BABI

PENDAHULUAN

1.1 Latar Belakang

Beton merupakan material yang tahan terhadap gaya tekan namun lemah terhadap gaya tarik. Maka dari itu material beton dalam sistem struktur sering dikombinasikan dengan material yang kuat dalam menahan tarikan, seperti material baja tulangan sebagai upaya meningkatkan material beton dalam menahan gaya tarik, kombinasi tersebut biasa disebut dengan beton bertulang.

Komponen-komponen struktur gedung kebanyakan terbuat dari beton bertulang misalnya pondasi, kolom, sloof, plat lantai dan kolom. Setiap komponen struktur menahan beban rencana yang diberikan. Suatu struktur bangunan tentunya di rencanakan sedemikian rupa agar terpenuhi kriteria-kriteria yang diinginkan. Diantara salah satu dasar dari perencanaan konstruksi adalah menentukan jenis dari struktur yang akan dibuat, dapat berupa struktur beton, struktur baja ataupu struktur komposit yaitu gabungan antara struktur beton dan baja. setiap material struktur baik itu baja ataupun beton memiliki kelebihan dan kekurangannya masing-masing.

Kolom sebagai penerus beban seluruh bangunan ke pondasi. Beban sebuah bangunan yang dimulai dari atap akan diterima oleh kolom. Seluruh beban yang diterima oleh kolom kemudian didistribusikan ke permukaan tanah bawahnya. Dengan begitu, kolom pada sebuah bangunan memiliki fungsi yang sangat vital. Jika melihat penjelasan sebelumnya, dapat disimpulkan bahwa kolom merupakan termasuk struktur utama bangunan untuk meneruskan berat bangunan dan beban lain seperti beban hidup (manusia dan barang-barang. Maupun beban hembusan angin. Keruntuhan dan kegagalan

struktur pada kolom menjadi titik kritis yang dapat menyembabkan runtuhnya bangunan. Namun yang perlu diingat juga selain harus melalui proses perhitungan yang tepat, kondisi tanah pun harus benar-benar mampu menerima beban dari atas pondasi.

Komponen struktur yang langsung menerima gaya lateral akibat gempa adalah kolom sehingga desain dan pendetailan tulangan kolom memerlikan penanganan yang khusus, Seperti jarak dan jumlah tulangan utama, diketahui juga bahwa kemampuan suatu struktur pada saat menerima beban gempa tergantung pada seberapa besar pemancaran energi potensial dan pembentukan sendi plastis pada kolom, sehingga struktur tidak runtuh secara mendadak akibat gempa yang kuat dan dapat memastikan stabilitas struktur untuk memelihara kapasitasnya terhadap beban aksial selama terjadi gempa.

Selama masa layannya kolom beton bertulang dapat mengalami penurunan kekuatan, hal ini bisa disebabkan oleh cuaca, korosi pada tulangan baja, beban yang berlebih, kebakaran atau gempa bumi. Pada saat dimana beban ditingkatkan pada kolom tersebut, sehingga mengakibatkan retak-retak pada bagian kolom. Penambahan tingkat beban secara terus menerus mengakibatkan kegagalan element struktur saat beban eksternal mencapai kapasitas element tersebut. Untuk itu agar kolom tetap dapat menahan beban yang diterimanya perlu dilakukan perkuatan pada struktur tersebut.

Salah satu dari metode perkuatan struktur yang di pakai yaitu *fine mesh* yang dilakukan pengujian secara eksperimental di laboratorium. Pengujian ini memberikan gambaran mengenai respon struktur berdasarkan keadaan nyata seperti yang di lakukan Dominggus Bakarbessy (2008) dalam penelitiannya " Efektifitas pengekangan *fine mesh* pada kolom persegi beton bertulang ", menunujukan tegangan puncak beton terkekang mencapai 1,73% - 7,49%. kolom yang pakai tulangan sengkang *Fine Mesh* + sengkang biasa

mempunyai daktalitas yang hampir sama dengan kolom yang pakai sengkang biasa saja, Terdapat kemiripan bentuk kurva tegangan-regangan pada hasil eksperimental kolom RCFMH dan RCH. Namun pada dasarnya, untuk bisa mendapatkan data yang valid, simulasi tersebut perlu diuji dengan percobaan dan biaya yang besar, tenaga yang tidak sedikit, waktu yang lama, serta pelaksanaan yang terbilang sulit. Oleh karena itu dengan kemajuan teknologi saat ini, studi experimental tersebut dapat dilakukan tanpa adanya pengujian dilaboratorium. Melainkan specimen dari experimental tersebut dimodelkan menggunakan software komputer. Hal ini tentunya dinilai positif karena dapat meminimalisir waktu, tenaga dan biaya pengujian yang dilakukan secara experimental. Oleh sebab itu, penulis berencana melakukan penelitian mengenai efek variasi rasio tulangan memanjang pada kolom beton persegi dari hasil penelitian experimental dengan menggunakan data kolom RCP dan RCH pada penelitian tersebut. dengan menggunakan analisis hasil dari software pemodelan yang berbasis metode element hingga yaitu Software ABAQUS CAE 6.14

Abagus adalah program simulasi rekayasa didasarkan pada Finite Element pada titik yang ditinjau. Finite Element Analysis dibangun sebagai metode numerik untuk analisa tegangan dan regangan dalam kolom.

Dipilihnya software ABAQUS didasari dengan kelebihannya dalam memasukan data hasil experimen kedalam tabel *properties* material sebagai input data dari material beton dengan lebih akurat. Hasil yang didapatkan dengan software ABAQUS 6.14 ini akan divalidasikan dengan hasil pengujian secara experimental.

Berdasarkan latar belakang yang telah diuraikan maka tugas akhir ini akan diberi judul "PREDIKSI PERILAKU NONLINIER HUBUNGAN TEGANGAN REGANGAN PADA KOLOM PERSEGI DENGAN VARIASI RASIO TULANGAN MEMANJANG MENGGUNAKAN ABAQUS".

1.2 Rumusan Masalah

Adapun pembahasan yang dibahas dalam penelitian ini adalah :

- Bagaimana tingkat validasi dari hasil software berupa tegangan regangan dengan hasil experimental terhadap kolom.
- Begaimana kesamaan pola retak model kolom dari hasil software dengan hasil secara experimental.

1.3 Tujuan Penulisan

- Untuk mengetahui tingkat akurasi simullasi software berbasis element hingga terhadap kolom berdasarkan keadaan nyata.
- Untuk mengetahui pola keretakan kolom dari hasil software dengan hasil experimental.

1.4 Manfaat Penulisan

- Untuk dapat memberikan pemahaman perilaku tegangan-regangan kolom beton bertulang dengan menggunakan program ABAQUS, dan menjadi sarana baru dalam penelitian serupa.
- Untuk dapat divalidasi dengan hasil penelitian secara experimental dengan bantuan software sehingga penelitian tersebut lebih akurat.

- Untuk dapat menjadi suatu dasar pertimbangan dalam menggunakan software pada struktur sehingga dapat meningkatkan efisiensi perkiraan dari segi waktu, biaya, dan tenaga.
- 4. Memberikan tambahan informasi pada penelitian selanjutnya dibidang pemodelan.

1.5 Batasan Masalah

Berdasarkan rumusan masalah diatas, penulis memberikan batasan masalah agar pembahasan sesuai dengan judul penelitian, yaitu sebagai berikut :

- Data analisis menggunakan data sekunder dari penelitian yang di lakukan oleh Dominggus Bakarbessy (2008) dalam thesisnya yang berjudul "Efektifitas Pengekangan Fine Mesh Pada Kolom Persegi Beton Bertulang".
- 2. Pemodelan dilakukan menggunakan program komputer berbasis *Finnite Element* yaitu *ABAQUS* versi 6.14.
- 3. Kolom yang ditinjau dalam keadaan elastis.
- 4. Kolom yang dimodelkan yaitu kolom persegi dan merupakan kolom pendek.
- 5. Analisis yang ditinjau / divalidasikan berupa :
 - a) Model kolom polos (RCP) dan kolom dengan 8 tulangan utama. (RCH).
 - b) Pola retak kolom.
- 6. Material beton yang dapakai spesifikasi fc = 22,2 mpa

1.6 Sistematika Penulisan

Sistematika penulisan ini ditujukan untuk memberikan gambaran secara garis besar isi dari setiap bab yang akan dibahas pada tugas akhir ini. Sistematika penulisan tugas akhir ini adalah sebagai berikut :

BAB I PENDAHULUAN

Bab ini berisi latar belakang, rumusan masalah, tujuan penulisan, manfaat penulisan, batasan masalah dan sistematika penulisan.

BAB II TINJAUAN PUSTAKA

Bab ini berisi uraian tentang dasar-dasar teori yang digunakan dalam penelitian perilaku tegangan regangan kolom beton bertulang dengan menggunakan ABAQUS.

BAB III METODOLOGI PENELITIAN

Bab ini berisi pembahasan tentang gambaran umum, metode yang digunakan dan penjelasan mengenai langkah-langkah yang akan dilakukan dalam menganalisa perilaku kolom beton bertulang dengan menggunaan *ABAQUS*.

BAB IV HASIL DAN PEMBAHASAN

Bab ini berisi tentang kesimpulan yang diperoleh dari hasil penelitian dan saransaran mengenai tindakan yang perlu ditempuh agar hasil yang diperoleh berikutnya lebih maksimal.