+ |, 6

C= (45 +10)(s +2)
s(s+D(s+2) | __,

then

6 n 1
s+1 s+2

Y(s)= 2 -
S
and

y®) = £7[Y(s)] = bu(t) — 6e u(t) + e 2 u(t)

R.4.99 Let us use the concepts developed by the Laplace technique, in the analysis of elec-
trical networks. Recall that vg(t) = Ri(t) (Ohm’s law), and its Laplace transform is
given by £[vg(t)] = £[R - i(t)] = R£[i(t)], then

Vi(s) = R *1(s)
Ohm'’s law holds in the frequency domain, and the impedance Z(s) (2) is defined by

_Ve)

Z(s) = 1)

The time-frequency domain relation for a pure resistor R is illustrated in Figure 4.9.

Time domain s-domain

FIGURE 4.9
Time—-frequency domain relation for R.
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R.4.100

R.4.101

R.4.102

R.4.103

R.4.104

R.4.105

R.4.106

The voltage across a capacitor C, denoted by v(t) is expressed in the time domain
and its equivalent in the frequency domain as follows by (using FT properties):

ve(t) = % j i(L)d) < V.(s)= Is(i(sf) +

—oo

Ve (0)
S

Recall that V-(0) denotes the initial voltage v(t) at t = 0.

For example, let us analyze the case of a capacitor C of 2 F, charged with an initial
voltage of +5 V. Then its frequency domain representation, using the LT is given by

Ve(s) = %‘F%

Note that if V(s) = %, then the impedance of the capacitor C in the frequency

domain is given by
¢ sC

The equivalent circuit models of a capacitor in the time and frequency domain are
shown in Figure 4.10 using either a voltage source in series with the impedance
Xc(s) = 1/(sC), or by source transformation, a current source in parallel with X(s),
assuming that its initial voltage is v-(0) = V;, V.

The voltage across an inductor L, denoted by v, (t), is expressed as follows in the
time and frequency domain by

v () = L% «—— V(s) =sLI(s) — LI,
Recall that i(0) = I, denotes the initial current through L at t = 0.
Note that if V,(s) = sLI(s), then the impedance of the inductor L in the frequency
domain is given by
X, (s) =sLQ
The equivalent circuit model of an inductor L in the time and frequency domains
are shown in Figure 4.11, using either a voltage source in series with the impedance

Time domain s-domain

1/(sC)

j+
VoV c
v,
- — Vs CVo

FIGURE 4.10
Time-frequency domain relation for C.
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Time domain s-domain
% SL
L I sl lo/s (amp)
— Ly
(volts)

FIGURE 4.11
Time-frequency domain relation for L.

Time domain s-domain
o— o
et)=V, — E——
(()VO“S‘; = _— E)=Vyls
T (volts)
o— o— |
o— o
V,
E(s) =—2"0__ (yoits)
+ + S2 + wy2
Ny ) e(t) = Vg sin(wyt) ~y
- (volts) -

FIGURE 4.12
Time-frequency domain relation for DC and AC voltage sources.

X, (s) = sL, or by source transformation, a current source in parallel with X, (s),
assuming that the initial inductor current is I, (amp).

R.4.107 The time—frequency domain LTs of DC (constant) and AC (sinusoidal) voltage
sources are shown in the circuit diagrams of Figure 4.12 (assuming that e(t) = 0
(volt) for t < 0).

R4.108 The time-frequency domain LTs of DC (constant) and AC (sinusoidal) current
sources are shown in the circuit diagram of Figure 4.13 (assuming that i(t) = 0
(amp) for t = 0).

R4.109 A number of illustrative problems are presented as follows, where the LT is used
in the analysis of electrical networks. For example, analyze the RC circuit shown
in Figure 4.14, where the switch (sw) has been open for a long time and closes at
t = 0, where it remains for t > 0. Find an expression for i(t), using the LT.
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Time domain

—

(4

@

FIGURE 4.13

i(t) =l

(amp)

i(t) = Iy cos(wyt)

(amp)

357

s-domain

—_—

(T 1(s) = ly/s (amp)

@ 82 + wo2 g P

Time—frequency domain relation for DC and AC current sources.

SW closes att=0

= V(0=

FIGURE 4.14
Network of R.4.109.

sw closes at t=0

J 1(s)

(o] Vr(s) = I(s)R

= Is) Vv,
Vy(8) = —+—
o) =5+~
FIGURE 4.15
Frequency domain representation of Figure 4.14.

Note that these type of problems referred as transients were presented, discussed,
and solved in Chapter 2, using DEs (time domain).

ANALYTICAL Solution

The first step in the solution process is to redraw the circuit diagram shown in
Figure 4.14 in the frequency domain (using the LTs) illustrated in Figure 4.15.

Observe that the voltage source V in the time domain is transformed to V/s in the
frequency domain, due to the step characteristics of the switch (sw). Its transform is
given by Vu(t) — V/s. Also observe that the initial voltage of the capacitor also acts as
a step function in time, therefore, its transform is given by

Vou(t) — %
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Then, applying Kirchhoff’s voltage law to the loop of the circuit diagram, shown in
Figure4.15,and performing some algebraic manipulation the current I(s) canbe solved,
and an expression for i(t) (ILT) can be obtained, as indicated in the following:

ZZRI(S)-F@-F&
S sC S
I(s)R+@=K7£

sC S S

ol 23]
sC s

I(s)=[V_V°]~ 1
R s+ (/RC)

and the current i(t) is therefore given by

i(t) = £71[I(s)] = [V;V"}e“mcu(t)

R.4.110 Now consider the simple RL circuit shown in Figure 4.16, and let us solve for i(f),
assuming that the initial inductor’s current is I; (0) = I, = 10 (amp), in a counter-
clockwise direction.

ANALYTICAL Solution

The time domain circuit diagram of Figure 4.16 is transformed using the LT into the
frequency domain circuit diagram shown in Figure 4.17.
Then the analytical solution leading to i(f) is obtained by the following steps:

a. Write the resulting equation by applying Kirchhoff’s voltage law around the
loop of the circuit shown in Figure 4.17

b. Solve for I(s) (using partial fractions expansion if necessary)
c. Obtain i(t) by taking the ILT of I(s)

sw closes at t=0

sw closes at t=0 o0—0
JE I(s)
— Vis
Vr=1(s)R
R
FIGURE 4.17
FIGURE 4.16 Frequency domain representation of the

Network of R.4.110. network of Figure 4.16.
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R4.111

R.4.112

The process is illustrated as follows:

= RlI(s) + Lsl(s) — LI,

(n‘<

I(s)-[R+ Ls] = K-i—LIO
s

E=riber
R+ Ls R+ Ls

0=V e e k]
L|s(s+ R/L) s+ R/L
s

m‘<

A, B I
s+R/L s+ R/L

I(s) =

Solving for the constants A and B, and substituting in I(s), the following expression
is obtained:
VR VR ., I

I(s) = —
S s+ R/L s+ R/L

Finally, transforming I(s) from the frequency domain back to the time domain, the
following solution for i(t) is obtained:

v

i(t) = £71L)] = (1= e R Eyu(e) + Loe™ u(t)

359

As mentioned earlier, one of the most powerful applications of the LT is the solu-
tion of integrodifferential equations illustrated by the transient analysis of RC and
RL circuits of R.4.109 and R.4.110. These concepts are extended to include loop or

node equations.
The steps involved are summarized as follows:

a. Write the integrodifferential set of equations (loop or node equations) for a

given circuit.

b. Transform the integrodifferential equations of part a using Laplace into an alge-
braic set of equations, in which the initial conditions are automatically inserted.

c. The algebraic set of equations of part b are then solved for either the currents

{I(s)} (loop equations) or voltages {V(s)} (node equations).

d. Finally, the time solution is obtained by taking the ILT of the expressions obt-

ained in part c.

The example shown in the circuit diagram of Figure 4.18, is solved for the current
i(t), is used to illustrate the steps followed in the solution of an integrodifferential

system, in which each step is labeled according to R.4.111.

ANALYTICAL Solution

Step a

u(t) = v, (t) + vg(t) fort=0(KVL)
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Switch moves //0 L=2H i(t)
upwards att=0 X O—M

V(1) =60 et

FIGURE 4.18
Network of R.4.112.
60etu(t) = 20 | 6itr)
dt
Step b

% — 2sI(s) + 6I(s) (Taking the LT)
S

observe that the initial current 7, (0) = 0, then

60
—— =1(s)[2s +
o (s)[2s + 6]
Step ¢
I(s) = 60 _ 60
(s+1@2s+6) 2(s+1(s+3)
I(s) = = 1:;25 3 = . f 1 + 5 f 3 (by partial fractions expansion)
_ 30 30 _ 15
s+3|_, 2
_ 30 _30 _ —15
s+1lj,.5 -2
then
I(s) = 15 + —15 taking the ILT
s+1 s+3
Step d

i(t) = 15e7t u(t) — 15e~> u(t)
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R4.113 To gain additional experience, five examples of DEs are presented and solved
manually, using the LT technique.

The following examples are solved for y(t) for each of the given DEs.
a. Example (#1)
Given the DE

2% — 4y(t) =0 with IC (initial condition) y(0) = 20

ANALYTICAL Solution
Taking the LT of the given equation results in

2[sY(s) — 20] — 4Y(s) = 0

sY(s)—20 = % = 2Y(s)
then
sY(s)—2Y(s)—20=0
Y(s)(s—2)—20=0
then
20
Y(s)= <2
©)="5
taking the ILT

y(t) = 20e 2 u(t)

b. Example (#2)

d*y(t) _
Froae 4y(t)

Let the initial value of DE be

with the IC given by

y(0)=0 and %‘FO =8

ANALYTICAL Solution

Applying the LT to the preceding equation

s2Y(s) — sy(0) — % = 4Y(s)
t=0

s2Y(s) — s(0) — 8 = 4Y(s)
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Y(s)[s2 —4] =8

8 2
Y(s) = =4
©) 2 —4 s2 — 22

and using Table 1.2
y() = £71Y(s)]

y(t) = 4 sinh(2t)u(t)

c. Example (#3)

Let
y(t)
= —9y(t
T y(t)
with the IC given by
y(0)=0 and ay(t) =15
=0
ANALYTICAL Solution
Taking the LT of the given equation
s2Y(s) — sy(0) — LU10) —9Y(s)
dt |-

s2Y(s) — sy(0) — 15 = —9Y(s)

Y(s)(s2 +9) =15

Y(s) = 15 5[ 3 }

2+9 | 2+32

then
y(t) = £7Y(s)]

y(t) = 5sin(3t)u(t)

d. Example (#4)

Let

dy(t)
2 + 3y(t) =
it 3y(t) = 30

with the IC given by y(0) = 0.
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ANALYTICAL Solution

Taking the LT of the given equation
2[sY(s) = y(0) ] +3Y(s) = 30
S

Y(s)[2s + 3] = 38—0

then

Y(s)(2s +3) = 3;—0

Y(s) 30 15 A

by partial fraction expansion

then
y(t) = £7Y(s)]
and

y(t) = 10u(t) — 10e~15tu(t)

e. Example (#5)
Let

d
%Jrély(t):O

with y(0) = 10.
ANALYTICAL Solution
Taking the LT of the preceding equation
sY(s)—10+4Y(s) =0

Y(s)(s + 4) = 10, Y(s) = %

and

y(t) = £71[Y(s)]

then
y() = 10e*u(t)

= — = +
s(2s+3) s(s+15) s s+15

363

The MATLAB function F = laplace(f) returns the LT of f, denoted by f(t) — F(s),

where fis a symbolic object with independent variable ¢.
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R4.115 The following examples illustrate the procedure used to obtain the LT of the stan-
dard time functions (signals or systems) using the symbolic MATLAB toolbox.
Obtain the LT of the following time-dependent functions, and compare the

R4.116

results with the transforms of Table 4.2.

a. f1(t) = exp(t)
b. f2(t) = texp(t)
c. f3(t) = cos(t)
d. f4(t) = sin(t)
e. fot) =+

f. fo(t) = u(t)

g. f7(t) = pul(t/2)

MATLAB Solution
>> syms s t x ;
>> F1 = laplace(exp(t))

Fl =
1/(s-1)

>> F2 = laplace(t*exp(t))

F2 =

1/(s-1)"2
>> F3 = laplace(cos(t))
F3 =

s/(s"2+1)

>> F4 = laplace(sin(t))
F4 =

1/(s”2+1)
>> F5 = laplace(t™7)

F5 =
5040/s"8

>> F6 = laplace(sym(‘Heaviside(t)’))

F6 =
1/s

>> F7 = laplace(sym(‘Heaviside(t+1)’)

-sym(‘Heaviside(t-1)’))

F7 =
1/s-exp(-8)/s

part (a)
part (b)
part (c)
part (d)
part (e)
part (f)
part(g)

Note that the transforms obtained using the symbolic MATLAB toolbox fully

agree with the transforms of Table 4.2.

The MATLAB function f = ilaplace(F), where F is a symbolic expression with inde-
pendent variable s, returns the ILT of F, denoted by f which is a function of f,

denoted by F(s) — fit).
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R.4.117 For example, using the symbolic MATLAB toolbox obtain the ILT of the following
frequency-dependent functions (F1 through F7 of R.4.115):

a. F1=1/s — 1)
b. F2 = 1/s — 1)?
c. F3=5/s*+1)
d. F4 =1/ + 1)
e. F5 = 5040/s®

f. F6 =1/s

g F7 =(1/5) —e5/s

MATLAB Solution

>> syms s t

>> Fl=1/(s-1)

>> f1 = ilaplace(F1)

f1

exp(t)
>> F2 = 1/(s-1)"2;
>> f2 = ilaplace(F2)

f2 =
t*exp(t)
>> F3 = s /(s72+1);
>> f3 = ilaplace(F3)

£3 =
cos(t)
>> F4 =1/(s"2+1);
>> f4 = ilaplace(F4)

f4 =
sin(t)
>> F5 = 5040/s"8;
>> f5 = ilaplace(F5)

f5 =
t*7
>> F6 = 1/s;
>> f6 = ilaplace(F6)

f6 =
1
>> F7 = 1/s-e8/s;
>> £7 = ilaplace(F7)

£7 =
l-Heaviside(t-1)
R.4.118 Let us now illustrate the power of MATLAB by solving again the four Example
problems of R.4.98, using MATLAB, given below by the script file solve_DE.
Recall that the examples of R.4.98 were solved by hand. Compare the results, as
well as the labor involved in each process.

MATLAB Solution

% Script file: solve _DE
syms s t ft Fsa ftb Fsb ftc Fsc yt Y
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disp(‘*******************************’)

disp(‘****Solutions using Matlab****’)
disp(‘*******************************q

disp(‘(a) Example(#1), the time function f(t) is:’)

ft = S5+2%exp(-3*t)+10*sin(3*t)+5*exp(-2*t)*cos(7*t);
pretty(ft)

disp (‘its Laplace transform F(s) is given by:’)

Fsa = laplace(ft);

pretty(Fsa)

disp(\*******************************q

disp(‘(b) Example(#2), the frequency function F(s) is:’)
Fsb = 10/s+20/8"2+30/(s+3);

pretty(Fsb)

disp(‘its inverse Laplace transform is, f£(t):’)
ftb=ilaplace(Fsb);

pretty(ftb)

disp(‘*******************************q
disp(‘(c)Example(#3), the frequency function F(s) is:’)
Fsc = (8*s+30)/(s™2+25);

pretty(Fsc)

disp(‘its inverse Laplace transform, £f(t) is:’)

ftc = ilaplace(Fsc);

pretty(ftc)

disp(‘*******************************q

disp('(d) Example(#4), the frequency function Y(s) is:’)
Y = (4*s+410)/(s*(s+1)*(s+2));

pretty(Y)

disp(‘its inverse Laplace transform, y(t) is given by:’)
yt = ilaplace(Y);

pretty(yt)

disp(\*******************************q

The script file solve_DE is executed and the results are as follows:

>> solve _DE

khkkhkhhhhkhkhkkkkhkhkhkhhhkhkhhkhkkkkkhkhkhhhhkkkkk
***k%k*k* Solutions using Matlab #******
khkkkkhkkkkkhkkkkkkhkkkkkhkkkhkkkkkkkkkkkkkkkk
(a) Example(#1), the time function £(t) is:
5 + 2 exp(-3 t) + 10 sin(3 t) + 5 exp(-2 t) cos(7 t)
its Laplace transform F(s) is given by :

2 30 s + 2
5/s + ----- + ------ + 5 -
s + 3 2 2
s + 9 (s + 2) + 49

khkkhkhkkhkkhkkkkkhkhkhkhkhkhkhkhhkkkkkhkkhkhkkkkkkk

(b) Example(#2), the frequency function F(s) is:
10 20 30
e 4 mmme 4 mmmem
s 2s s + 3
its inverse Laplace transform is, f(t):

10 + 20 t + 30 exp(-3 t)
khkkkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkhkkkkkk
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R.4.119

R.4.120

R4.121

(c) Example (#3), the frequency function F(s) is:
8 s + 30

s? + 25
its inverse Laplace transform, £(t) is:
8 cos(5 t) + 6 sin(5 t)

khkkhkhkkkhkhkkkkkhkhkhkkkkhkhkhkkkkkkkkkkkkkkk

(d) Example(#4), the frequency function Y(s) is:
4 s + 10

s (s +1) (s + 2)
its inverse Laplace transform, y(t) is given by:
5 - 6 exp(-t) + exp(-2 t)
khkkhkkkkhhkkhkhkhkkhhkkhhkhkkhkhkhkhkhkhhkkkhkkk
Note that the results obtained fully agree with the results obtained in R.4.98,
with a significant reduction of mathematical insight and labor.

Let f,(t) be a periodic function (with a period T # 0). Then its LT is given by

0] = FO

where
T

F(s) = [e* fy(t)dt

0

Observe that this frequency—time relation pair was presented in R.4.82 (#1), using a
slightly different notation. It is important to understand that the LT can be equally
useful in the analysis of periodic, as well as nonperiodic functions, as was the case
of the FT.

A way to evaluate the ILT of a given transfer function H(s) = num/den is by evaluat-
ing its impulse response h(t). Recall that the MATLAB function impulse (num,den,t)
returns the system impulse response, where num and den are the numerator and
denominator polynomials of H(s) entered as row vectors arranged in descending
powers of 5, and ¢ defines the time range of interest.

For example,

3s+25 _ num(s)

Let F(s) =
et F®) s2+3s+2  den(s)

then the program that returns the expression for f(t) (f(t) — F(s)), and the plot f(t)
versus t, evaluated by numerical and symbolic techniques, as well as the plot F(s)
versus s, over the ranges: 0 =t = 10, and 0 = s = 10, is given as follows by the
script file F_f.

MATLAB Solution

% Script file: F_ £

num = [0 3 25];

den = [1 3 2];

t = 0:.1:10;

f = impulse (num, den, t);
subplot(3,1,1)



368 Practical MATLAB® Applications for Engineers
plot (t,f)
title (¥ plot of [ ILT of F(s)] vs. t (numerical solution)’)
ylabel (*Amplitude’); xlabel (‘time t’);
disp(‘*************RESULTS************’)
syms s t;
disp(‘F(s) is given by:’)
F = (3*s+25)/(s"2+3*s+2);
pretty(F)
disp(*The ILT of F(s)is given by:’)
FILT = ilaplace(F);
pretty (FILT)
subplot (3,1,2)
ezplot (FILT,[0 10])
title (% plot of £(t) vs. t (symbolic solution) ‘)
xlabel (‘time t’); ylabel(‘Amplitude’)
subplot(3,1,3)
ezplot (F,[0 10])
title (' plot of F(s) vs.s (symbolic) ‘)
xlabel (‘s (frequency)’)
ylabel(*Amplitude’)
disp(‘**********************************’)
The script file F_f is executed and the results are indicated as follows.
> F £
10 T L} 1 T T T Ll 1 T
© plot of [ILT of F(s)] versus t (numerical solution)
E
£ 5F -
Qo
£
< Time t
0 L 1 1 v, 1 1 Il L
0 1 2 3 4 5 6 7 8 9 10
(0]
° -
2
=1
E -
< Time t
1
9 10
T
° 4
©
=] -
=1
S
<C -
L
9 10
s (frequency)
FIGURE 4.19

Plots of R.4.121.
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R4.122

R4.123

R4.124

R.4.125

kkkkkkkkkk*k*RESULTS***kkkhkkkhhhkk

F(s) is given by:

The ILT of F(s) is given by:

-19 exp(-2 t) + 22 exp(-t)

hhkkhkkkkkkkhkhkhkhkhhkhkhkhkhkkkkkhkhkhhhhkkkkk

A plot that relates to the amplitude of a given function f(#), its frequency w, and
its time , is called a spectrogram. In its simplest version, the MATLAB function
specgram(f) returns the plots of the spectrogram of the function f(t) specified by the
row vector f, with a default sampling frequency of F, = 1/Ts = 2.

In its simplest version, the MATLAB function psd(f) returns the power spectrum
density of the function f(t) defined by the vector f.

Recall that MATLAB provides with a speech file named mtlb.mat that consists of
4001 samples, sampled at 1418 Hz. Recall also that this file (mtlb.mat) is often used
for testing purposes (Chapter 1).

The following example illustrates how the MATLAB functions specgram and psd
can be used on an arbitrary file (voice, audio, video, or data), or on a data array.

For example, create the script file specpsd that returns the following plots (Fig-
ures 4.20 and 4.21):

1. The speech file mtlb.mat versus t

2. y(t) = 3cos(2mt/2000), sampled with arate of T = 1, for t = 0, 1, 2, 3, 4,..., 4000
(returning 4001 samples) versus ¢

. A random noisy signal defined by noise = 2 * rand(1:4001) versus ¢
. ynoise = y(t) + noise, over the first 1000 samples.
. The spectrogram of the file mtlb
. psd of the file mtlb
The spectrogram of the sequence ynoise

O N O Ul W

. psd of the sequence ynoise

MATLAB Solution

% Script file: specpsd

% load speech file mtlb

load mtlb;

x = 1:4001; % time sequence
figure(1)

subplot(2,2,1);

plot(x,mtlb);

axis([0 4000 -4 4]);

ylabel (*Amplitude ‘);

title(‘[Speech file mtlb] vs. t’)

noise= rand(1,4001)*2; % noise sequence;
y = 3*cos(2*pi*x/2000);
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ynoise = 3*cos(2*pi*x/2000)+noise;
subplot(2,2,2)
plot(x,y);title(*Sinusoid test funct ');
ylabel (*‘Amplitude’)
axis([0 4000 -4 4]);
subplot(2,2,3)
plot(x,noise);title(‘noise vs. t’)
ylabel(*‘Amplitude’)
axis([0 100 -1 3]);
xlabel(‘time’);
subplot(2,2,4)
plot(x,ynoise)
xlabel(‘time’);title(‘[sinusoid+noise] vs. t’);
ylabel(*‘Amplitude’)
axis([0 1000 -6 6]);
figure(2)
subplot(2,2,1)
specgram(mtlb);title(‘spectrogram of the speech file mtlb’)
subplot(2,2,2)
psd(mtlb);title(*power spec. den.of mtlb’)
subplot(2,2,3)
specgram(ynoise);
title(‘specgram of sinusoid+noise’)
subplot(2,2,4)
psd(ynoise);
title(‘power spec. den. of sinus.+noise’)
The script file specpsol is executed and the resulting plots are shown in Figures 4.20
and 4.21.
[Speech file mtlb] versus t Sinusoid test funct
4 4
2 -
E g
= =
& &
2 |
-4 -4
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FIGURE 4.20

Plots of parts 1, 2, 3, and 4 of R.4.125.
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FIGURE 4.21

(See color insert following page 374.) Plots of parts 5, 6, 7, and 8 of R.4.125.

R4.126 The MATLAB function spectrum(x) returns the script file specpsd is executed and

the resulting plots are shown in Figures 4.20 and 4.21 plot of psd(f) with the default
given by length(f) = 256 or less.

R.4.127 The MATLAB function spectrum(x,y) estimates the power density of the sequences

R.4.128

R.4.129

R.4.130

x and y, and returns the spectral analysis for x and y in a tablelike format, where
the first five columns are denoted by P,,, P, P,,, T,,, and C, , where
P.. denotes the psd of x

P,, represents the psd of y

P,, represents the cross-spectral density

T., represents the complex transfer function that relates input x to the output y
C,, denotes the coherence relation between the system input x and its output y
The remaining three columns provide confidence ranges.

The coherent relation C,, indicates by means of the coefficients the degree of similar-
ity between the two given sequences x and y, over a normalized range of frequen-
cies. The range of the coefficients of similarity are defined between 0 and 1, where 0
indicates no similarity and 1 indicates a high degree of similarity between x and y.

The MATLAB function spectrum(x,y), with no explicit output, returns these five

plots: P, P,,, magnitude [T, ], phase[T, ], and C,,.

The MATLAB function cohere(x,y) returns the plot of the coefficients of similarity
between x and y, indicating how well the input x corresponds to the output y, over
a normalized frequency range.
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R4.131 The MATLAB function specplot(p) uses the output of the function p=spectrum(x,y)

(R4.126) to return the plots of P,,, P,,, magnitude[T, ], phase[T, ], and C,,.

R4.132 The script file specgrph illustrates the use of the function spectrum, with input argu-
ments ynoise and mtlb, defined in R.4.124 and R.4.125.

MATLAB Solution

% Script file: specgrph
% load speech file mtlb

% echo on;

load mtlb;

x =1:4001; % time sequence
noise = rand(1,4001)*2; % noise sequence
y = 3*cos(2*pi*x/2000);

ynoise = 3*cos(2*pi*x/2000)+noise;

disp(‘*********************************************’)
disp(‘*********************************************’)
disp(‘Press Enter to get the plots of:’)
disp(‘Pyy,mag(Txy),angle(Txy),Cxy’)
disp(‘*********************************************’)

disp(‘*********************************************’)

spectrum(ynoise,mtlb)

The script file specgrph is executed and the resulting plots are shown in Figures 4.22
through 4.26.

R.4.133 It is often required to analyze a given system transfer function H(s), in terms of
its circuit elements, given by impedances. Review of simple network structures,
expressed in terms of their impedance (in ohms), denoted by Z(s) are shown in
Figure 4.27, with the corresponding equations. These simple building blocks when
interconnected are used to build complex networks.

P,x— X power spectral density
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10-2 . . . . . . . . .
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FIGURE 4.22
Plot of psd of ynoise of R.4.132.
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P,,— Y power spectral density
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FIGURE 4.23
Plot of psd of mtlb of R.4.132.

T,y — transfer function magnitude
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FIGURE 4.24
Plot of magnitude of T, of R4.132.
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T,,—transfer function phase
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FIGURE 4.25
Plot of phase of T, where x = ynoise and y = mtlb of R4.132.

C,y— coherence
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FIGURE 4.26
Plot of C,, coherent relation between x and y of R.4.132.
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FIGURE 4.27
Standard impedances Z(s) of simple network structures.
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R.4.134 To conclude, let us discuss the reason for having defined and used two very similar

transforms, the FTs and LTs in this chapter.

Observe that both transforms basically state the same mathematical relation.
Both are obtained by integrating over time f(t) multiplied by an exponential raised
to a negative time complex frequency. Recall that for Laplace’s case f(t) is multiplied
by e~ (where s is complex), and the reason is that the convergence of the Fourier
integral is enhanced, meaning that the LT may exist for many functions for which
there is no FT. This is one of the main advantages of the LT, the ability to transform
functions which are not otherwise transformable by means of Fourier.

In addition, Laplace incorporates the initial conditions in the evaluation of its
transform and provides a more complete system model representation, in which
information in the frequency domain are directly related to the time domain, as is
the case of the initial and final value theorems.

4.4 Examples

Example 4.1

Let the FS expansion of a periodic square wave be given by

7

fit)= 2 2 lsin(nwoif)

n=odd

where the period is T = 2 s, and the fundamental frequency is w, = 2/T = .

Create the script file square_Fourier that returns the following plots, over the range

0=t=4.

a. The first four nonzero Fourier components of f(t) versus f (for n = 1, 3, 5, 7) on
separate plots

b. The components of part a on one plot (indicating the phase, frequency, and ampli-
tude relations)

c. Successive partial approximation sums of the FS expansion on separate plots

d. Successive partial sums of the FS expansion on the same plot

The errors(t) versus t for each one of the approximations (sums) of part c

o

MATLAB Solution

% Script file: square Fourier

Harmonic Analysis of a square wave by a Fourier Series
% approximation, fundamental frequency wo=pi
echo off;

T = 2;

w0 = 2*pi/T;

£t = 0:.01:2*T;

% Harnonics are generated below

Harmonic 1 = 2/pi*sin(w0.*t);

Harmonic 3 = 2/(3*pi)*sin(3*w0.*t);

Harmonic _ 5 = 2/(5*pi)*sin(5*w0.*t);

Harmonic _ 7 = 2/(7*pi)*sin(7*w0.*t);

o°
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figure(1); % Figure 4.28, part(a)
subplot(2,2,1);

plot(t,Harmonic _1);

title(‘fundamental freq. wo=pi’);

ylabel (*‘Amplitude’);

subplot(2,2,2);

plot(t,Harmonic 3);

title('3rd. harmonic, freq.w=3*wo’);
ylabel (‘Amplitude’);

subplot(2,2,3);

plot(t,Harmonic _5);

title(*5th. harmonic, freq.w=5*wo’);
ylabel (*‘Amplitude’);

xlabel(' time (in sec)’);

subplot(2,2,4);

plot(t,Harmonic _7);

title(*7th. harmonic, freq.w=7*wo’);
ylabel (*Amplitude’); axis([0 4 —0.15 0.15])
xlabel(' time (in sec)');

)

figure(2); % Figure 4.29, part (b)
plot(t,Harmonic 1,t,Harmonic 3,t,Harmonic 5,t,Harmonic 7);
title('Harmonic components of the square wave');
ylabel('Amplitude');

xlabel('time (sec) ');

figure(3); % Figure 4.30, part(c)
subplot(2,2,1)

plot(t,Harmonic _1);

title('fundamental frequency (square)');

ylabel('Amplitude');

subplot(2,2,2);

Har 13 = Harmonic 1+ Harmonic _3;

plot(t,Har _13);

title('fund.+ 3rd. harmonic ');

ylabel('Amplitude');

subplot(2,2,3);

Har 135 = Harmonic 1+ Harmonic 3+ Harmonic 5;

plot(t,Har _135);

title('fund.+3rd.+ 5th harmonic ');

ylabel('Amplitude');

xlabel('time (in sec)');

subplot(2,2,4);

Har 1357 = Harmonic 1+ Harmonic _3+Harmonic 5+Harmonic _7;
plot(t,Har 1357);

title('fund.+ 3rd.+ 5th.+ 7th. harmonic ');

ylabel('Amplitude');

xlabel('time (in secq)');

figure(4); % Figure 4.31, part (d)
plot(t,Harmonic _ 1,t,Har _ 135,t,Har _ 1357);

title('Plots of square wave approximations using harmonics ');
xlabel('time (in sec)');

ylabel('Amplitude');
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figure(5); % Figure 4.32, part (e)
sqgqr = [.5*ones(1,101) -.5*ones(1,100) .5*ones(1,100) -.5*ones(1,100)];
errorl= sqr-Harmonic _1;

error3 = sqgr-Har 13;

error5 = sgr-Har _ 135;

error7 = sqr-Har _ 1357;

subplot(2,2,1)

plot(t,sqr,t,errorl);

title('errorl(t)=square wave-harmonics:1')
ylabel('Amplitude');axis([0 4 -0.6 0.6]);
subplot(2,2,2)

plot(t,sqgr,t,error3);

title('error3(t)=square wave-harmonics:1,3')
ylabel('Amplitude');axis([0 4 -0.6 0.6]);
subplot(2,2,3)

plot(t,sqgr,t,errors);

title('error5(t)=square wave-harmonics:1,3.5'")
xlabel('time (in sec)');axis([0 4 -0.6 0.6]);
ylabel('Amplitude');

subplot(2,2,4)

plot(t,sqr,t,error7);axis([0 4 -0.6 0.6]);
title('error7(t)=square wave-harmonics:1,3,5,7')
xlabel('time (in sec)');

ylabel('Amplitude');

The script file square_Fourier is executed and the results are shown in Figures 4.28
through 4.32.
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FIGURE 4.28
Plots of part a of Example 4.1.
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Harmonic components of the square wave
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FIGURE 4.29
(See color insert following page 374.) Plots of part b of Example 4.1.
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FIGURE 4.30
Plots of part c of Example 4.1.
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Plots of square wave approximations using harmonic