BABI

PENDAHULUAN

1.1 Latar Belakang

Berkurangnya produksi energi fosil, terutama minyak bumi, dan komitmen global untuk mengembangkan rencana emisi gas rumah kaca, pemerintah dipaksa untuk terus meningkatkan peran energi baru terbarukan sebagai bagian dari menjaga ketahanan dan kemandirian energi. Ini ditunjukkan dalam PP No. 79 Tahun 2014 tentang kebijakan energi nasional, yang menetapkan target bauran energi baru dan terbarukan harus meningkat setidaknya 23% pada tahun 2025 dan 31% pada tahun 2050. Dengan potensi 207,8 gigawatt peak untuk energi surya, Indonesia memiliki sumber daya terbarukan terbesar untuk energi surya. Selain itu, energi gelombang laut di Indonesia memiliki potensi untuk menghasilkan sekitar 10–20 kilowatt/meter gelombang, bahkan mungkin mencapai 70 kilowatt/meter gelombang di beberapa daerah. Informasi ini dikumpulkan dari Direktorat Jendral Energi Baru Terbarukan, Konversi Energi. (Ditjen EBTKE, 2019)

Situasi ini menunjukkan bahwa diperlukan suatu inovasi teknologi energi ramah lingkungan dan terbarukan yang berguna sebagai alternative pengganti energi fosil untuk menghasilkan listrik. Luas lautan Indonesia sekitar 5,9 juta km², menjadikannya salah satu negara paling maritim di dunia. Ini termasuk 3,2 juta km² perairan territorial dan 2,7 km² perairan ZEE (Zona Ekonomi Ekslusif). Karena kondisi geografis ini, Indonesia memiliki potensi kelautan yang sangat besar ini seharusnya dapat digunakan untuk meningkatkan kualitas hidup penduduk yang tinggal di wilayah pesisir Dari permasalahan tersebut ditawarkan inovasi yang berjudul. "Penentuan Daya Pada Pembangkit Listrik Hybrid Arus

Laut PV Dan Baterai Di Desa Waikoka" konsep inovasi tersebut berfokus pada pembangkit listrik energi terbarukan dan ramah lingkungan untuk pemerataan energi listrik di daerah pesisir. (Pemerintah Provinsi Jawa Barat. 2017.)

Pembangkit listrik hybrid arus laut-*photovoltaik*-baterai adalah solusi luar biasa yang menggabungkan teknologi penyimpanan baterai dan sumber daya energi terbarukan dari arus laut dan surya. Sistem didukung oleh potensi energi laut dan matahari yang besar, serta kebutuhan untuk pasokan listrik di wilayah terpencil. Sementara radiasi matahari sangat potensial untuk pembangkit listrik tenaga surya di tempat tertentu, energi gelombang laut merupakan sumber energi kinetik yang dapat diubah menjadi listrik. (Faanzir, F. 2023).

Beberapa penelitian juga menyoroti pentingnya optimasi daya pada sistem ini, termasuk penentuan kapasitas sistem berdasarkan keseimbangan antara ukuran baterai, biaya pembangkit, kecepatan arus laut, radiasi matahari, dan beban. Hal ini menunjukkan bahwa pengembangan sistem pembangkit listrik hybrid ini melibatkan aspek teknis dan ekonomi yang kompleks, sehingga diperlukan penelitian dan pengembangan yang cermat untuk mencapai kinerja dan efisiensi yang optimal.

Kondisi kelistrikan di Selat Capalulu, Kecamatan Kepulauan Sula, memiliki potensi energi laut yang besar dan radiasi matahari yang sangat potensial untuk menghasilkan listrik. Kecepatan arus laut di Selat Capalulu rata-rata sebesar 2 m/s, yang sangat cocok untuk pengembangan sistem pembangkit listrik *hybrid* berbasis arus laut dan photovoltaik.

Dengan latar belakang ini, pengembangan sistem pembangkit listrik *hybrid* arus laut-photovoltaic-baterai diharapkan dapat memberikan solusi yang berkelanjutan, ramah

lingkungan, dan ekonomis untuk memenuhi kebutuhan listrik, terutama di daerah terpencil yang sulit dijangkau oleh jaringan listrik konvensional.

1.2 Rumusan Masalah

Rumusan masalah yang muncul dalam penelitian ini adalah sebagai berikut:

- 1. Bagaimana menghitung daya listrik dari Photovoltaik
- 2. Bagaimana menghitung daya dari arus laut
- Bagaimana menghitung energi listrik dari arus laut dan PV untuk memenuhi kebutuhan listrik di desa waikoka

1.3 Tujuan Penelitian

Penelitian ini bertujuan untuk mengembangkan solusi yang dapat mengatasi masalah ketersediaan listrik di daerah terpencil, serta meningkatkan pemanfaatan sumber energi terbarukan berupa :

- 1. Menghitung listrik dari Photovoltaik.
- 2. Menghitung daya dari arus laut.
- Menghitung listrik dari arus laut dan PV untuk memenuhi kebutuhan listrik di Desa Waikoka.

1.4. Batasan Masalah

Pada penelitian ini memiliki batasan masalah yaitu metode perhitungan kapasitas sistem pembangkit listrik hybrid berdasarkan daya pembangkit, kecepatan arus laut , radiasi

matahari, dan beban, yang memerlukan keseimbangan antar ukuran baterai, daya pembangkit, kecepatan arus laut, dan radiasi matahari

1.5. Manfaat Penelitian

Mengembangkan pemanfaatan sumber energi baru terbarukan, seperti arus laut dan energi surya, untuk bantu kurangi ketergantungan pada bahan bakar fosil dan mengurangi emisi gas rumah kaca.

1.6 Sistematika Penulisan

Untuk memudahkan pembahasan, laporan ini disusun dengan sistematika sebagai berikut;

BAB I PENDAHULUAN

Menjelaskan tentang latar belakang, rumusan masalah, tujuan, batasan masalah, manfaat penelitian dan sistematika penulisan.

BAB II TINJAU PUSTAKA

Berisi dasar-dasar teori.

BAB III METODOLOGI PENELITIAN

Berisi tempat dan waktu penelitian, alat dan bahan, dan metode penelitian.

BAB IV HASIL DAN PEMBAHASAN

Berisi sajian data penelitian dan pembahasan

BAB V PENUTUP

Berisi simpulan dan saran.